Supporting information

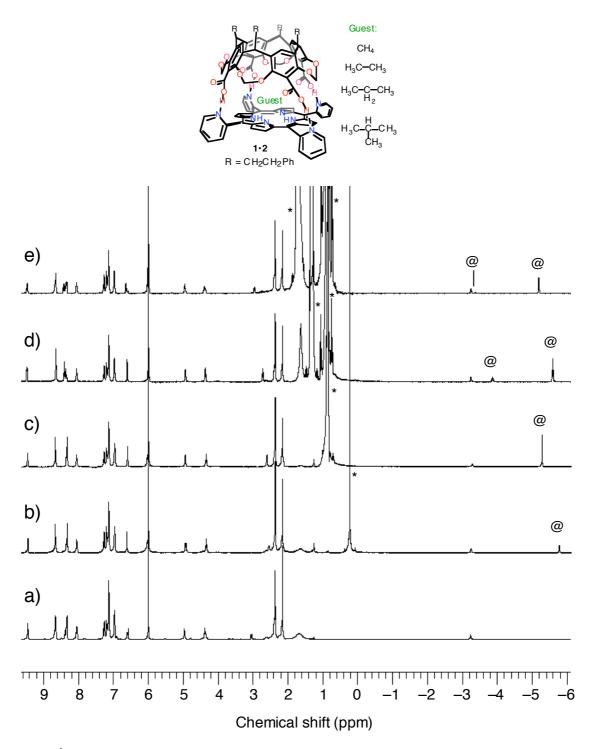
Encapsulation of Small Molecules by a Cavitand Porphyrin Self-assembled via Quadruple Hydrogen Bonds

Jun Nakazawa, Maki Mizuki, Yuichi Shimazaki, Fumito Tani, and Yoshinori Naruta*

Institute for Materials Chemistry and Engineering, Kyushu University 6-10-1 Higashi-ku, Fukuoka, Japan. E-mail: naruta@ms.ifoc.kyushu-u.ac.jp

Experimental Section

Tetracarboxylcavitand•tetrapyridylporphyrin (1•2)


¹H-NMR (400 MHz, 1,1,2,2-tetrachloroethane-*d*₂) 16.20 (*s*, br, 4H, OH), 9.46 (*d*, 4H, 3-pyridyl), 8.66 (*s*, 8H, pyrrole -H), 8.41-8.32 (*m*, 4H, 6-pyridyl + 5-pyridyl), 8.05 (*t*, 4H, 4-pyridyl), 7.29-6.96 (*m*, 20H, CHCH₂CH₂C₆<u>H₅</u>), 6.60 (*s*, 4H, Ar-H meta to OCH₂O), 4.96 (*d*, 4H, *J* = 7.8 Hz, outer OCH₂O), 4.38 (*t*, 4H, J = 7.8 Hz, C<u>H</u>CH₂CH₂C₆H₅), 3.05 (*d*, 4H, *J* = 7.8 Hz, inner OCH₂O), 2.40-2.16 (*m*, 16H, CHC<u>H₂C<u>H</u>₂C₆<u>H₅</u>), -3.22 (*s*, 2H, NH); ESI-MS Found: *m/z* 1747.6. Calcd for C₁₀₈H₈₂N₈O₁₆: [M+H]⁺ 1748.8.</u>

Detection of host-guest complexation by ¹H and ¹³C-NMR spectroscopy

1•2 (4 mM) was dissolved in 1,1,2,2-tetrachloroetane- d_2 (0.5 mL) and the guest molecule was directly bubbled or added into a gas-tight NMR tube. ¹H NMR spectra were measured on a JEOL JNM-EX400 spectrometer at various guest concentrations (5~50 mM) at 298 K. The amounts of free and encapsulated guest molecules were determined by the integration of their proton signals relative to the host signals [1•2; at $\delta = 9.46$ ppm (4 protons)]. [free1•2] values were estimated from the amount of trapped guest molecules. The 1:1 binding constants were calculated according to the equation, K = [Host•Guest] / ([Host_{free}][Guest_{free}]).

