Efficient trans-Selectivity in the Cyclocondensation of (S)-2-[2(p-Tolylsulfinyl)phenyl]acetaldehyde with Activated Dienes Catalyzed by $\mathrm{Yb}(\mathrm{OTf})_{3}$.

José L. García Ruano, * M. Ángeles Fernández-Ibáñez, M. Carmen Maestro. * Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, SPAIN. joseluis.garcia.ruano@uam.es; carmen.maestro@uam.es

Supporting Information

Table of Contents

S1 Table of contents
S2 General Experimental Methods. Data of compounds 12 and 13
S3 Data of compounds 14, 15, 16 and 17.
S4 Data of compounds 18 and 19.
S5 ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2.
S6 ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of $\mathbf{2 + 3}$ and ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$.
S7 ${ }^{13} \mathrm{C}$ NMR spectrum of 6 and ${ }^{1} \mathrm{H}$ NMR of the mixture of $\mathbf{6 + 7}$.
S8 ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 9 .
S9 ${ }^{1} \mathrm{H}$ NMR spectrum of the mixtures $\mathbf{9}+\mathbf{1 0}$ and ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}+\mathbf{1 3}$
S10 ${ }^{1} \mathrm{H}$ NMR spectrum of the mixtures of $\mathbf{1 4 + 1 5}$ and ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6 + 1 7}$.
S11 ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of $\mathbf{1 8 + 1 9}$ and ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0}$.
S12 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 20 and ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0}+\mathbf{2 1}$.
S13 ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 22.
S14 ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 23
S15 X ray structures of compounds $\mathbf{2}$ and $\mathbf{9}$.
S16 ${ }^{1} \mathrm{H}$ NMR data used for configurational assignment of compound 20
S17 ${ }^{1}$ H NMR data used for configurational assignment of compound $\mathbf{2 2}$

General Experimental Methods

Unless stated otherwise, NMR spectra were recorded in CDCl_{3} solutions at 300 and 75 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively (J values are given in hertz). Melting points were measured in open capillary tubes and are uncorrected. Mass spectra (MS) were determined by FAB^{+}(fast atom bombardment), ES^{+}(electrospray; $\mathrm{MeOH}+0.1$ formic acid) or EI^{+}(electron impact; 70 eV). De's were evaluated by integration of wellseparated signals of the NMR spectra or by chiral HPLC (retention times in minutes). HDA reactions were carried out under argon atmosphere in anhydrous solvents. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$. Flash-column chromatography was performed using silica gel (230-400 mesh). Dienes 5, $\mathbf{8}$ and $\mathbf{1 1}$ were synthesized according literature procedures. ${ }^{1}$

Mukaiyama adducts from 1 and Danishefsky's diene:

A 88:12 mixture of $\mathbf{1 2}$ and $\mathbf{1 3}$ was obtained from Danishefsky's diene following the general procedure at $-40^{\circ} \mathrm{C}$ for 5 min , when the reaction was quenched with water. The residue was purified by flash chromatography (ethyl acetate-hexane, 3:1). Combined yield 72%. White solid. They could not be isolated and were characterized from the above mixture. ${ }^{1} \mathrm{H}$-NMR: $7.82[\mathrm{~m}, 1 \mathrm{H}(\mathbf{1 2})+1 \mathrm{H}(\mathbf{1 3})], 7.59-7.22[\mathrm{~m}, 8 \mathrm{H}(\mathbf{1 2})+8 \mathrm{H}$ (13)], $5.57[\mathrm{~d}, J 13.3 \mathrm{~Hz}, 1 \mathrm{H}(\mathbf{1 3})], 5.52[\mathrm{~d}, J 12.9 \mathrm{~Hz}, 1 \mathrm{H}(\mathbf{1 2})], 4.26[\mathrm{~m}, 1 \mathrm{H}(\mathbf{1 2})+1 \mathrm{H}$ (13)], $3.70[\mathrm{~s}, 3 \mathrm{H}(\mathbf{1 2})+3 \mathrm{H}(\mathbf{1 3})], 3.00[\mathrm{dd}, J 14.0$ and $6.5 \mathrm{~Hz}, 1 \mathrm{H}(\mathbf{1 2})+1 \mathrm{H}(\mathbf{1 3})], 2.91$ [dd, $J 14.5$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}(\mathbf{1 2})+1 \mathrm{H}(\mathbf{1 3})], 2.60[\mathrm{dd}, J 16.7$ and $3.8 \mathrm{~Hz}, 1 \mathrm{H}(\mathbf{1 2})+1 \mathrm{H}$ (13)], 2.48 [dd, $J 16.7$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}(\mathbf{1 2})+1 \mathrm{H}(\mathbf{1 3})], 2.35[\mathrm{~s}, 3 \mathrm{H}(\mathbf{1 2})+3 \mathrm{H}(\mathbf{1 3})] . \mathrm{MS}$

[^0]$\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}: 357$ [M-1] (0.2), 341 (1), 327 (7), 326 (6), 309 (61), 214 (90), 113 (100), 91 (50). HRMS (EI $)$ [M-17]: calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}$: 341.1211; found: 341.1200.

