Stereoselective Functionalization of 1'-Position of 4'-Thionucleosides

Prashantha Gunaga, Hea Ok Kim, Hyuk Woo Lee, Dilip K. Tosh, Jae-Sang Ryu, Sun Choi, and Lak Shin Jeong*

Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea

Supporting Information

Table of Contents

Experimental

Ultra violet (UV) spectra were recorded on a Beckman DU-68 spectrometer and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on Varian- $400(400 \mathrm{MHz})$ using CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ and chemical shifts are reported in parts per million (δ) downfield from tetramethylsilane as internal standard. FAB mass spectra were recorded on Jeol HX 110 spectrometer. Elemental analyses were performed at the general instruments laboratory of Ewha Womans University, Korea. TLC was performed on Merck pre-coated $60 \mathrm{~F}_{254}$ plates. Column chromatography was performed using silica gel 60 (230-400 mesh, Merck). All the anhydrous solvents were distilled over CaH_{2} or $\mathrm{P}_{2} \mathrm{O}_{5}$ or $\mathrm{Na} /$ benzophenone prior to the reaction.

(2S,3R)- Acetic acid 2,2-dimethyl-tetrahydro-thieno[3,4-d][1,3]dioxol-4-yl ester (9).

 Diol 4 ($9.8 \mathrm{~g}, 44.5 \mathrm{mmol}$) was dissolved in ethyl acetate (300 mL) and cooled to $0{ }^{\circ} \mathrm{C}$ with ice salt mixture. To this mixture was added lead (IV) aceate ($39.5 \mathrm{~g}, 88.97 \mathrm{mmol}$) portionwise and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then stirred for 5 h at room temperature. The mixture was filtered through a Celite pad and the filtrate was washed with saturated NaHCO_{3} solution three times and with brine twice, dried with anhydrous MgSO_{4}, filtered, and evaporated under reduced pressure. The resulting syrup was purified by silica gel column chromatography (hexane/ethylacetate $=6 / 1$) to give 2 (6.6 g. 68\%): MS (FAB) $m / z 241.0\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; IR $1745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $1.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.01\left(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{a}}\right), 3.23(\mathrm{dd}$, $\left.1 \mathrm{H}, J=4.0,12.8 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{b}}\right), 4.79(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}, 2-\mathrm{H}), 5.04(\mathrm{t}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}, 3-$ $\mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.1,24.6,26.1,38.0,82.6,86.7,88.2$, 111.4, 169.0; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 49.52$; H, 6.46; S, 14.69. Found C, 49.88; H, 6.87; S, 14.29.(1S,2S,3R)-2,6-Dichloro-9-(2,2-dimethyl-tetrahydro-thieno[3,4-d][1,3]dioxol-4-yl)9 H -purine (10).
2,6-Dichloropurine ($5.52 \mathrm{~g}, 29.2 \mathrm{mmol}$), ammonium sulfate ($655 \mathrm{mg}, 4.6 \mathrm{mmol}$), and HMDS (20 mL) were refluxed under inert and dry conditions for 12 h . The clear solution was evaporated under high vacuum. The resulting solid was redissolved in 1,2dichloroethane (25 mL) and cooled in ice. To this solution was added dropwise a solution of $9(5.1 \mathrm{~g}, 23.4 \mathrm{mmol})$ in 1,2- dichloroethane $(100 \mathrm{~mL})$ followed by addition of TMSOTf ($4.96 \mathrm{~mL}, 30.38 \mathrm{mmol}$) and the mixture was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$ and then heated at $70{ }^{\circ} \mathrm{C}$ for 4 h . The mixture was cooled, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated NaHCO_{3} solution. The organic layer was dried with MgSO_{4} and evaporated under reduced pressure. The resulting syrup was purified by silica gel
column chromatography (hexane/ethylacetate $=2 / 1$) to give 10 ($7.63 \mathrm{~g}, 94 \%$): UV $(\mathrm{MeOH}) \lambda_{\text {max }} 276.0 \mathrm{~nm}(\mathrm{pH} 7) ;[\alpha]_{\mathrm{D}}{ }^{25}+88.42(c 0.328) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.37(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $1.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.6 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right.$)), $3.75(\mathrm{dd}, 1 \mathrm{H}, J=4.4,12.8$ $\mathrm{Hz}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}$), $5.22\left(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 5.33(\mathrm{t}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}, 3$ '-H), 5.88 (s, 1 $\mathrm{H}, 1$ '- H), 8.19 (s, $1 \mathrm{H}, \mathrm{H}-8$), ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 24.8, 26.5, 41.2, 70.6, 84.6, 89.8, 112.1, 131.7, 145.0, 152.3, 152.4, 153.2; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 41.51$; H, 3.48; N, 16.14; S, 9.24. Found C, 41.82; H, 3.85; N, 16.25; S, 9.21.
(1R,2S,3R)-4-(2,6-Dichloro-purin-9-yl)-2,2-dimethyl-tetrahydro-thieno[3,4d $][1,3]$ dioxole-4-carboxylic acid methyl ester (11) and ($1 R, 2 S, 3 R$)-4-(2,6-Dichloro-purin-9-yl)-2,2-dimethyl-tetrahydro-thieno[3,4-d][1,3]dioxole-4-carboxylic acid ethyl ester (12).
Compound 10 ($2.5 \mathrm{~g}, 7.2 \mathrm{mmol}$) was dissolved in dry THF (150 mL) and cooled to -78 ${ }^{\circ} \mathrm{C}$. To the stirring mixture was added dropwise LiHMDS ($7.92 \mathrm{~mL}, 1 \mathrm{M}$ solution in THF, 7.92 mmol) and the mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 90 min . To this mixture was added dropwise methyl chloroformate ($1.67 \mathrm{~mL}, 21.6 \mathrm{mmol}$) and the solution was stirred at the same temperature for 2 h . The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was dried with MgSO_{4} and evaporated under reduced pressure. The resulting syrup was purified by silica gel column chromatography (hexane/ethylacetate $=2 / 1$) to give $\mathbf{1 1}(2.56 \mathrm{~g}, 88 \%)$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.4 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.87$ (dd, $1 \mathrm{H}, J=4.4,12.8 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}$), $4.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $5.44\left(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right)$, $5.48\left(\mathrm{t}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}, 3{ }^{\prime}-\mathrm{H}\right), 6.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 24.6,26.6,41.8$, 54.2, 72.0, 86.1, 89.7, 111.8, 129.8, 142.8, 152.9, 154.8, 155.2 and 159.2 Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 41.49 ; \mathrm{H}, 3.48 ; \mathrm{N}, 13.83 ; \mathrm{S}, 7.91$. Found C, $41.88 ; \mathrm{H}, 3.86$; N, 13.75; S, 7.81.

