A Stereoselective Synthesis of Digitoxin And Digitoxigen Mono- and Bisdigitoxoside from Digitoxigenin via a Palladium Catalyzed Glycosylation

Maoquan Zhou and George A. O'Doherty*

Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506

Supporting Information

Section A: General Methods	S-2
Section B: Experimental Procedures	S-3
Section C: ¹ H NMR and ¹³ C NMR Spectra	S-25

Section A: General methods

Air- and/or moisture-sensitive reactions were carried out under an atmosphere of argon/nitrogen using oven-dried glassware and standard syringe/septa techniques. Ether. tetrahydrofuran, methylenechloride and methanol were dried by passing through activated alumina column with argon gas pressure. Hexanes refer to the petroleum fraction bp 40-60 °C. Commercial reagents were used without purification unless otherwise noted. Flash chromatography was performed using the indicated solvent system on Sorbent Technologies silica gel standard grade 60 (230-400 mesh). R_f values are reported for analytical TLCusing the specified solvents and 0.25 mm EMD silica gel 60 F₂₅₄ plates that were visualized by UV irradiation (254 nm) or by staining (465 mL of 95% EtOH, 17 mL conc. H₂SO₄, 5 mL acetic acid, and 13 mL anisaldehyde). Optical rotations were obtained using a JASCO, DIP-370 digital polarimeter at sodium D line (589 nm) and were reported in concentration of g / 100 mL at 21 °C. ¹H and ¹³C spectra were recorded on Varian Inova 600 MHz spectrometer, Chemical shifts are reported relative to CDCl₃ (δ 7.26 ppm) for ¹H and CDCl₃ (δ 77.0 ppm) for ¹³C. IR was recorded on PerkinElmer Spectrum One FT-IR Spectrometer; thin film was formed in CHCl₃ solution. Melting points are uncorrected. High resolution mass spectrometric analyses were performed on a LTQ-FT Mass Spectrometer.

Section B: Experimental Procedures

(2R,6S)-Carbonic acid *tert*-butyl ester 6-(*tert*-butyl-dimethyl-silanyloxymethyl)-5-oxo-5,6dihydro-2*H*-pyran-2-yl ester (*ent*-8b):

(5S)-1-Hydroxy-5-tert-butyldimethylsilanyloxymethyl-5H-pyran-4-(1H)-one (5.15 g, 20 mmol) was dissolved in CH₂Cl₂ (20 mL) and the solution was cooled to 0 °C. A CH₂Cl₂ (5 mL) solution of (Boc)₂O (5.22 g, 24 mmol) and a catalytic amount of DMAP (122 mg, 1 µmol) was added to the reaction mixture. The reaction was stirred for 1 h at 0 °C. The reaction was guenched with 100 mL of satd. aq NaHCO₃, extracted (3 x 100 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 6% EtOAc/hexanes to give two diastereomers of carbonic acid tertbutyl ester 6-(tert-butyl-dimethyl-silanyloxymethyl)-5-oxo-5,6-dihydro-2H-pyran-2-yl ester ent-**10b** and *ent-***8b** in 1:1 ratio (5.87 g, 16.4 mmol, 82%). *ent-***8b**: white crystals; R_f (20%) Et₂O/hexanes) = 0.22; mp: 62-62.5 °C; $[\alpha]_D^{21}$ = -47.3 (*c* = 0.3, CHCl₃); IR (thin film, cm⁻¹) 2926, 1742, 1680, 1283, 1252, 1162, 1066; ¹H NMR (600 MHz, CDCl₃) δ 6.86 (dd, J = 10.2, 3.0 Hz, 1H), 6.40 (dd, J = 3.0, 1.2 Hz, 1H), 6.23 (dd, J = 10.2, 1.2 Hz, 1H), 4.33 (dd, J = 6.0, 3.6 Hz, 1H), 4.02 (dd, J = 11.4, 6.0 Hz, 1H), 3.96 (dd, J = 11.4, 3.0 Hz, 1H), 1.51 (s, 9H), 0.87 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H); ¹³C NMR (67.5 MHz, CDCl₃) δ 193.5, 151.9, 142.5, 129.1, 89.4, 83.4, 80.7, 64.4, 27.7 (3C), 25.8 (3C), 18.3, -5.47, -5.51; CIHRMS Calcd for $[C_{17}H_{30}O_6SiNa]^+$: 381.1716. Found 381.1714.

(2R,6S)-(6-Benzyloxy-2-(tert-butyl-dimethyl-silanyloxymethyl)-6H-pyran-3-one (13)

A CH₂Cl₂ (2 mL) solution of Boc compound *ent-8*b (556 mg, 1.55 mmol) and benzyl alcohol (335 mg, 3.11 mmol) was cooled to 0 °C. A CH₂Cl₂ (1 mL) solution of Pd₂(DBA)₃•CHCl₃ (40 mg, 2.5 mol%) and PPh₃ (41 mg, 10 mol%) was added to the reaction mixture at 0 °C. The reaction mixture was stirred at 0 °C for 30 min. The reaction mixture was quenched with 5 mL of satd aq NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 4% EtOAc/hexanes to give product **13** (453 mg, 1.30 mmol, 84%) as a viscous oil: R_f (20% EtOAc/hexanes) = 0.43; $[\alpha]_D^{21}$ = +5.8 (c = 1.2, CH₂Cl₂); IR (thin film, cm⁻¹) 2929, 2856, 1696, 1255, 1124, 1054, 837; ¹H NMR (600 MHz, CDCl₃) δ 7.38 (m, 5H), 6.90 (dd, J = 10.2, 1.8 Hz, 1H), 6.13 (dd, J = 10.2, 1.8 Hz, 1H), 5.40 (d, J = 1.8 Hz, 1H), 4.99 (d, J = 11.4 Hz, 1H), 4.73 (d, J = 12.0 Hz, 1H), 4.24 (dd, J = 6.0, 4.2 Hz, 1H), 4.07 (m, 2H), 0.91 (s, 9H), 0.10 (s, 3H), 0.09 (s, 3H); ¹³C NMR (67.5 MHz, CDCl₃) δ 194.4, 146.3, 136.8, 128.5 (3C), 128.3 (2C), 128.0, 93.5, 80.4, 70.0, 63.6, 25.8 (3C), 18.3, -5.1 (2C); CIHRMS Calcd for [C₁₉H₂₈O₄Si+H]⁺: 349.1835. Found 349.1834.

(2R,6S)-6-Benzyloxy-2-(tert-butyl-dimethyl-silanyloxymethyl)-6H-pyran-3-ol (14a/b)

A CH₂Cl₂(0.8 mL) solution of enone **13** (270 mg, 0.78 mmol) and MeOH (0.8 mL) was cooled to -78 °C. NaBH₄ (32 mg, 0.85 mmol) was added and the reaction mixture was stirred at -78°C for 3 h. The reaction mixture was diluted with ether (5 mL) and was quenched with 5 mL of satd aq NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 18% EtOAc/hexanes to give product **14** (240 mg, 0.69 mmol, 88%) as a viscous oil (a:b = 1.5:1). **14a**: R_f (30% EtOAc/hexanes) = 0.36; $[\alpha]_D^{21} = + 96.8$ (c = 1.60, CHCl₃); IR (thin film, cm⁻¹) 3443, 2929, 1463, 1254, 1043, 838, 796; ¹H NMR (600 MHz, CDCl₃) δ 7.35 (m, 5H), 6.15 (ddd, J = 10.2, 4.8, 1.2 Hz, 1H), 5.87 (ddd, J = 10.2, 1.2, 1.2 Hz, 1H), 5.14 (ddd, J = 1.8, 1.2, 1.2 Hz, 1H), 4.90 (d, J = 11.4 Hz, 1H), 4.66 (d, J = 11.4 Hz, 1H), 4.00 (m, 1H), 3.97 (dd, J = 10.2, 6.0 Hz, 1H), 3.85 (dd, J = 10.2, 5.4 Hz, 1H), 3.71 (ddd, J = 6.6, 6.0, 2.4 Hz, 1H), 2.15 (d, J = 9.0 Hz, 1H), 0.92 (s, 9H), 0.12 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 137.4, 131.1, 130.5, 128.4 (2C), 128.1 (2C), 127.8, 96.7, 75.5, 69.9, 62.75, 62.73, 25.8 (3C), 18.3, -5.3, -5.4; CIHRMS Calcd for [C₁₉H₃₀O₄SiNa⁺]: 373.1806, Found 373.1820.

