Electronic Supporting Information (ESI)

Chiral Magnetic Metal-Organic Frameworks of Dimetal Sub-Units: Magnetism

Tuning by Mixed-Metal Compositions of the Solid Solutions

Ming-Hua Zeng,^{†,§} Bo Wang,[†] Xin-Yi Wang,[‡] Wei-Xiong Zhang,[†] Xiao-Ming Chen,^{†,*} and Song Gao^{‡,*}

[†] MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China. cxm@mail.sysu.edu.cn. Fax: Int. code +86 20 8411-2245 (X.-M. Chen)

[‡] Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare-Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871, P. R. China

[§]Research Institute of Bioinorganic Chemistry, Department of Chemistry and Chemical Engineering, GuangXi Normal University, Guilin 541004, P. R. China

Experimental Section

Synthesis of 1,4-di (1-imidazolylmethyl) benzene.

Although the synthesis of 1,4-dimb was previously reported, we prepared this compound in a different way. 1,4-Dichloromethylbenzene (10.20 g, 0.06 mol) was dissolved in DMSO (20.0 mL), followed by addition of KOH (10.11 g, 0.18 mol). After the mixture is stirred at $50\sim60^{\circ}$ C for 2 hours, a DMSO solution (50.0 mL) of imidazole (10.50 g, 0.15 mol) was added dropwise, which was continued for ca. 1 hour. The mixture was then allowed to stir at $40\sim50^{\circ}$ C until the reactant 1,4-dichloro-methylbezene was no longer detected by TLC. Upon

removal of the solvent under reduced pressure, the crude product was obtained. After recrystallization from ethyl acetate-petroleum, pale-yellow crystals (8.29 g) of 1,4-dimb were obtained. The yield was 62.5%, mp. 86-87 °C. ¹H NMR (CDCl₃, δ , ppm): 5.11 (s, 4H, C<u>H₂PhCH₂</u>), 6.88 (s, 2H, imidazole-H), 7.09 (s, 2H, imidazole-H), 7.14 (s, 4H, Ph-H), 7.54 (s, 2H, 3-imidazole-H).

	Calculated			Found		
	C%	H%	N%	C%	H%	N%
1	54.30	5.63	7.44	54.28	5.66	7.42
2	54.26	5.63	7.44	54.23	5.65	7.41
3	54.28	5.63	7.45	54.26	5.66	7.42
4	54.29	5.63	7.45	54.27	5.65	7.43
5	54.27	5.63	7.45	54.28	5.64	7.43
6	54.28	5.63	7.45	54.25	5.64	7.42

Table S1. Elemental analysis (%) For 1~6:

Table S2. Main IR bands (cm⁻¹)

1	2	3	4	5	6
2969.0s	2967.9s	2967.9 <i>s</i>	2969.3 <i>s</i>	2968.3 <i>s</i>	2970 <i>s</i>
1598.3vs	1597.6vs	1597.6vs	1597.7 <i>vs</i>	1597.7 <i>vs</i>	1598 <i>vs</i>
1522.8 <i>s</i>	1520.7 <i>s</i>	1520.7 <i>s</i>	1521.7 <i>s</i>	1521.3 <i>s</i>	1441 <i>s</i>
1403.7 <i>vs</i>	1408.3 <i>vs</i>	1408.3 <i>vs</i>	1404.3 <i>vs</i>	1407.1 <i>vs</i>	1408 <i>vs</i>
1289.0 <i>m</i>	1288.1 <i>m</i>	1288.1 <i>m</i>	1288.8 <i>m</i>	1288.5 <i>m</i>	1292.9 <i>m</i>
1112.4 <i>m</i>	1111.8 <i>m</i>	1111.8 <i>m</i>	1112.0 <i>m</i>	1112.3 <i>m</i>	1114 <i>m</i>
804.4 <i>m</i>	804.2 <i>m</i>	804.2 <i>m</i>	804.2 <i>m</i>	804.1 <i>m</i>	802 <i>m</i>
756.8 <i>m</i>	756.9 <i>m</i>	756.9 <i>m</i>	757.6m	757.4 <i>m</i>	759 <i>m</i>
656.1 <i>m</i>	655.6 <i>m</i>	655.6 <i>m</i>	655.8 <i>m</i>	656.0 <i>m</i>	658 <i>m</i>
517.0w	512.7w	512.7 <i>w</i>	515.3w	513.4w	516w
480.7w	481.0w	481.0w	480.5w	481.0w	482w

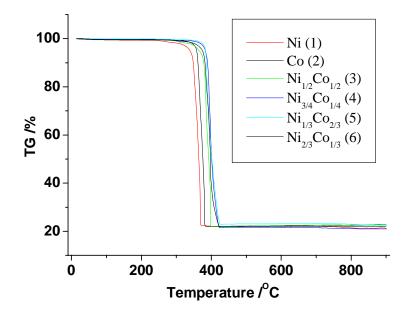
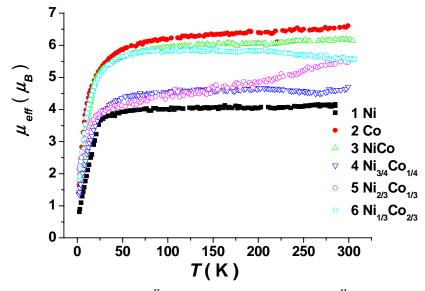



Figure S1. The thermal gravimetric carve of 1~6 in air.