Measurement of exchange rates (2D-EXSY)

1 (3.8 mM) and 2 (10 mM) were dissolved in 1,1,2,2-tetrachloroethane- d_2 (0.7 mL). Then, ethylene gas was directly bubbled in a gas-tight NMR tube (encapsulated ethylene = 3.4 mM, free ethylene = 8.1 mM). NOESY spectra were measured on a JEOL ECA-500 spectrometer (observed range: 1 ± 5 ppm or 7 ± 3 ppm, data points: 512 x 256, mixing time = 0.3 or 0 s, relaxation delay = 30 s, at 298 K). Exchange rates were obtained from cross- and diagonal-peak intensities using ExsyCalc software (MestReC). T_1 measurement was carried out for the same solution. Followings are obtained τ values (sec): NH (1•2), 0.59; NH (2), 1.07; ethylene (encapsulated), 3.97; ethylene (free), 5.99; H_i(1•2), 0.55; H_o(1•2), 0.59; pyridine signals (1•2), 1.57 ~ 2.27; pyridine signals (2), 1.64 ~2.18; pyrrole- β (1•2), 2.34; pyrrole- β (2), 2.20.

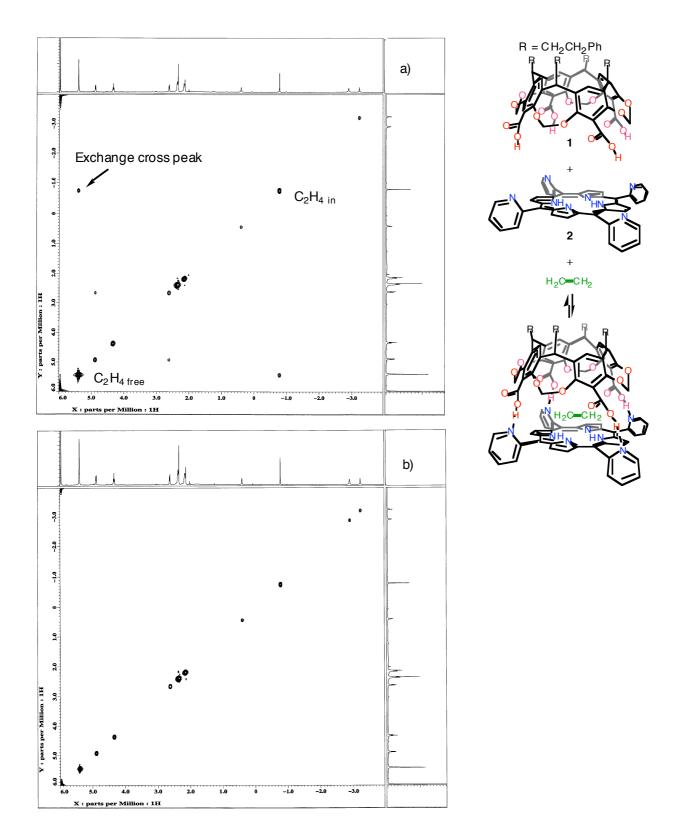


Figure S1. ¹H NMR spectra of **1·2** (2 mM) with various hydrocarbons in 1,1,2,2-tetrachloroethane- d_2 at 298 K. a) **1·2**, b) with methane, c) with ethane, d) with propane, e) 2-methylpropane. * denotes free hydrocarbons. @ denotes encapsulated guest signals.