14b: R_f (30% EtOAc/hexanes) = 0.30; $[\alpha]_D^{21} = +22.3$ (c = 1.90, CHCl₃); IR (thin film, cm⁻¹) 3442, 2929, 1462, 1255, 1043, 838; ¹H NMR (600 MHz, CDCl₃) δ 7.35 (m, 5H), 5.99 (ddd, J =10.2, 2.4, 1.8 Hz, 1H), 5.79 (ddd, J = 10.2, 1.8, 1.2 Hz, 1H), 5.23 (ddd, J = 1.8, 1.8, 1.8 Hz, 1H), 4.83 (d, J = 12.0 Hz, 1H), 4.60 (d, J = 12.0 Hz, 1H), 4.28 (d, J = 5.4 Hz, 1H), 3.96 (dd, J = 10.2, 5.4 Hz, 1H), 3.83 (dd, J = 10.2, 8.4 Hz, 1H), 3.68 (ddd, J = 8.4, 6.0, 4.8 Hz, 1H), 2.88 (s, 1H), 0.92 (s, 9H), 0.120 (s, 3H), 0.117 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 137.6, 132.0, 128.4 (2C), 128.0, 127.9 (2C), 127.7, 95.8, 76.7, 69.3, 66.4, 65.3, 25.8 (3C), 18.2, -5.48, -5.55; CIHRMS Calcd for [C₁₉H₃₀O₄SiNa⁺]: 373.1806, Found 373.1820.

(((2R,6S)-6-(Benzyloxy)-5,6-dihydro-2H-pyran-2-yl)methoxy)(t-butyl) dimethylsilane (15)

A flask was charged with dry N-methyl morpholine (NMM) 2.5 ml, triphenyl phosphine (674 mg, 2.57 mmol) and was cooled to -30 °C under Ar atmosphere. Diethylazodicarboxylate (448 µl, 2.57 mmol) was added and the reaction was stirred for 5 min, Allylic alcohols 14 (300 mg, 0.86 mmol) was added in a 1M solution of NMM and the reaction mixture was stirred for 10 min, followed by addition of o-nitrobenzenesulfonyl hydrazide (NBSH) (522 mg, 2.57 mmol). The reaction was stirred at -30 °C for 2h and was monitored by TLC, upon consumption of starting material, warm up to room temperature and stirred for another 4h. The reaction mixture was diluted with ether (10 mL) and was quenched with 5 mL of satd aq NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 4% EtOAc/hexanes to afford product **15** (204 mg, 0.61 mmol, 71%) as a viscous oil: R_f (15% EtOAc/hexanes) = 0.62; $[\alpha]_D^{21}$ = +79.5 (c = 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 2927, 1472, 1256, 1074, 837; ¹H NMR (600 MHz, CDCl₃) δ 7.36 (m, 5H), 5.76 (m, 2H), 4.92 (d, J = 11.4 Hz, 1H), 4.77 (dd, J = 7.2, 3.6 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.27 (dddd, J = 6.6, 6.0, 6.0, 3.0 Hz, 1H), 3.81 (dd, J = 9.6, 6.0Hz, 1H), 3.62 (dd, J = 9.6, 6.6 Hz, 1H), 2.27 (dddd, J = 17.4, 7.2, 3.6, 1.8 Hz, 1H), 2.22 (ddd, J = 17.4, 7.2, 1.8 Hz, 1H), 2.22 (ddd, J = 17.4, 7.2, 1.8 Hz, 1H), 2.22 (ddd, J = 17.4, 7.2 17.4, 6.6, 3.6 Hz, 1H), 0.92 (s, 9H), 0.094 (s, 3H), 0.090 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 137.8, 128.4 (2C), 128.0 (2C), 127.6, 127.1, 123.6, 97.3, 75.2, 69.7, 65.9, 31.2, 25.9 (3C), 18.3, -5.2, -5.3; CIHRMS Calcd for $[C_{19}H_{30}O_3SiNa^+]$: 357.1856, Found 357.1869.

Benzyl 2-deoxy-6-O-(tert-butyl) dimethylsilyl-β-L-allose (16)

To a CH₂CH₂ (1.0 ml) solution of olefin **15** (187 mg, 0.56 mmol) at 0 °C was added a solution of (50% w/v) of *N*-methyl morpholine *N*-oxide / water (0.5 mL). Crystalline OsO₄ (1.42 mg, 1 mol %) was added and the reaction was stirred for 3 h. The reaction was quenched with adding EtOAc and satd. NaHCO₃. The organic layer was separated and concentrated. It was purified by a silica gel column using 25% EtOAc/hexanes. Pure fractions were combined and concentrated to afford **16** (188 mg, 0.51 mmol, 91%) as a viscous oil: R_f (40% EtOAc/hexanes) = 0.46; $[\alpha]_D^{21}$ = +61.8 (*c* = 1.35, CH₂Cl₂); IR (thin film, cm-1) 3496, 1087, 1050, 830; ¹H NMR (600 MHz, CDCl₃) δ 7.33 (m, 5H), 4.97 (dd, *J* = 9.6, 2.4 Hz, 1H), 4.86 (d, *J* = 12.0 Hz, 1H), 4.55 (d, *J* = 12.0 Hz, 1H), 4.12 (ddd, *J* = 3.6, 3.0, 2.4 Hz, 1H), 4.03 (s, 1H), 3.99 (dd, *J* = 9.0, 4.2 Hz, 1H), 3.80 (dd, *J* = 9.0, 9.0 Hz, 1H), 3.76 (ddd, *J* = 9.0, 9.0, 4.2 Hz, 1H), 3.66 (dd, *J* = 9.0, 3.0 Hz, 1H), 2.38 (s, 1H), 2.17 (ddd, *J* = 14.4, 3.6, 2.4 Hz, 1H), 1.73 (ddd, *J* = 14.4, 9.6, 3.0 Hz, 1H), 0.93 (s, 9H), 0.140 (s, 3H), 0.136 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 137.6, 128.4 (2C) , 127.9 (2C), 127.7, 97.3, 72.8, 70.7, 70.2, 67.4, 66.4, 36.2, 25.8 (3C), 18.1, -5.6, -5.7 ; CIHRMS Calcd for [C₁₉H₃₂O₅SiNa⁺]: 391.1911, Found 391.1924.

Tert-butyl (2S,6R)-5,6-dihydro-6-methyl-5-oxo-2H-pyran-2-yl carbonate (8a):

To a benzene solution (300 mL) of (5R)-1-Hydroxy-5-tert-butyl dimethylsilanyloxymethyl-5Hpyran-4-(1H)-one (18.5g, 0.144 mol) and (Boc)₂O (47.3 g, 0.22 mol) was added sodium acetate (13.2 g, 0.16 mol). After stirring at 80 °C for 2 h, the mixture was cooled down to room temperature. The mixture was quenched by adding of 300 mL of satd. aq NaHCO₃, extracted (3 x 300 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 7% EtOAc/hexanes to give two diastereomers of *tert*-butyl (2S,6R)-5,6-dihydro-6-methyl-5-oxo-2H-pyran-2-yl carbonate (29.0 g, 0.127 mol, 88%) of **10a** and **8a**(**10a**:**8a** = 1:1.3). **10a**: $R_f(20\% \text{ Et}_2\text{O}/\text{hexanes})$ = 0.43; $[\alpha]_D^{21}$ = -97.1 (c = 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 2986, 1752, 1703, 1633, 1278, 1258, 1159, 1090, 1058, 1029, 944 ; ¹H NMR (270 MHz, CDCl₃) δ 6.86 (dd, J = 10.3, 3.8 Hz, 1H), 6.31 (d, J = 3.8 Hz, 1H), 6.17 (d, J = 10.3 Hz, 1H), 4.63 (q, J = 6.7 Hz, 1H), 1.50 (s, 9H), 1.39 (d, J = 6.7 Hz, 3H); ¹³C NMR (67.5 MHz, CDCl₃) δ 195.7, 151.8, 140.9, 128.4, 89.1, 83.5, 72.1, 27.6(3C), 15.2; CIHRMS Calcd for $[C_{11}H_{16}0_5Na]^+$: 251.0890, Found 251.0884. **8a**: R_f (20% EtOAc/hexanes) = 0.50; mp: 43-43.5 °C; $[\alpha]_D^{21} = +42.3$ (c = 1.3, CHCl₃); IR (thin film, cm⁻¹) 2986, 1752, 1703, 1633, 1278, 1258, 1159, 1090, 1058, 1029, 944; ¹H NMR (270 MHz, CDCl₃) δ 6.88 (dd, J = 10.3, 2.6 Hz, 1H), 6.40 (dd, J = 2.6, 1.4 Hz, 1H), 6.20 (dd, J =10.3, 1.2 Hz, 1H), 4.37 (q, J = 6.9 Hz, 1H), 1.51 (s, 9H), 1.49 (d, J = 6.9 Hz, 3H); ¹³C NMR

(67.5 MHz, CDCl₃) δ 195.9, 151.7, 142.8, 128.3, 89.8, 83.7, 75.7, 27.6 (3C), 18.6 ; CIHRMS Calcd for $[C_{11}H_{16}0_5Na]^+$: 251.0890, Found 251.0883.