Figure S2. μ_{eff} –*T* plots for **1** per Ni^{II}₂ at 30 kOe (black), **2** per Co^{II}₂ at 10 kOe (red), **3** per CoNi at 10 kOe (green), **4** per Ni_{3/2}Co_{1/2} at 30 kOe (blue), **5** per Ni_{4/3}Co_{2/3} at 20 kOe (magenta) and **6** per Ni_{2/3}Co_{4/3} at 20 kOe (cyan).

Least-squares fitting of the magnetic data for 1 and 2:

1. Fittied by pure spin system (Ni²⁺):

The cluster Hamiltonian is given in equation as follows

$$\hat{H}_{ex} = -J\hat{S}_1\hat{S}_2$$

The magnetic susceptibility data were quantitatively analyzed by treating the Ni(II) ions as an interacting dimer (Eq. 1 and 2), where $\chi = J/kT$, N, J is intra-dimer interaction and zJ' is inter-dimer interaction, β , g, k, and T have their usual meanings.

$$\chi_{\text{dimer}} = \frac{2N\beta^2 g^2}{kT} [\frac{5e^{3x} + e^x}{5e^{3x} + 3e^x + 1}]$$
(Eq.S1)

$$\chi_{\text{dimer}} = \frac{\chi_{\text{dimer}}}{1 - 2zJ'\chi_{\text{dimer}}'/N\beta^2 g^2} \quad \text{(Eq.S2)}$$

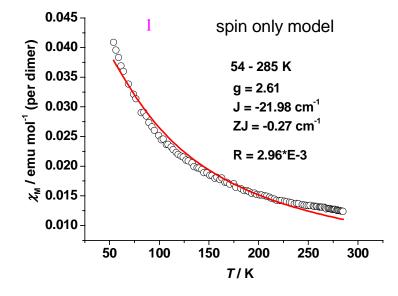


Figure S3. Least-squares fitting of experimental data using eq. S1 for 1

B. Fittied by pure spin system (Co²⁺):

The cluster Hamiltonian is given in equation as follows

$$\hat{H}_{ex} = -J\hat{S}_1\hat{S}_2$$

The susceptibility (χ) of **dimmer Co** is given as eq. 3 and 2.

$$\chi'_{\text{dimer}} = \frac{2N\beta^2 g^2}{kT} \left[\frac{14e^{6x} + 5e^{3x} + e^x}{7e^{6x} + 5e^{3x} + 3e^x + 1}\right]$$
(3)

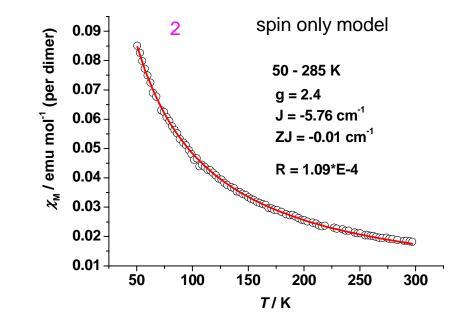
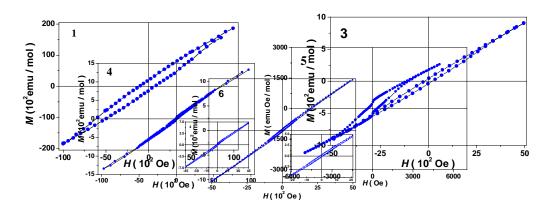



Figure S4. Least-squares fitting of experimental data using eq. S3 for 2.

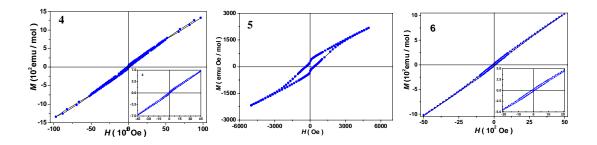
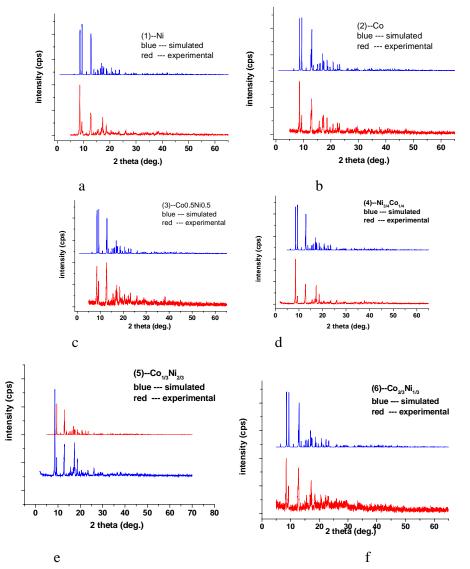



Figure S5. The hysteresis loops for 1, 3 ~6 at 1.8 K.

Figure S6. The simulated (upper) and experimental (lower) powder X-ray diffraction patterns of **1** (a), **2** (b), **3** (c), **4** (d), **5** (e) and **6** (f).