Similarly, 12 ($144 \mathrm{mg}, 48 \%$) was also obtained using 10 ($250 \mathrm{mg}, 0.72 \mathrm{mmol}$), LiHMDS (1 M solution in THF) ($0.80 \mathrm{~mL}, 0.80 \mathrm{mmol}$) and ethyl chloroformate (0.185 $\mathrm{mL}, 2.16 \mathrm{mmol}):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.50\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.4 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.87\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.0,12.4 \mathrm{~Hz}, 4^{\prime}-\right.$ H_{b}), 4.57 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 5.43 (d, $1 \mathrm{H}, J=5.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}$,), 5.49 (t, $\left.1 \mathrm{H}, J=4.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right)$, 6.94 (s, $1 \mathrm{H}, \mathrm{H}-8$); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 42.97$; H, 3.85; N, 13.36; S, 7.65. Found C, 42.65; H, 4.11; N, 13.15; S, 7.34.
(1S,2S,3R)-2-(2,6-Dichloro-purin-9-yl)-tetrahydro-thiophene-3,4-diol (15).
Compound 12 ($1.6 \mathrm{~g}, 4.6 \mathrm{mmol}$) was stirred with $2 N$ hydrochloric acid (10 mL) in THF $(10 \mathrm{~mL})$ at room temperature for 6 h . The mixture was carefully evaporated under reduced pressure. If the color of the solution turns to green, evaporation must be
immediately stopped. The resulting syrup was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50 / 1\right)$ to give $\mathbf{1 5}(1.24 \mathrm{~g}, 88 \%)$: $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }$ $276.0 \mathrm{~nm}(\mathrm{pH} 7) ;[\alpha]_{\mathrm{D}}{ }^{25}+5.08(c 0.46) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.14(\mathrm{dd}, 1 \mathrm{H}, J=2.8,11.6$ $\mathrm{Hz}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}$), $3.57\left(\mathrm{dd}, 1 \mathrm{H}, J=4.0,11.6 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.77\left(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.63$ (t, 1 H, J=4.8 Hz, $\left.3^{\prime}-\mathrm{H}\right), 5.98\left(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 8.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 35.5,64.9,74.1,81.4,145.3,150.1,152.6,153.2,153.2$; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 35.19$; H, 2.63; N, 18.24; S, 10.44. Found C, 35.18; H, 2.85; N, 18.55; S, 10.31 .
(1R,2S,3R)-2-(2,6-Dichloro-purin-9-yl)-3,4-bis-(tetrahydro-pyran-2-yloxy)-tetrahydro-thiophene-2-carboxylic acid methyl ester (19).
Compound 15 ($3.0 \mathrm{~g}, 9.8 \mathrm{mmol}$) was taken in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) along with 3,4-dihydro$2 H$-pyran ($8.91 \mathrm{~mL}, 97.6 \mathrm{mmol}$). To this stirring solution was added PPTS ($1.22 \mathrm{~g}, 4.8$ mmol) and the mixture was stirred at room temperature for 12 h until the mixture became completely homogeneous. The solution was evaporated at low temperature and The resulting syrup was purified by silica gel column chromatography (hexane/ethylacetate $=2 / 1)$ to give $\mathbf{1 8}(4.33 \mathrm{~g}, 93 \%)$ as a diastereomeric mixture.
The compound $18(2.1 \mathrm{~g}, 4.42 \mathrm{mmol})$ was converted to a diastereomeric mixture of $\mathbf{1 9}$ $(1.84 \mathrm{~g}, 78 \%)$ using LiHMDS ($4.86 \mathrm{~mL}, 4.86 \mathrm{mmol}$), methyl chloroformate (1.025 mL , $13.26 \mathrm{mmol})$ in dry THF (100 mL) following the procedure for the synthesis of 13: MS (FAB) $m / z 555.0\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }=291 \mathrm{~nm}(\mathrm{pH} 7)$; IR $1740 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 47.28 ; \mathrm{H}, 4.91 ; \mathrm{N}, 10.50 ; \mathrm{S}, 6.01$. Found C, 47.65; H, 4.51; N, 10.89; S, 6.33.