(2R,6R)-2-Digitoxigenoxy-6-methyl-2H-pyran-3(6H)-one (17)

A CH₂Cl₂ /THF solution (8 mL, 4:1 V/V) of Boc pyranone 8a (544 mg, 2.39 mmol) and digitoxigenin 2 (1.34 g, 3.58 mmol) was cooled to 0 °C. A CH₂Cl₂ (1 mL) solution of Pd₂(DBA)₃•CHCl₃ (72 mg, 2.5 mol%) and PPh₃ (73 mg, 10 mol%) was added to the reaction mixture at 0 °C. The reaction mixture was stirred at 0 °C for 8 hours and was guenched with 20 mL of satd aq NaHCO₃, extracted (3 x 20 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 40% EtOAc/hexanes to give 17 (993 mg, 2.05 mmol, 86%) as a white solid: R_f (40% EtOAc/hexanes) = 0.17; mp: 211-212 °C; $[\alpha]_D^{21} = +17.6$ (c = 3.60, CHCl₃); IR (thin film, cm⁻¹) 3498, 2937, 2875, 1780, 1741, 1698, 1620, 1448, 1374, 1164, 1144, 1053, 1025, 958, 754; ¹H NMR (600 MHz, CDCl₃) δ 6.86 (dd, J = 10.2, 1.8 Hz, 1H), 6.09 (dd, J = 10.2, 1.8 Hz, 1H), 5.86 (m, 1H), 5.38 (dd, J = 2.4, 1.8 Hz, 1H), 4.98 (dd, J = 18.0, 1.8 Hz, 1H), 4.79 (dd, J = 18.0, 1.8 Hz, 1H), 4.16 (q, J = 6.6 Hz, 1H), 4.15 (m, 1H), 2.76 (dd, J = 9.6, 6.0 Hz, 1H), 2.20-2.08 (m, 3H), 1.44 (d, J = 7.2 Hz, 3H), 1.92-1.16 (m, 18H), 0.93 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) & 197.0, 174.6, 174.5, 147.8, 128.0, 117.6, 93.9, 85.5, 75.1, 73.5, 73.4, 50.9, 49.6, 41.8, 40.0, 36.4, 35.7, 35.2, 33.1, 30.1, 29.9, 26.9, 26.56, 26.53, 23.6, 21.3, 21.1, 16.9, 15.7; ESIHRMS Calcd for $[C_{29}H_{40}O_6Na^+]$: 507.2717, Found 507.2717.

(2R,6R)-2-(Digitoxigenoxy)-2,5-dihydro-6-methyl-2H-pyran-5-ol (18a/b)

A CH₂Cl₂ (4 mL) solution of enone 17 (990 mg, 2.04 mmol) and CeCl₃ in MeOH solution (0.4 M, 4 mL) was cooled to -78 °C. NaBH₄ (77 mg, 2.04 mmol) was added and the reaction mixture was stirred at -78°C for 3 h. The reaction mixture was diluted with ether (30 mL) and was quenched with 30 mL of satd aq NaHCO₃, extracted (3 x 30 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 55% EtOAc/hexanes to give allylic alcohols 18a/b (893 mg, 1.84 mmol, 90%) as a white solid (diastereometric ratio 18a:18b = 1.5:1, inseparable by silica gel chromatography): R_f (60% EtOAc/hexanes) = 0.22; IR (thin film, cm⁻¹) 3448, 2933. 2871, 1780, 1741, 1618, 1446, 1378, 1320, 1180, 1135, 1049, 1024, 1004, 958, 751; ¹H NMR (600 MHz, CDCl₃):18a: δ 6.12 (ddd, J = 10.2, 4.8, 1.2 Hz, 1H), 5.86 (m, 1H), 5.80 (d, J = 10.2Hz, 1H), 5.07 (m, 1H), 4.98 (dd, J = 18.0, 1.2 Hz, 1H), 4.80 (dd, J = 18.0, 1.8 Hz, 1H), 4.12 (dd, J = 4.2, 1.8 Hz, 1H), 4.114(s, 1H), 3.70 (qd, J = 6.6, 2.4Hz, 1H), 3.64 (br, 1H), 2.77 (dd, J = 9.6, 6.0 Hz, 1H), 2.25-2.05 (m, 3H), 1.29 (d, J = 6.0 Hz, 3H), 1.80-1.05 (m, 18H), 0.94 (s, 3H), 0.87 (s, 3H); **18b**: δ 5.93 (ddd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.86 (m, 1H), 5.74 (ddd, J = 10.2, 1.2, 1.2Hz, 1H), 5.14 (ddd, J = 1.8, 1.8, 1.8 Hz, 1H), 4.98 (dd, J = 18.0, 1.2 Hz, 1H), 4.80 (dd, J = 18.0, 1.2 Hz, 1H), 4.09 (m, 1H), 4.109 (s, 1H), 3.93 (br, 1H), 3.59(dq, J = 6.6, 6.6 Hz, 1H), 2.77 (dd, J)= 9.6, 6.0 Hz, 1H, 2.25-2.05 (m, 3H), 1.35 (d, J = 6.0 Hz, 3H), 1.80-1.05 (m, 18H), 0.94 (s, 3H), 0.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) 18a: δ 174.50, 174.46, 131.8, 130.9, 117.67, 96.1, 85.591, 73.43, 72.9, 71.4, 64.9, 50.90, 49.6, 41.9, 40.045, 36.4, 35.77, 35.19, 33.12, 30.20, 30.04, $26.9(2C), 26.62, 23.64, 21.384, 21.151, 16.7, 15.8; 18b: \delta 174.52, 174.46, 131.7, 129.9, 117.66,$ 94.8, 85.598, 73.38, 73.4, 72.4, 68.7, 50.91, 49.6, 41.9, 40.052, 36.3, 35.76, 35.18, 33.13, 30.18, 30.06, 26.7 (2C), 26.66, 23.62, 21.380, 21.147, 18.4, 15.8; ESIHRMS Calcd for [C₂₉H₄₂O₆Na⁺]:509.2879, Found 509.2880.

(2R,6R)-2-(Digitoxigenoxy)-3,6-dihydro-6-methyl-2H-pyran (19)

A flask was charged with dry N-methyl morpholine (NMM) 3.0 ml, triphenyl phosphine (1.75 g, 6.67 mmol) and was cooled to -30° C under Ar atmosphere. Diethylazodicarboxylate (0.95 ml, 6.06 mmol) was added and the reaction was stirred for 5 min, allylic alcohol 18a/b (985 mg, 2.02 mmol) was added in a 1M solution of NMM and the reaction mixture was stirred for 10 min, followed by addition of o-nitrobenzenesulfonyl hydrazide (NBSH) (1.23 g, 6.06 mmol). The reaction was stirred at -30 °C for 6h and was monitored by TLC, upon consumption of starting material, warm up to room temperature and stirred for another 1h. The reaction mixture was diluted with ether (30 mL) and was quenched with 30 mL of satd aq NaHCO₃, extracted (3 x 30 mL) with Et_2O , dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 25% EtOAc/hexanes to give product **19** (760 mg, 1.61 mmol, 80%) as a white solid: R_f (30% EtOAc/hexanes) = 0.20; mp: 157-158 °C; $[\alpha]_{D}^{21} = -30.0$ (c = 0.10, CHCl₃); IR (thin film, cm⁻¹) 3494, 2936, 2871, 1778, 1742, 1621, 1447, 1368, 1264, 1158, 1133, 1102, 1072, 1026, 974, 888, 781. ¹H NMR (600 MHz, 1.2 Hz, 1H), 4.99 (dd, J = 18.0, 1.2 Hz, 1H), 4.80 (dd, J = 18.0, 1.2 Hz, 1H), 4.70 (dd, J = 8.4, 3.0 Hz, 1H), 4.06 (m, 1H), 4.29 (m, 1H), 2.76 (m, 1H), 2.24-2.04 (m, 4H), 1.90-1.08 (m, 19H), 1.24 (d, J = 6.0 Hz, 3H), 0.92 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.6, 174.5, 131.1, 123.0, 117.6, 96.7, 85.6, 73.4, 72.1, 70.7, 50.9, 49.6, 41.9, 40.1, 36.3, 35.7, 35.2, 33.1, 31.6, 30.2, 29.8, 26.9, 26.73, 26.65, 23.6, 21.4, 21.1, 21.03, 15.8; ESIHRMS Calcd for $[C_{29}H_{42}O_5Na^+]$: 493.2929, Found 493.2924.

