Supporting Information

Analogues of Locked Nucleic Acid with three carbon 2´,4´-linkages; Synthesis by ring-closing metathesis and influence on nucleic acid duplex stability and structure

Nanna Albæk, Michael Petersen and Poul Nielsen*

Nucleic Acid Center,[†] Department of Chemistry, University of Southern Denmark, 5230 Odense M,

Denmark

pon@chem.sdu.dk

Experimental Section

General. Reactions were performed under an atmosphere of nitrogen when anhydrous solvents were used. Column chromatography was carried out on glass columns using silica gel 60 (0.040 – 0.063 mm). NMR spectra were recorded at 300 MHz for ¹H NMR, 75 MHz for ¹³C NMR and 121.5 MHz for ³¹P NMR. The δ values are in ppm relative to tetramethylsilane as internal standard (for ¹H and ¹³C NMR) and relative to 85% H₃PO₃ as external standard (for ³¹P NMR). Assignments of NMR spectra are based on 2D spectra and follow standard carbohydrate and nucleoside style; *i.e.*

the carbon atom next to a nucleobase is assigned C-1', etc. Compound names given in this section for the bicyclic compounds are given according to the von Baeyer nomenclature. HRMALDI and ESI mass spectra were recorded in positive-ion mode except for the oligonucleotides where these were recorded in negative-ion mode.

Synthesis of 2'-O-phenoxythiocarbonyl-3',5'-di-O-(tert-butyldimethylsilyl)uridine (11). To a stirred solution of 10 (6.401 g, 13.5 mmol) in anhydrous CH₃CN (100 mL) were added DMAP (7.719 g, 63.2mmol) and a solution of PhOC(S)Cl (2.0 mL, 14.4 mmol) in CH₃CN (20 mL). The reaction mixture was stirred for 17 hours and more PhOC(S)Cl (0.15 mL, 1.08 mmol) was added. After additional 2 hours the reaction was quenched with H₂O (100 mL) and extracted with EtOAc $(2 \times 200 \text{ mL})$. The combined extracts were washed with a saturated aqueous solution of NaHCO₃ (80 mL) and brine (80 mL) and then dried (MgSO₄). The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography (EtOAc – petroleum ether 1:4 v/v) to give the product **11** (6.488 g, 79%) as a colourless oil: R_f 0.6 (EtOAc); ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 8.56 \text{ (s, 1H, NH)}, 7.84 \text{ (d, } J = 8.2 \text{ Hz}, \text{H-6}), 7.40 \text{ (m, 2H, Ph)}, 7.26 \text{ (m, 1H, 1H)}$ Ph), 7.10 (m, 2H, Ph), 6.42 (d, 1H, J = 6.3 Hz, H-1[']), 5.74 (dd, 1H, J = 2.2 Hz, J = 8.2 Hz, H-5), 5.66 (dd, 1H, *J* = 5.2 Hz, *J* = 6.3 Hz, H-2[^]), 4.61 (dd, 1H, *J* = 2.5 Hz, *J* = 5.2 Hz, H-3[^]), 4.15 (m, 1H, H-4[']), 3.94 (dd, 1H, J = 2.0 Hz, J = 11.5 Hz, H-5[']), 3.77 (dd, 1H, J = 1.6 Hz, J = 11.5 Hz, H-5'), 0,95 (s, 9H, SiC(CH₃)₃), 0.94 (s, 9H, SiC(CH₃)₃), 0,15 (s, 3H, SiCH₃), 0.14 (s, 3H, SiCH₃), 0.13 (s, 3H, SiCH₃), 0.12 (s, 3H, SiCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 194.3 (CS), 162.8 (C-4), 153.4 (Ph), 150.1 (C-2), 140.0 (C-6), 129.5 (Ph), 126.7 (Ph), 121.7 (Ph), 103.0 (C-5), 86.8 (C-4²), 85.6 (C-1[']), 82.9 (C-2[']), 70.4 (C-3[']), 63.0 (C-5[']), 26.0 (C(CH₃)₃), 25.7(C(CH₃)₃), 18.4 (C(CH₃)₃), 18.1 (C(CH₃)₃), -4.7 (CH₃Si), -4.9 (CH₃Si), -5.4 (CH₃Si), -5.6 (CH₃Si); HRMALDI MS m/z (631.2274 $[M + Na]^+$, $C_{28}H_{44}O_7N_2Si_2S-Na^+$ calcd 631.2300).

Synthesis of 2'-deoxy-2'-C-allyl-3',5'-di-O-(tert-butyldimethylsilyl)uridine (12). To a stirred solution of **11** (2.538 g, 4.17 mmol) in anhydrous toluene (100 mL) was added allyltributyltin (6.5 mL, 21.0 mmol). N₂ was continuously bobbled through the reaction mixture and after 45 min, a suspension of AIBN (0.142 g, 0.86 mmol) in anhydrous toluene (5 mL) was added slowly. The reaction mixture was stirred at reflux for 3 hours, and then the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc - petroleum ether 1:4 v/v) to give the product 12 (1.341 g, 65%) as a colourless oil: R_f 0.4 (EtOAc - petroleum ether 1:1); (Found: C, 57.98; H, 9.17; N, 5.46. C₂₄H₄₄O₅N₂Si₂ requires C, 58.02; H, 8.93; N, 5.64%); ¹H NMR (300 MHz, CDCl₃) δ 8.57 (s, 1H, NH), 7.81 (d, 1H, *J* = 8.4 Hz, H-6), 6.09 (d, 1H, *J* = 8.4 Hz, H-1[^]), 5.71-5.61 (m, 2H, H-5, CH=CH₂), 5.08-4.97 (m, 2H, CH=CH₂), 4.29 (d, 1H, J = 5.3 Hz, H-3'), 3.98 (m, 1H, H-4'), 3.84 (dd, 1H, J = 2.6 Hz, J = 11.4 Hz, H-5'), 3.74 (dd, 1H, J = 2.0 Hz, J = 10.4 Hz, H=5'), 3.74 (dd, 1H, J = 2.0 Hz, J = 10.4 Hz, H=5'), 3.74 (dd, 2H) 11.4 Hz, H-5[']), 2.43 (m, 1H, CH₂CH=CH₂), 2.28-2.05 (m, 2H, H-2['], CH₂CH=CH₂), 0,93 (s, 9H, SiC(CH₃)₃), 0.92 (s, 9H, SiC(CH₃)₃), 0.11 (s, 6H, SiCH₃), 0.08 (s, 3H, SiCH₃), 0.07 (s, 3H, SiCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 163.1 (C-4), 150.5 (C-2), 140.3 (C-6), 135.2 (CH=CH₂), 116.5 (CH=CH₂), 102.6 (C-5), 88.3, 87.4 (C-1', C-4'), 73.9 (C-3'), 63.7 (C-5'), 49.6 (C-2'), 28.3 (CH₂CH=CH₂), 25.8 (C(CH₃)₃), 25.7(C(CH₃)₃), 18.3 (C(CH₃)₃), 18.0 (C(CH₃)₃), -4.4 (CH₃Si), -4.9 (CH₃Si), -5.6 (CH₃Si), -5.6 (CH₃Si); HRESI MS m/z (519.2659 [M + Na]⁺, C₂₄H₄₄O₅N₂Si₂-Na⁺ calcd 519.2681).

Reference

Tronchet, J. M. J.; Grand, E.; Zsely, M.; Giovannini, R.; Geoffroy, M. *Carbohydrate Lett.* **1998**, *3*, 161-168.