(1R,2S,3R)-2-[2-Chloro-6-(3-iodobenzylamino)-purin-9-yl]-3,4-dihydroxy-tetrahydro-thiophene-2-carboxylic acid methylamide (22).
Compound 19 ($250 \mathrm{mg}, 0.47 \mathrm{mmol}$) was converted to N^{6}-3-iodobenzylamino derivative ($281 \mathrm{mg}, 82 \%$) on treatment with 3-iodobenzylamine ($152 \mathrm{mg}, 0.56 \mathrm{mmol}$) and then N^{6} -3-iodobenzylamino derivative ($281 \mathrm{mg}, 0.38 \mathrm{mmol}$) was converted to 20 ($146 \mathrm{mg}, 52 \%$) by treating with excess methylamine in THF at rt for 2 h . Finally, compound 20 (146 mg , 0.2 mmol) was converted to $22(51 \mathrm{mg}, 46 \%)$ according to the procedure used in the synthesis of 19: MS (FAB) $m / z 583.4\left(\mathrm{M}+\mathrm{Na}^{+}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }=303 \mathrm{~nm}(\mathrm{pH} 7)$; IR $1610 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}+71.13(c 0.197) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.85(\mathrm{dd}, 1 \mathrm{H}, J=2.4,11.6 \mathrm{~Hz}$, $4^{\prime}-\mathrm{H}_{\mathrm{a}}$), $2.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{NH}\right), 3.67\left(\mathrm{dd}, 1 \mathrm{H}, J=3.2,11.2 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.56\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\right.$ H), 4.73 (m, $2 \mathrm{H}, \mathrm{Bn}$), 5.44 (dd, $\left.1 \mathrm{H}, J=3.6,7.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.09$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-8$ and Ph), $7.39(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{Ph}), 7.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.78(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 26.4$, $37.1,44.4,66.1,75.3,79.4,95.1,119.8,128.3,131.5,137.6,138.0,142.8,143.8,152.9$, 156.4, 157.3, 161.4; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClIN}_{6} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 38.55$; H, 3.24; N, 14.99; S,
5.72 Found C, 38.86; H, 3.17; N, 14.59; S, 5.71.
(1R,2S,3R)-2-(2-Chloro-6-ethylamino-purin-9-yl)-3,4-dihydroxy-tetrahydro-thiophene-2-carboxylic acid methylamide (23).
Compound 19 ($200 \mathrm{mg}, 0.37 \mathrm{mmol}$) was converted to N^{6}-ethylamino derivative (158 , 79%) on treatment with ethyl amine hydrochoride ($36 \mathrm{mg}, 0.44 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(74 \mathrm{mg}$, 0.74 mmol). N^{6}-Eethylamino derivative ($158 \mathrm{mg}, 0.29 \mathrm{mmol}$) was converted to 21 (86 $\mathrm{mg}, 56 \%$) by treating with excess methylamine in THF at rt for 2 h . Finally, compound 21 ($86 \mathrm{mg}, 0.16 \mathrm{mmol}$) was converted to $23(30 \mathrm{mg}, 51 \%)$ according to the procedure used in the synthesis of 19: MS (FAB) $m / z 395.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; UV $(\mathrm{MeOH}) \lambda_{\max }=302 \mathrm{~nm}$ (pH 7); IR $1620 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}+89.12(c 0.202) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 2.91\left(\mathrm{~m}, 4 \mathrm{H}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.\mathrm{CH}_{3}-\mathrm{NH}\right), 3.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}-\mathrm{C}=\mathrm{O}\right), 3.67(\mathrm{dd}, 1$ $\left.\mathrm{H}, J=3.2,11.2 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.57\left(\mathrm{dd}, 1 \mathrm{H}, J=3.6,5.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 5.45(\mathrm{dd}, 1 \mathrm{H}, J=3.6$, $\left.7.6 \mathrm{~Hz}, 3{ }^{\prime}-\mathrm{H}\right), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}-8):{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 14.9,26.5,36.6,37.2$, $66.1,75.3,79.5,119.9,143.4,152.6,156.5,157.4,161.5$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClN}_{6} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 41.88 ; \mathrm{H}, 4.60 ; \mathrm{N}, 22.54 ; \mathrm{S}, 8.60$ Found C, 41.82; H, 4.66; N, 22.59; S, 8.62.