Digitoxigen 2,6-dideoxy- β -D-ribo-hexopyranoside(20)

To a *t*-BuOH/acetone (4 mL) solution of olefin **19** (753 mg, 1.60 mmol) at 0 °C was added a solution of (50% w/v) of *N*-methyl morpholine *N*-oxide / water (1.0 mL). Crystalline OsO₄ (4 mg, 1 mol %) was added and the reaction was stirred for 4 h. The reaction was quenched with adding EtOAc and satd. NaHCO₃. The organic layer was separated and concentrated. It was purified by a silica gel column using 90% EtOAc/hexanes. Pure fractions were combined, concentrated, and crystallized from acetone/hexanes to afford alcohol **20** as a white solid (868 mg, 1.72 mmol, 93%): $R_f(EtOAc) = 0.25$; $[\alpha]_D^{21} = -6.8$ (*c* = 0.65, MeOH); mp: 202-203 °C; IR (thin film, cm⁻¹) 3453, 2925, 2856, 1775, 1736, 1623, 1449, 1454, 1378, 1160, 1076, 1024, 951, 822; ¹H NMR (600 MHz, CDCl₃) δ 5.87 (m, 1H), 4.98 (d, *J* = 18.0 Hz, 1H), 4.87 (dd, *J* = 9.0, 1.8 Hz, 1H), 4.80 (d, *J* = 18.0 Hz, 1H), 4.13 (ddd, *J* = 3.0, 3.0, 3.0 Hz, 1H), 4.03 (m, 1H), 3.71 (dq, *J* = 9.0, 6.0 Hz, 1H), 3.34 (m, 1H), 2.77 (m, 1H), 2.33 (s, 1H), 2.20-2.00 (m, 4H), 1.29 (d, *J* = 6.0 Hz, 3H), 1.90-1.10 (m, 19H), 0.92 (s, 3H), 0.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.56, 174.52, 117.7, 95.4, 85.6, 73.5, 73.1, 72.7, 69.2, 68.3, 50.9, 49.6, 41.9, 40.1, 38.3, 36.3, 35.8, 35.2, 33.2, 30.2, 29.9, 26.9, 26.7, 26.6, 23.6, 21.4, 21.2, 18.1, 15.8; ESIHRMS Calcd for [C₂₉H₄₄O₇Na⁺]: 527.2979, Found 527.2979.

Digitoxigen 3-O-acetyl-2,6-dideoxy-β-D-ribo-hexopyranoside (21)

A round bottom flask containing a 0.5 M solution of diol 20 (620 mg, 1.23 mmol) in CH_2Cl_2 (3) ml) was stirring at room temperature. To this solution were added trimethylorthoacetate (0.47 mL, 3.69 mmol) and a catalytic amount of p-toluenesulfonic acid (12 mg, 61.5 µmol). The reaction was allowed to stir until starting material is gone. The solvent was removed under reduced pressure and the residue was dissolved in 6 ml THF/H₂O (1:1,v/v) solution. Then ptoluenesulfonic acid (120 mg, 0.62 mmol) was added. Stirring was continued until hydrolysis was complete as seen by TLC. The reaction mixture was quenched with 10 mL of satd aq NaHCO₃, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. It was purified by a silica gel column using 60% EtOAc/hexanes. Pure fractions were combined and concentrated to afford compound **21** (675 mg, 1.20 mmol, 98%) as a white solid: R_f (60% EtOAc/hexanes) = 0.14; $[\alpha]_D^{21}$ = + 1.7 (*c* = 1.15, CHCl₃); mp: 111-112 °C; IR (thin film, cm⁻¹) 3499, 2934, 2876, 1780, 1740, 1618, 1449, 1377, 1243, 1169, 1080, 1065, 1026, 1002, 948, 753, 666; ¹H NMR (600 MHz, CDCl₃) δ 5.86 (m, 1H), 5.28 (ddd, J = 3.6, 3.0, 3.0 Hz , 1H), 4.97 (d, J = 18.0 Hz ,1H), 4.80 (d, J = 18.0 Hz , 1H), 4.75 (dd, J = 9.0, 2.4 Hz, 1H), 4.01 (m, 1H), 3.67 (dq, J = 9.0, 6.0 Hz, 1H), 3.43 (dd, J = 9.6, 2.4 Hz, 1H), 2.76 (m, 1H), 2.20-2.00 (m, 4H), 2.13 (s, 3H), 1.90-1.10 (m, 19H), 1.29 (d, J = 6.0 Hz, 3H), 0.92 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.59, 174.51, 171.3, 117.6, 95.8, 85.6, 73.4, 73.1, 72.3, 71.4, 70.2, 50.9, 49.6, 41.8, 40.0, 36.3 (2C), 35.7, 35.2, 33.1, 30.1 (2C), 26.9, 26.64, 26.61, 23.6, 21.36, 21.2, 21.1, 18.1, 15.7; ESIHRMS Calcd for $[C_{31}H_{46}O_8Na^+]$: 569.3085, Found 569.3085.

Digitoxigen 3-*O*-acetyl-2,6-dideoxy-4-*O*-((2'R,6'R)-5',6'-dihydro-6'-methyl-5'-oxo-2Hpyran-2'-yl)-β-D-ribo-hexopyranoside (22)

A CH₂Cl₂ (2 mL) solution of Boc pyranone 8a (560 mg, 2.45 mmol) and alcohol 21 (670 mg, 1.23 mmol) was cooled to 0 °C. A CH₂Cl₂ (0.5 mL) solution of Pd₂(DBA)₃•CHCl₃ (63 mg, 2.5 mol%) and PPh₃ (64 mg, 10 mol%) was added to the reaction mixture at 0 °C. The reaction mixture was stirred at 0 °C for 8 hour. The reaction mixture was quenched with 10 mL of satd aq NaHCO₃, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 50% EtOAc/hexanes to give enone 22 (643 mg, 0.98 mmol, 80%) as a white solid: R_f (60% EtOAc/hexanes) = 0.24; mp: 119-120 °C; $[\alpha]_D^{21} = +37.8$ (c = 1.40, CHCl₃); IR (thin film, cm⁻¹) 3495, 2937, 2876, 1780, 1743, 1700, 1621, 1448, 1374, 1244, 1154, 1096, 1068, 1051, 1027, 1004, 755, 695; ¹H NMR (600 MHz, CDCl₃) δ 6.88 (dd, J = 10.2, 1.2 Hz, 1H), 6.11 (dd, J =10.2, 1.2 Hz, 1H), 5.86 (m, 1H), 5.41 (ddd, J = 3.6, 2.4, 2.4 Hz, 1H), 5.40 (dd, J = 1.2, 1.2 Hz, 1H), 4.97 (dd, J = 18.0, 1.2 Hz, 1H), 4.79 (dd, J = 18.0, 1.2 Hz, 1H), 4.76 (dd, J = 9.0, 1.8 Hz, 1H), 4.15 (q, J = 6.6 Hz, 1H), 4.01 (m, 1H), 3.90 (dq, J = 9.0, 6.0 Hz, 1H), 3.51 (dd, J = 9.0, 3.0Hz, 1H), 2.77 (m, 1H), 2.20-2.02 (m, 4H), 2.09 (s, 3H), 1.90-1.18 (m, 19H), 1.39 (d, J = 6.6 Hz, 3H), 1.31 (d, J = 6.0 Hz, 3H), 0.92 (s, 3H), 0.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.2, 174.5, 174.4, 170.2, 146.4, 128.8, 117.7, 97.0, 96.0, 85.6, 79.5, 75.2, 73.4, 73.1, 69.8, 69.0, 50.9, 49.6, 41.9, 40.1, 36.30, 36.26, 35.8, 35.2, 33.1, 30.15, 30.13, 26.9, 26.63, 26.60, 23.6, 21.4, 21.3, 21.1, 18.3, 16.3, 15.8; ESIHRMS Calcd for $[C_{37}H_{52}O_{10}Na^{+}]$: 679.3458, Found 679.3453.

Digitoxigen 3-*O*-acetyl -2,6-dideoxy-4-*O*-((2'R,6'R)-5',6'-dihydro-5'-hydroxyl-6'-methyl -2H-pyran-2'-yl)-β-D-ribo-hexopyranoside (23a/b)