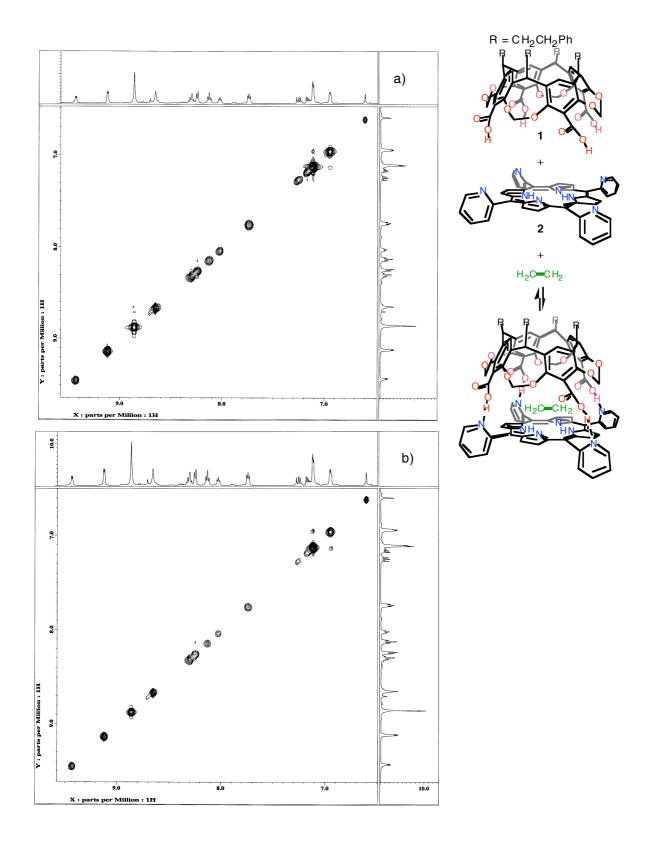

tetrachloroethane-d ₂ at 2		8
guest	δ _{free}	$\delta_{\text{encapsulated}}$
methane	0.15	-5.76
acetylene	1.91	-4.51
ethylene	5.39	-0.80
ethane	0.85	-5.28
propane	1.31, 0.88	–3.81, –5.57
2-methylpropane	1.72, 0.91	-4.34, -5.17
cyclopentane	1.52	-4.60
benzene	7.43	_b
cyclohexane	1.27, 0.89	_ ^b
methanol	3.49, - ^c	–3.13, - ^c
ethanol	3.61, 1.14, - ^c	-2.71, -4.80, -3.07
2-propanol	3.99, 1.19, - ^c	-1.45, -5.28,- ^c
1-propanol	3.49, 1.53, 0.93, - ^c	_b
furan	7.50, 6.44	1.45, 0.19
tetrahydrofuran	3.69, 1.82	-2.76, -4.28
1,3-oxirane	4.88, 3.86	–1.18, –3.19
1,3-oxirane-2-one	4.51	-2.95
1,3,5-trioxirane	5.15	-1.03
dichloromethane	5.31	-0.47
chloroform	7.30	1.23
dimethyl sulfide	3.34	-3.21
dimethyl sulfoxide	2.57	-3.70
dimethyl disulfide	2.43	-4.75
dimethyl sulfone	2.96	_ <i>b</i>
acetonitrile	1.98	-3.42
propionitrile	2.32, 1.23	-3.44, -5.43
fumaronitrile	6.31	0.87
acetone	2.10	
2-butanone	2.42, 2.11, 1.01	_b
ethyl acetate	2.91, 2.83	_b

Table S1. ¹H NMR chemical shifts δ (ppm)^a of free and encapsulated guests in **1-2** in 1,1,2,2-tetrachloroethane-*d*₂ at 298 K.

[a] Chemical shifts were based on TMS. [b] Not encapsulated. [c] Signals of OH protons were not detected.

Figure S2. NOESY spectra of **1** (3.8 mM), **2** (10 mM) and ethylene (free 8.1 mM, encapsulated 3.4 mM) in tetrachloroethane- d_2 at 298 K. a) $-4 \sim 6$ ppm, mixing time = 0.3 s, b) $-4 \sim 6$ ppm mixing time = 0 s.

Figure S3. NOESY spectra of **1** (3.8 mM), **2** (10 mM) and ethylene (free 8.1 mM, encapsulated 3.4 mM) in tetrachloroethane- d_2 at 298 K. a) 6.5 ~ 9.5 ppm, mixing time = 0.3 s. b) 6.5 ~ 9.5 ppm, mixing time = 0 s.