(1R,2S,3R)-2-(2-Chloro-6-methylamino-purin-9-yl)-3,4-dihydroxy-tetrahydro-thiophene-2-carboxylic acid methylamide (24).
To a solution of $\mathbf{1 9}(250 \mathrm{mg}, 0.47 \mathrm{mmol})$ in ethanol $(2 \mathrm{~mL})$ was added methyl amine solution in THF (10 mL) and the mixture was stirred at room temperature for 3 h and evaporated. The residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100 / 1\right)$ to give N^{6}-methylamino derivative ($106 \mathrm{mg}, 43 \%$).
N^{6}-methylamino derivative ($106 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50 / 1(50 \mathrm{~mL})$. To this stirring mixture was added p-toluenesulfonic acid $(20 \mathrm{mg})$ and allowed to stir at room temperature for 30 min . The solution was evaporated under reduced pressure. The residue was purified by PTLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20 / 1\right)$ to give $24(35 \mathrm{mg}, 49 \%): \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 381.1\left(\mathrm{M}+\mathrm{Na}^{+}\right) ; \mathrm{UV}$ $(\mathrm{MeOH}) \lambda_{\max }=302.5 \mathrm{~nm}(\mathrm{pH} 7) ;$ IR $1625 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}+79.44(c 0.189) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.90\left(\mathrm{dd}, \mathrm{J}=12.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{dd}, 1$ $\left.\mathrm{H}, J=3.6,10.6 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.57\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.44\left(\mathrm{dd}, 1 \mathrm{H}, J=4.0,7.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right)$, $7.06(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}-8) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ 26.7, 28.0, 37.2, 65.9, 74.8, 79.0, 119.3, 143.6, 152.3, 156.1, 157.9, 161.0; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClN}_{6} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 40.17$; H, 4.21; N, 23.42; S, 8.94 Found C, 40.19; H, 4.23; N, 23.47; S, 8.95.
(1R, 2S, 3R)-2-(6-Benzylamino-2-chloro-purin-9-yl)-3,4-dihydroxy-tetrahydro-thiophene-2-carboxylic acid benzylamide (25).
Compound 19 (185 mg) was converted to N^{6}-benzylamino derivative ($156 \mathrm{mg}, 49 \%$)
using excess benzylamine in ethanol. N^{6}-Benzylamino derivative ($156 \mathrm{mg}, 0.23 \mathrm{mmol}$) was converted to $\mathbf{2 5}$ ($50 \mathrm{mg}, 43 \%$) according to the procedure for the synthesis of $\mathbf{2 4}$: MS (FAB) $m / z 533.2\left(\mathrm{M}+\mathrm{Na}^{+}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }=303 \mathrm{~nm}(\mathrm{pH} 7) ;$ IR $1605 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}$ +61.03 ($c 0.112$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.88\left(\mathrm{dd}, 1 \mathrm{H}, J=2.0,11.2 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.65(\mathrm{dd}, 1$ $\mathrm{H}, J=3.6,11.2 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}$), $4.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.76\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.44(\mathrm{dd}, 1 \mathrm{H}, J$ $=3.2,6.8 \mathrm{~Hz}, 3$ '-H), 7.04 (d, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-8$), $7.24-7.38\left(\mathrm{~m}, 10 \mathrm{H}\right.$, phenyl): ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) 37.2,44.1,45.1,66.1,75.3,79.6,128.5,128.7,128.9,129.7,129.74$, 140.1, 142.1, 142.6, 160.2, 160.6, 169.2; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ClN}_{6} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 56.41$; H, 4.54; N, 16.45; S, 6.28 Found C, 56.72; H, 4.85; N, 16.25; S, 6.21.