A CH₂Cl₂ (0.6 mL) solution of enone 22 (764 mg, 1.16 mmol) and CeCl₃ in MeOH solution (0.4 M, 1.2 mL) was cooled to -78 °C. NaBH₄ (44 mg, 1.16 mmol) was added and the reaction mixture was stirred at -78°C for 3 h. The reaction mixture was diluted with ether (10 mL) and was quenched with 10 mL of H₂O, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 70% EtOAc/hexanes to give allylic alcohols 23a/b (730 mg, 1.11 mmol, 95%) as a white solid (diastereometric ration 23a:23b = 1.5:1, inseparable by silica gel chromatography): $R_f(80\% \text{ EtOAc/hexanes}) = 0.33$; IR (thin film, cm⁻¹) 3483, 2935, 2878, 1781, 1739, 1620, 1448, 1378, 1245, 1170, 1153, 1058, 1026, 1004, 914, 863, 732; ¹H NMR (600 MHz, CDCl₃): **23a**: δ 6.14 (ddd, J = 9.6, 5.4, 1.2 Hz, 1H), 5.84 (m, 1H), 5.72 (dd, J = 9.6, 1.2 Hz, 1H), 5.52 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 5.11 (ddd, J = 1.8, 1.2, 1.2 Hz, 1H), 4.96 (dd, J = 18.0, 1.21.2 Hz, 1H), 4.78 (dd, J = 18.0, 1.2 Hz, 1H), 4.74 (dd, J = 9.6, 1.8 Hz, 1H), 3.99 (m, 1H), 3.78 (dq, J = 9.6, 6.0 Hz, 1H), 3.67 (qd, J = 6.6, 1.8 Hz, 1H), 3.57 (m, 1H), 3.42 (dd, J = 9.6, 3.6 Hz, 1H)1H), 2.75 (dd, J = 9.0, 6.0 Hz, 1H), 2.20-1.94 (m, 4H), 2.05 (s, 3H), 1.89-1.10 (m, 19H), 1.24 (d, J = 6.0 Hz, 3H), 1.23 (d, J = 6.6 Hz, 3H), 0.90 (s, 3H), 0.84 (s, 3H); **23b**: δ 5.93 (ddd, J = 9.6, 1.8, 1.8 Hz, 1H), 5.84 (m, 1H), 5.75 (ddd, J = 9.6, 1.8, 1.8 Hz, 1H), 5.37 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 5.14 (ddd, J = 1.8, 1.2, 1.2 Hz, 1H), 4.96 (dd, J = 18.0, 1.2 Hz, 1H), 4.78 (dd, J = 18.0, 1.2 Hz, 1H), 4.71 (dd, J = 9.6, 1.8 Hz, 1H), 3.99 (m, 1H), 3.84 (m, 1H), 3.83 (qd, J = 9.6, 6.0 Hz, 1H), 3.53 (dq, J = 6.0, 6.0 Hz, 1H), 3.40 (dd, J = 9.6, 3.0 Hz, 1H), 2.75 (dd, J = 9.0, 6.0 Hz, 1H), 2.20-1.94 (m, 4H), 2.07 (s, 3H), 1.89-1.10 (m, 19H), 1.26 (d, J = 6.0 Hz, 3H), 1.25 (d, J = 6.0Hz, 3H), 0.90 (s, 3H), 0.84 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) **23a** : δ 174.6, 174.5, 170.3(2C), 131.7, 129.4, 117.6, 98.2, 95.89, 85.5, 78.1, 73.4, 73.0, 71.4, 70.4, 69.2, 69.0, 50.9, 49.6, 41.8, 40.0, 36.42, 36.2, 35.7, 35.1, 33.1, 30.1, 26.9, 26.63, 26.59, 23.6, 21.34, 21.33, 21.1, 18.1, 16.7, 15.7; **23b**: δ 174.6, 174.5, 170.3(2C), 133.1, 128.1, 117.6, 97.4, 95.85, 85.5, 78.0, 74.5, 73.4, 70.1, 69.2, 68.4, 64.4, 50.9, 49.6, 41.8, 40.0, 36.37, 36.2, 35.7, 35.1, 33.1, 30.1, 26.9, 26.63, 26.59, 23.6, 21.34, 21.30, 21.1, 18.3, 18.2, 15.7; ESIHRMS Calcd for $[C_{37}H_{54}O_{10}Na^{+}]$: 681.3615, Found 681.3607.

Digitoxigen 3-*O*-acetyl-2,6-dideoxy-4-*O*-((2'R,6'R)-3',6'-dihydro-6'-methyl-2H-pyran-2'yl)-β-D-ribo-hexopyranoside (24)

A flask was charged with dry N-methyl morpholine (NMM) 3.5 ml, triphenyl phosphine (951 mg, 3.63 mmol) and was cooled to -30 °C under Ar atmosphere. Diethylazodicarboxylate (0.52 ml, 3.30 mmol) was added and the reaction was stirred for 5 min, allylic alcohols 23a/b (725 mg, 1.10 mmol) was added in a 1M solution of NMM and the reaction mixture was stirred for 10 min, followed by addition of o-nitrobenzenesulfonyl hydrazide (NBSH) (670 mg, 3.30 mmol). The reaction was stirred at -30 °C for 4 h and was monitored by TLC, upon consumption of starting material, warm up to room temperature and stirred for another 2 h. The reaction mixture was diluted with ether (20 mL) and was guenched with 10 mL of H₂O, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 85% Et₂O/hexanes to give product 24 (580 mg, 0.90 mmol, 82%) as a white solid: R_f (Et₂O) = 0.35; $[\alpha]_D^{21}$ = +28.3 (c = 1.20, CHCl₃); mp: 119-120 °C; IR (thin film, cm⁻¹) 3488, 2933, 2874, 1778, 1740, 1620, 1448, 1368, 1313, 1244, 1153, 1064, 1026, 1002, 973, 884, 784, 752, 684, 666. ¹H NMR (600 MHz, CDCl₃) δ 5.87 (m, 1H), 5.62 (dddd, J = 10.2, 5.4, 2.4, 2.4 Hz, 1H), 5.54 (dddd, J = 10.2, 4.8, 1.2, 1.2 Hz, 1H), 5.39 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 18.0, 1.8 Hz, 1H), 4.80 (dd, J = 18.0, 1.8 Hz, 1H), 4.74 (dd, J = 9.0, 1.8 Hz, 1H), 4.66 (dd, J = 8.4, 3.6 Hz, 1H), 4.26 (m, 1H), 4.01 (m, 1H), 3.87 (dq, J = 9.0, 6.6 Hz, 1H), 3.35 (dd, J = 9.0, 3.0 Hz, 1H), 2.77 (m, 1H), 2.21-2.03 (m, 5H),2.11 (s, 3H), 1.90-1.19 (m, 20H), 1.27 (d, J = 6.6 Hz, 3H), 1.20 (d, J = 6.6 Hz, 3H), 0.92 (s, 3H), 0.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.4, 173.4, 170.4, 131.2, 122.2, 117.7, 100.2, 96.0, 85.6, 79.3, 73.4, 73.0, 70.9, 70.2, 69.2, 50.9, 49.6, 41.9, 40.1, 36.4, 36.3, 35.8, 35.2, 33.1, 30.9, 30.173, 30.170, 26.9, 26.7, 26.6, 23.6, 22.6, 21.4, 21.2, 20.8, 18.2, 15.8; ESIHRMS Calcd for [C₃₇H₅₄O₉Na⁺]: 665.3666, Found 665.3658.

Digitoxigen O-[2',6'-dideoxy- β -D-ribo-hexopyranosyl]-(1 \rightarrow 4)-(3-O-acetyl-2,6-dideoxy- β -D-ribo-hexopyranoside) (25)

To a t-BuOH/acetone (1:1, 2 mL) solution of olefin 24 (530 mg, 0.824 mmol) at 0 °C was added a solution of (50% w/v) of N-methyl morpholine N-oxide / water (0.8 mL). Crystalline OsO₄ (2.2 mg, 1 mol %) was added and the reaction was stirred for 8 h. The reaction was quenched with adding EtOAc and satd. NaHCO₃. The organic layer was separated and concentrated. It was purified by a silica gel column using EtOAc. Pure fractions were combined and concentrated to afford alcohol **25** (507 mg, 0.75 mmol, 91%) as a white solid: $R_f(EtOAc) = 0.33$; $[\alpha]_D^{21} = +23.5$ $(c = 2.25, \text{CHCl}_3)$; IR (thin film, cm⁻¹) 3467, 2936, 1780, 1741, 1618, 1449, 1370, 1246, 1164, 1023, 752, 666; ¹H NMR (600 MHz, CDCl₃) δ 5.86 (m, 1H), 5.36 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 18.0, 1.2 Hz, 1H), 4.83 (dd, J = 9.6, 1.8 Hz, 1H), 4.80 (d, J = 18.0, 1.2 Hz, 1H), 4.72 (dd, J = 9.6, 1.8 Hz, 1H), 4.07 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 3.99 (m, 1H), 3.82 (dq, J = 9.0, 6.0 Hz, 1H), 3.67 (dq, J = 9.0, 6.0 Hz, 1H), 3.32 (dd, J = 9.6, 3.0 Hz, 1H), 3.25 (dd, J = 9.0, 3.0 Hz, 1H), 2.76 (m, 1H), 2.08 (s, 3H), 2.20-2.02(m, 5H), 1.90-1.20 (m, 20H), 1.25 (d, J = 6.0 Hz, 3H), 1.22 (d, J = 6.0 Hz, 3H), 0.91 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.7, 174.6, 170.4, 117.6, 98.6, 95.9, 85.6, 79.5, 73.5, 73.0, 72.8, 70.0, 69.3, 69.1, 68.1, 50.9, 49.6, 41.8, 40.0, 37.6, 36.228, 36.223, 35.7, 35.1, 33.1, 30.1(2C), 26.9, 26.6, 26.6, 23.6, 21.4(2C), 21.1, 18.2, 18.0, 15.7; ESIHRMS Calcd for [C₃₇H₅₆O₁₁Na⁺]: 699.3720, Found 699.3712.

Digitoxigen O-[2',6'-dideoxy- β -D-ribo-hexopyranosyl]-(1 \rightarrow 4)- (2,6-dideoxy- β -D-ribo-hexopyranoside) (26)

To a MeOH/H₂O (0.3 mL, 4:1, 1M) solution of alcohol 25 (17 mg, 25 µmol) at room temperature was added LiOH·H₂O (1.6 mg, 38 µmol) and the reaction was stirred for 3 h. The reaction was quenched with adding 5 mL pH = 6.0 buffering solution. The mixture was extracted with CH_2Cl_2 (3×5 mL). The organic layer was dried (Na₂SO₄), and concentrated under reduced pressure. It was purified by a silica gel column using EtOAc. Pure fractions were combined and concentrated, and further crystallized from acetone/hexanes to afford 26 (13 mg, 20.5 µmol, 82%) as a white solid: $R_f(EtOAc) = 0.27$; mp: 230-231 °C; $[\alpha]_D^{21} = +6.0$ (c = 0.40, CHCl₃); IR (thin film, cm⁻¹) 3450, 2933, 2876, 1778, 1740, 1621, 1449, 1380, 1165, 1132, 1067, 1013, 867, 754, 667; ¹H NMR (600 MHz, CDCl₃) δ 5.87 (m, 1H), 4.98 (dd, J = 18.0, 1.2 Hz, 1H), 4.91 (dd, J = 9.6, 2.4 Hz, 1H), 4.86 (dd, J = 9.6, 2.4 Hz, 1H), 4.80 (dd, J = 18.0, 1.2 Hz, 1H), 4.24 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.13 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.02 (m, 1H), 3.77 (dg, J = 9.0, 6.0Hz, 1H), 3.66 (dq, J = 9.6, 6.0 Hz, 1H), 3.31 (m, 1H), 3.24 (dd, J = 9.6, 3.0 Hz, 1H), 3.02 (s, 1H), 2.77 (m, 1H), 2.33 (s, 1H), 2.20-2.00 (m, 5H), 1.90-1.20 (m, 20H), 1.29 (d, J = 6.0 Hz, 3H), 1.23 (d, J = 6.0 Hz, 3H), 0.92 (s, 3H), 0.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.52, 174.48, 117.7, 98.2, 95.4, 85.6, 82.7, 73.4, 72.8, 72.6, 69.5, 68.2, 68.1, 66.5, 51.0, 49.6, 41.9, 40.1, 37.9, 37.2, 36.2, 35.8, 35.2, 33.2, 30.2, 29.8, 26.9, 26.7, 26.6, 23.6, 21.4, 21.2, 18.2, 18.1, 15.8; ESIHRMS Calcd for $[C_{35}H_{54}O_{10}Na^{+}]$: 657.3615, Found 657.3608.

Digitoxigen *O*-[3'-*O*-acetyl-2',6'-dideoxy- β -D-ribo-hexopyranosyl]-(1 \rightarrow 4)- (3-*O*-acetyl-2,6-dideoxy- β -D-ribo-hexopyranoside) (27)

A round bottom flask containing a 0.5 M solution of alcohol 25 (391 mg, 0.578 mmol) in CH₂Cl₂ (2.5 ml) was stirring at room temperature. To this solution were added trimethylorthoacetate (0.22 mL, 1.73 mmol) and a catalytic amount of p-toluenesulfonic acid (5 mg, 29 µmol). The reaction was allowed to stir until starting material was gone. The solvent was removed under reduced pressure and the residue was dissolved in 3 ml THF/H₂O (1:1, v/v) solution. Then ptoluenesulfonic acid (55 mg, 0.29 mmol) was added. Stirring was continued until hydrolysis was complete as seen by TLC. The reaction was quenched with adding EtOAc and satd. NaHCO₃. The organic layer was separated and concentrated. It was purified by a silica gel column using 90% EtOAc/hexanes. Pure fractions were combined and concentrated to afford compound 27 (413 mg, 0.574 mmol, 99%) as a white solid: R_f (EtOAc) = 0.44; mp: 139-140 °C; $[\alpha]_D^{21} = +$ 32.5 (c = 1.10, CHCl₃); IR (thin film, cm⁻¹) 3460, 2972, 2937, 2876, 1780, 1740, 1619, 1449, 1371, 1318, 1244, 1167, 1066, 1024, 1004, 949, 868, 752; ¹H NMR (600 MHz, CDCl₃) δ 5.86 18.0, 1.2 Hz, 1H), 4.79 (dd, J = 18.0, 1.2 Hz, 1H), 4.725 (dd, J = 9.6, 1.8 Hz, 1H), 4.718 (dd, J = 18.0, 1.2 Hz, 1H), 4.725 (dd, J = 18.0, 1.2 Hz, 1H), 4.718 (dd, J = 18.0, 1.2 Hz, 1H), 4.725 (dd, J = 18.0, 1.2 Hz, 1H), 4.718 (dd, J = 18.0, 1.2 Hz, 1H), 4.725 (dd, J = 18.0, 1.2 Hz, 1H), 4.718 (dd, J = 18.0, 1.2 Hz, 1H), 4.725 (dd, J = 18.0, 1.8 Hz, 1H), 4.718 (dd, J = 18.0, 1.2 Hz, 1H), 4.725 (dd, J = 18.0, 1.2 Hz, 1H), 4.718 (dd, J 9.6, 1.8 Hz, 1H), 4.00 (m, 1H), 3.82 (dq, J = 9.0, 6.0 Hz, 1H), 3.64 (dq, J = 9.6, 6.0 Hz, 1H), 3.36 (ddd, J = 9.0, 6.0, 3.0 Hz, 1H), 3.32 (dd, J = 9.0, 3.0 Hz, 1H), 2.76 (m, 1H), 2.20-1.96 (m, 2H), 2.25H), 2.13 (s, 3H), 2.09 (s, 3H), 1.90-1.15 (m, 20H), 1.241 (d, J = 6.0 Hz, 3H), 1.240 (d, J = 6.0 Hz, 3H), 0.915 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.5, 174.4, 171.2, 170.2, 117.7, 98.5, 95.9, 85.6, 79.5, 73.4, 73.0, 72.1, 71.1, 70.2, 69.8, 69.0, 50.9, 49.6, 41.8, 40.0, 36.2 (2C), 35.8, 35.7, 35.2, 33.1, 30.14, 30.12, 26.9, 26.63, 26.59, 23.6, 21.4, 21.3, 21.1 (2C), 18.2, 17.9, 15.7; ESIHRMS Calcd for [C₃₉H₅₈O₁₂Na⁺]:741.3826, Found 741.3819.

Digitoxigen O-[3'-O-acetyl -2',6'-dideoxy-4'-O-((2''R,6''R)-5'',6''-dihydro-6''-methyl-5''oxo-2H-pyran-2''-yl)- β -D-ribo-hexopyranosyl]-(1 \rightarrow 4)- (3-O-acetyl-2,6-dideoxy- β -D-ribohexopyranoside) (28)

A CH₂Cl₂(1.0 mL) solution of Boc pyranone 8a (418 mg, 1.83 mmol) and alcohol 27 (410 mg, 0.57 mmol) was cooled to 0 °C. A CH₂Cl₂ (0.3 mL) solution of Pd₂(DBA)₃•CHCl₃ (15 mg, 2.5 mol%) and PPh₃ (15 mg, 10 mol%) was added to the reaction mixture at 0 °C. The reaction mixture was stirred at 0 °C for 8 hour. The reaction mixture was quenched with 10 mL of saturated ageous NaHCO₃, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 58% EtOAc/hexanes to give enone 28 (425 mg, 0.513 mmol, 90%) as a white solid: R_f (60% EtOAc/hexanes) = 0.27; mp: 174-175 °C; $[\alpha]_D^{21} = +58.3$ (c = 1.40, CHCl₃); IR (thin film, cm⁻¹) 3524, 2980, 2938, 2876, 1780, 1744, 1702, 1622, 1449, 1372, 1243, 1156, 1094, 1056, 1026, 1004, 950, 756; ¹H NMR (600 MHz, CDCl₃) δ 6.87 (dd, J = 10.2, 1.8 Hz, 1H), 6.10 (dd, J = 10.2, 1.2 Hz, 1H), 5.86 (m, 1H), 5.40-5.36 (m, 3H), 4.97 (dd, J = 18.0, 1.2 Hz, 1H), 4.79 (dd, J = 18.0, 1.2 Hz, 1H), 4.73 (dd, J = 9.6, 1.8 Hz, 1H), 4.71 (dd, J = 9.6, 1.8 Hz, 1H), 4.14 (q, J = 9.6, 1H), 4.14 (q, J = 9.6, 1H), 4.14 (q, J = 9.J = 6.6 Hz, 1H), 3.99 (m, 1H), 3.86 (dq, J = 9.6, 6.0 Hz, 1H), 3.81 (dq, J = 9.6, 6.0 Hz, 1H), 3. 44 (dd, J = 9.0, 3.0 Hz, 1H), 3. 31 (dd, J = 9.6, 3.0 Hz, 1H), 2.76 (m, 1H), 2.20-2.00 (m, 5H), 2.09 (s, 3H), 2.08 (s, 3H), 1.90-1.15 (m, 20H), 1.38 (d, J = 6.6 Hz, 3H), 1.25 (d, J = 6.6 Hz, 3H), 1.23 (d, J = 6.0 Hz, 3H), 0.91 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.1, 174.5, 174.4, 170.2, 170.1, 146.2, 128.7, 117.6, 98.7, 97.1, 95.9, 85.5, 79.6, 79.2, 75.1, 73.4, 73.0, 70.0, 69.7, 68.99, 68.97, 50.9, 49.6, 41.8, 40.0, 36.3, 36.2, 35.9, 35.7, 35.1, 33.1, 30.1(2C), 26.9, 26.62 26.59, 23.6, 21.4, 21.3, 21.2, 21.1, 18.2, 18.0, 16.3, 15.7; ESIHRMS Calcd for $[C_{45}H_{64}O_{14}Na^{+}]$: 851.4194, Found 851.4183.

Digitoxigen *O*-[3'-*O*-acetyl-2',6'-dideoxy- 4'-*O*-((2''R,6''R)-5'',6''-dihydro-6''-methyl-5''hydroxyl-2H-pyran-2''-yl)- β -D-ribo-hexopyranosyl]-(1 \rightarrow 4)- (3-*O*-acetyl-2,6-dideoxy- β -Dribo-hexopyranoside) (29a/b)

A CH₂Cl₂ (1.2 mL) solution of enone 40 (405 mg, 0.488 mmol) and CeCl₃ in MeOH solution (0.4 M, 1.2 mL) was cooled to -78 °C. NaBH₄ (18.5 mg, 0.49 mmol) was added and the reaction mixture was stirred at -78°C for 3 h. The reaction mixture was diluted with ether (20 mL) and was quenched with 10 mL of satd aq NaHCO₃, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 85% EtOAc/hexanes to give allylic alcohols 29a/b (397 mg, 0.478 mmol, 98%) as a white solid (diastereomeric ratio 29a:29b = 1.7:1, inseparable in chromatography): R_f (90% EtOAc/hexanes) = 0.33; IR (thin film, cm⁻¹) 3480, 2972, 2934, 2876, 1780, 1742, 1621, 1449, 1372, 1316, 1244, 1155, 1060, 1025, 1008, 755, 668; ¹H NMR (600 MHz, CDCl₃): **29a**: δ 6.14 (ddd, J = 9.6, 5.4, 1.2 Hz, 1H), 5.84 (m, 1H), 5.70 (dd, J = 10.2, 1.2Hz, 1H), 5.51 (ddd, J = 3.6, 3.0, 3.0Hz, 1H), 5.36 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 5.10 (ddd, J = 1.2, 1.2, 1.2 Hz, 1H), 4.96 (dd, J = 18.0, 1.2 Hz, 1H), 4.78 (dd, J = 18.0, 1.8 Hz, 1H), 4.710 (dd, J = 9.6, 1.8 Hz, 1H), 4.706 (dd, J = 9.6, 1.8 Hz, 1H), 3.98 (m, 1H), 3.80 (dq, J = 9.6, 6.0 Hz, 1H), 3.74 (dq, J = 9.6, 6.0 Hz, 1H), 3.66 (qd, J = 6.0, 1.8 Hz, 1H), 3.57 (m, 1H), 3.37 (dd, J =9.6, 3.0 Hz, 1H), 3.30 (dd, J = 9.0, 3.0 Hz, 1H), 2.75 (dd, J = 9.6, 6.0 Hz, 1H), 2.20-1.96 (m, 5H), 2.073 (s, 3H), 2.05 (s, 3H), 1.90-1.12 (m, 20H), 1.23 (d, J = 6.0 Hz, 3H), 1.22 (d, J = 6.6Hz, 3H), 1.19 (d, J = 6.6 Hz, 3H), 0.90 (s, 3H), 0.85 (s, 3H); **29b**: δ 5.92 (ddd, J = 10.2, 2.4, 1.8Hz, 1H), 5.84 (m, 1H), 5.74 (ddd, J = 10.2, 2.4, 1.8 Hz, 1H), 5.35 (m, 2H), 5.12 (ddd, J = 1.8, 1.8, 1.2 Hz, 1H), 4.96 (dd, J = 18.0, 1.2 Hz, 1H), 4.78 (dd, J = 18.0, 1.8 Hz, 1H), 4.70 (dd, J = 18.0, 1.2 Hz, 1H), 4.70 (dd, J = 18.0, 1.8 Hz, 1H), 4.70 (dd, J = 18.0, 1 9.6, 1.8 Hz, 1H), 4.67 (dd, J = 9.6, 1.8 Hz, 1H), 3.98 (m, 1H), 3.84 (m, 1H), 3.79 (m, 2H), 3.52 (dq, J = 6.0, 6.0 Hz, 1H), 3.33 (dd, J = 9.6, 3.0 Hz, 1H), 3.28 (dd, J = 9.0, 3.0 Hz, 1H), 2.75 (dd, J = 9.0, 3.0 Hz, 1H), 2.75 (dd, J = 9.0, 3.0 Hz, 1H), 3.38 (dd, J = 9.0, 3.0 Hz, 1H), 3.28 (dd, J = 9.0, 3.0 Hz, 1H), 3J = 9.6, 6.0 Hz, 1H, 2.20-1.96 (m, 5H), 2.071 (s, 3H), 2.066 (s, 3H), 1.90-1.12 (m, 20H), 1.26 (d. J = 6.0 Hz, 3H), 1.21 (d, J = 6.0 Hz, 3H), 1.20 (d, J = 6.0 Hz, 3H), 0.90 (s, 3H), 0.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) **29a** : δ 174.5, 174.4, 170.3 (2C), 131.7, 129.2, 117.6, 98.72, 98.2, 95.9, 85.6, 79.46, 77.8, 73.4, 73.0, 70.2, 69.06(2C), 69.04, 68.4, 50.9, 49.6, 41.8, 40.0, 36.28, 36.24, 36.0, 35.7, 35.1, 33.1, 30.1(2C), 26.9, 26.63, 26.59, 23.6, 21.35, 21.34, 21.30, 21.1, 18.21, 17.9, 16.7, 15.7; **29b**: 8 174.5, 174.4, 170.2 (2C), 132.9, 128.1, 98.70, 97.6, 95.9, 85.6, 79.53, 78.0, 74.5, 73.4, 71.4, 69.98, 69.94, 69.2, 68.4, 64.4, 50.9, 49.6, 41.8, 40.0, 36.25, 36.24, 35.9, 35.7, 35.1, 33.1, 30.1(2C), 26.9, 26.63, 26.59, 23.6, 21.35, 21.34, 21.27, 21.1, 18.19, 18.16, 18.0, 15.7; ESIHRMS Calcd for $[C_{45}H_{66}O_{14}Na^{+}]$: 853.4350, Found 853.4339.

Digitoxigen O-[3'-O-acetyl-2',6'-dideoxy- 4'-O-((2''R,6''R)-3'',6''-dihydro-6''-methyl-2H-pyran-2''-yl)- β -D-ribo-hexopyranosyl]-(1 \rightarrow 4)- (3-O-acetyl-2,6-dideoxy- β -D-ribo-hexopyranoside) (30)

A flask was charged with dry N-methyl morpholine (NMM) 2.0 ml, triphenyl phosphine (411 mg, 1.57 mmol) and was cooled to -30 °C under Ar atmosphere. Diethylazodicarboxylate (0.22 ml, 1.42 mmol) was added and the reaction was stirred for 5 min, allylic alcohols 29a/b (395 mg, 0.475 mmol) was added in a 1 M solution of NMM and the reaction mixture was stirred for 10 min, followed by addition of o-nitrobenzenesulfonyl hydrazide (NBSH) (289 mg, 1.42 mmol). The reaction was stirred at -30 °C for 4 h and was monitored by TLC, upon consumption of starting material, warm up to room temperature and stirred for another 1 h. The reaction mixture was diluted with ether (20 mL) and was guenched with 10 mL of H₂O, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 88% Et₂O/hexanes to give product 30 (345 mg, 0.42 mmol, 89%) as a white solid: R_f (Et₂O) = 0.33; mp: 144-145 °C; $[\alpha]_D^{21} = +48.2$ $(c = 1.50, \text{CHCl}_3)$; IR (thin film, cm⁻¹) 3516, 2967, 2935, 2871, 1782, 1742, 1621, 1449, 1369, 1316, 1243, 1155, 1091, 1064, 1047, 1026, 1005, 950, 882, 753; ¹H NMR (600 MHz, CDCl₃) δ 5.86 (m, 1H), 5.61 (dddd, J = 9.6, 4.8, 2.4, 2.4 Hz, 1H), 5.53 (dddd, J = 10.2, 2.4, 1.2, 1.2 Hz, 1H), 5.38 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 5.36 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.97 (dd, J = 18.0, 3.01.2 Hz, 1H), 4.79 (dd, J = 18.0, 1.2 Hz, 1H), 4.72 (dd, J = 9.6, 1.8 Hz, 1H), 4.69 (dd, J = 9.6, 1.8Hz, 1H), 4.65 (dd, J = 8.4, 3.6 Hz, 1H), 4.25 (m, 1H), 3.99 (m, 1H), 3.84 (dq, J = 9.0, 6.0 Hz, 1H), 3.82 (dq, J = 9.6, 6.0 Hz, 1H), 3.31 (dd, J = 9.6, 3.0 Hz, 1H), 3.28 (dd, J = 9.6, 3.0 Hz, 1H), 2.76 (m, 1H), 2.20-2.02 (m, 6H), 2.10 (s, 3H), 2.09 (s, 3H), 1.90-1.15 (m, 21H), 1.23 (d, J = 6.6Hz, 3H), 1.22 (d, J = 6.6 Hz, 3H), 1.20 (d, J = 6.6 Hz, 3H), 0.92 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) & 174.45, 174.41, 170.3, 170.2, 131.1, 122.2, 117.7, 100.3, 98.8, 95.9, 85.6, 79.5, 79.0, 73.4, 73.0, 70.9, 70.10, 70.06, 69.2, 69.1, 50.9, 49.6, 41.9, 40.1, 36.30, 36.25, 35.9, 35.8, 35.2, 33.1, 30.9, 30.2 (2C), 26.9, 26.65, 26.61, 23.6, 21.37, 21.35, 21.34, 21.1, 20.8, 18.2, 18.0, 15.8; ESIHRMS Calcd for $[C_{45}H_{66}O_{13}Na^+]$: 837.4401, Found 837.4390.

Digitoxigen O-[2'',6''-dideoxy- β -D-ribo-hexopyranosyl]- (1 \rightarrow 4)-O-[3'-O-acetyl-2',6'-dideoxy- β -D-ribo-hexopyranosyl]-(1 \rightarrow 4)-(3-O-acetyl-2,6-dideoxy- β -D-ribo-hexopyranoside) (31)

To a CH₂Cl₂ (0.8 mL) solution of olefin **30** (115 mg, 0.14 mmol) at 0 °C was added a solution of (50% w/v) of *N*-methyl morpholine *N*-oxide / water (100 µL). Crystalline OsO₄ (0.4 mg, 1 mol %) was added and the reaction was stirred for 4 h. The reaction was concentrated and was purified by a silica gel column using EtOAc. Pure fractions were combined and concentrated to afford alcohol **31** (110 mg, 0.13 mmol, 91%) as a white solid: $R_f(EtOAc) = 0.31$; mp: 162-163 ^oC; $[\alpha]_{D}^{21} = +47.2$ (c = 1.0, CHCl₃); IR (thin film, cm⁻¹) 3494, 2962, 2934, 2881, 1780, 1741, 1624, 1449, 1370, 1246, 1164, 1064, 1024, 948, 870, 753; ¹H NMR (600 MHz, CDCl₃) δ 5.86 (m, 1H), 5.37 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H), 5.33 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.018.0, 1.8 Hz, 1H), 4.82 (dd, J = 9.6, 1.8 Hz, 1H), 4.80 (dd, J = 18.0, 1.2 Hz, 1H), 4.71 (dd, J =9.0, 1.8 Hz, 1H), 4.67 (dd, J = 9.6, 1.8 Hz, 1H), 4.08 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H), 3.99 (m, 1H), 3.82 (dq, J = 9.0, 6.0 Hz, 1H), 3.79 (dq, J = 9.6, 6.0 Hz, 1H), 3.66 (dq, J = 9.6, 6.0 Hz, 1H), 3.29 (dd, J = 9.6, 3.0 Hz, 1H), 3.26 (dd, J = 9.6, 3.0 Hz, 1H), 3.25 (ddd, J = 9.6, 6.0, 3.0 Hz, 1H),2.76 (m, 1H), 2.20-2.01 (m, 6H), 2.09 (s, 6H), 1.90-1.18 (m, 21H), 1.22 (d, J = 6.0 Hz, 6H), 1.19 (d, J = 6.6 Hz, 3H), 0.91 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.7, 174.6, 170.33, 170.27, 117.6, 98.76, 98.71, 95.8, 85.6, 79.6, 79.2, 73.5, 73.0, 72.8, 70.02, 69.95, 69.3, 69.08, 69.05, 68.0, 50.9, 49.6, 41.8, 40.0, 37.7, 36.250, 36.245, 35.9, 35.7, 35.2, 33.1, 30.14, 30.12, 26.9, 26.63, 26.60, 23.6, 21.37, 21.34, 21.32, 21.1, 18.2, 17.97, 17.95, 15.8; ESIHRMS Calcd for $[C_{45}H_{68}O_{15}Na^{+}]$: 871.4456, Found 871.4448.

Digitoxin (1)

To a MeOH/H₂O (2 mL, 4:1) solution of diacetate **31** (20 mg, 23.5 µmol) at room temperature was added LiOH·H₂O (3 mg, 70 µmol) and the reaction was stirred for 2 h. The reaction was quenched with adding 5 mL pH = 6.0 buffering solution. The mixture was extracted with CH₂Cl₂ $(3 \times 5 \text{ mL})$. The organic layer was dried (Na₂SO₄), and concentrated under reduced pressure. It was purified by a silica gel column using 5% MeOH/EtOAc. Pure fractions were combined and concentrated, and the product was crystallized by acetone/hexanes to afford digitoxin 1 (15 mg, 19.6 µmol, 83%) as a white crystal: R_f (EtOAc) = 0.20; mp: 253-254 °C; $[\alpha]_D^{21} = +18.0$ (c = 0.20, CHCl₃); IR (thin film, cm⁻¹) 3466, 2926, 2856, 1777, 1736, 1449, 1378, 1368, 1163, 1128, 1068, 1013, 991, 869, 732; ¹H NMR (600 MHz, CDCl₃) δ 5.87 (m, 1H), 4.98 (dd, J = 18.0, 1.8 Hz, 1H), 4.91 (dd, J = 9.6, 1.8 Hz, 1H), 4.89 (dd, J = 9.6, 1.8 Hz, 1H), 4.86 (dd, J = 9.6, 1.8 Hz, 1H), 4.80 (dd, J = 18.0, 1.8 Hz, 1H), 4.25 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.24 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H, 4.13 (m, 1H), 4.02 (m, 1H), 3.83 (dq, J = 9.6, 6.0 Hz, 1H), 3.78 (dq, J = 9.6, 6.0 Hz), 3.88 (dq, J = 9.6, 6.0 Hz)), 3.88 (dq, J = 9.6, 6.0 Hz)), 3.88 (dq, J = 9.6, 6.0 Hz)), 3.88 (dq, J = 9.6, 6.0 Hz))) 1H), 3.76 (dq, J = 9.6, 6.0 Hz, 1H), 3.31 (ddd, J = 9.6, 6.0, 3.0 Hz, 1H), 3.24 (dd, J = 9.0, 3.0 Hz, 1H)1H), 3.20 (dd, J = 9.6, 3.0 Hz, 1H), 3.03 (s, 1H), 2.96 (s, 1H), 2.39 (s, 1H), 2.77 (m, 1H), 2.19-1.99 (m, 6H), 2.02 (s, 1H), 2.01 (s, 1H), 1.90-1.18 (m, 21H), 1.28 (d, J = 6.0 Hz, 3H), 1.223 (d, J= 6.0 Hz, 3H), 1.221 (d, J = 6.0 Hz, 3H), 0.92 (s, 3H), 0.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.51, 174.48, 117.7, 98.3, 98.2, 95.4, 85.6, 82.6, 82.2, 73.4, 72.7 (2C) 72.5, 69.5, 68.3, 68.11, 68.08, 66.5, 66.4, 51.0, 49.6, 41.9, 40.1, 37.8, 37.2, 36.7, 36.2, 35.8, 35.2, 33.2, 30.2, 29.8, 26.9, 26.7, 26.5, 23.6, 21.4, 21.2, 18.16, 18.13, 15.8; ESIHRMS Calcd for $[C_{41}H_{64}O_{13}Na^+]$: 787.4245, Found 787.4237.

Section C: ¹H NMR and ¹³C NMR Spectra

S28

N	220.0		
K∶par	210.0		
ts per	200.0		0,00
Millio	190.0		MHz, C
n:130	180.0		DTBS
()	170.0		
	160.0 1		·
	50.0 1		
	10.0 13		
	\$0.0 12		
	0.0 110		
	.0 100⊦		
	0.00		
	80.0		
	70.0		
	60.0		
	50.0		
	40.0		
	30.0		
	20.0 1		
	0.0		
•			
č			
	1	529	

S30

S36

220.0		
210 5 : P	n n n n n n n n n n n n n n n n n n n	B
arts	MR	°,
200.0 Per	67.	
Mili 190		\mathcal{H}_{\circ}
lion 1		
: 13		2
C 170.		
0 16		
0.0		
150.0		
140		
0 1		
30.0		
120.0		
0.0		
00.0		
90.0	· · · · · · · · · · · · · · · · · · ·	
0.0		
70.0		
8		
0		
0.0 0		E
40		
ι 		
ŏ		
20.0		
10.		
-10.0		
]	S39	