Mukaiyama adducts from 1 and diene 8:

A 90:10 mixture of $\mathbf{1 4}$ and $\mathbf{1 5}$ was obtained from diene $\mathbf{8}$ at $-40^{\circ} \mathrm{C}$ for 3 h , following the general procedure in the presence of MS $4 \AA$, when the reaction was quenched with water. The residue was purified by flash column chromatography (ethyl acetate-hexane, 1:1) to afford a mixture of diastereoisomers 14 and 15 as a (Combined yield: 51\%). White solid. They were characterized from the corresponding mixture. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz): 7.76 [m, 1H (14) $+1 \mathrm{H}(\mathbf{1 5})], 7.46-7.33$ [m, 4H (14) $+4 \mathrm{H}(\mathbf{1 5})], 7.27-7.21[m$, $4 \mathrm{H}(\mathbf{1 4})+4 \mathrm{H}(\mathbf{1 5})], 3.89-3.86[\mathrm{~m}, 1 \mathrm{H}(\mathbf{1 4})+1 \mathrm{H}(\mathbf{1 5})], 3.87[\mathrm{~s}, 3 \mathrm{H}(\mathbf{1 4})], 3.86[\mathrm{~s}, 3 \mathrm{H}$ (15)], $3.04-2.80[\mathrm{~m}, 3 \mathrm{H}(\mathbf{1 4})+3 \mathrm{H}(\mathbf{1 5})], 2.35[\mathrm{~s}, 3 \mathrm{H}(\mathbf{1 4})+3 \mathrm{H}(\mathbf{1 5})], 1.69[\mathrm{~s}, 3 \mathrm{H}(\mathbf{1 4})]$, 1.67 [s, $3 \mathrm{H}(\mathbf{1 5})], 1.22[\mathrm{~d}, J 7.5 \mathrm{~Hz}, 3 \mathrm{H}(\mathbf{1 4})], 1.18[\mathrm{~d}, J 7.0 \mathrm{~Hz}, 3 \mathrm{H}(\mathbf{1 5})] . \mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}:$ 385 (0.6) [M-1], 354 (9), 337 (80), 253 (27), 241 (44), 211 (100), 141 (46), 91 (46). HRMS (EI ${ }^{+}$[M-1]: calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~S}$: 385.1474; found: 385.1466.

Sulfinyl group oxidation of HDA adducts 9 and 10 :
To a 60:40 mixture of diastereoisomers $\mathbf{9}$ and $\mathbf{1 0}(17 \mathrm{mg}, 0.05 \mathrm{mmol})$ respectively in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, cooled at $0{ }^{\circ} \mathrm{C}$ was added a solution of $m-\mathrm{CPBA}(17 \mathrm{mg} 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The reaction mixture was stirred for 1 h , starting from $0^{\circ} \mathrm{C}$ to room temperature. Then, the mixture was treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \mathrm{~mL})$. The organic layer was separated, washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed under reduced pressure. The resulting 60:40 mixture of sulfones $\mathbf{1 6}$ and 17 was characterized without further purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz): 8.18-7.11 [m, $1 \mathrm{H}(\mathbf{1 6})+1 \mathrm{H}(\mathbf{1 7})], 7.69$ and 7.29 [sistema AA 'BB', 4H (16) $+4 \mathrm{H}(\mathbf{1 7})], 7.57-7.36[\mathrm{~m}, 3 \mathrm{H}(\mathbf{1 6})+3 \mathrm{H}(\mathbf{1 7})], 7.06[\mathrm{~s}, 1 \mathrm{H}(\mathbf{1 6})], 7.01(\mathrm{~s}, 1 \mathrm{H},(\mathbf{1 6})], 4.35-$ $4.24[\mathrm{~m}, 1 \mathrm{H}(\mathbf{1 6})+1 \mathrm{H}(\mathbf{1 7})], 3.39[\mathrm{dd}, J 14.5$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H},(\mathbf{1 6})], 3.21[\mathrm{dd}, J 14.5$ and
$3.2 \mathrm{~Hz}, 1 \mathrm{H}(\mathbf{1 7})], 3.12-2.94[\mathrm{~m}, 1 \mathrm{H}(\mathbf{1 6})+1 \mathrm{H}(\mathbf{1 7})], 2.46-2.34[\mathrm{~m}, 1 \mathrm{H}(\mathbf{1 6})+1 \mathrm{H}(\mathbf{1 7})]$, 2.39 [s, 3H (16) + 3H(17)], 1.62 [s, 3H(16)], 1.60 [s, 3H(17)], 1.22 [d, J $7.0 \mathrm{~Hz}, 3 \mathrm{H}$ (16)], $1.11[\mathrm{~d}, J 7.5 \mathrm{~Hz}, 3 \mathrm{H}(\mathbf{1 7})]$. HRMS $\left(\mathrm{ES}^{+}\right)[\mathrm{M}+1]:$ calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~S}: 371.1311$; found: 371.1320 .

Hydroxy group oxidation of Mukaiyama adducts 14 and 15:

A mixture of PCC ($11 \mathrm{mg}, 0.05 \mathrm{mmol}$) and Celite (10 mg) was added, at room temperature, to a 90:10 mixture of $\mathbf{1 4}$ and $\mathbf{1 5}(10 \mathrm{mg}, 0.03 \mathrm{mmol})$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The mixture was stirred for 3 h at the same temperature and then filtered through Celite. The solvent was removed under vacuum. The residue was purified by flash column chromatography (ethyl acetate-hexane, 1:1) to yield a 82:18 mixture of $\mathbf{1 8}$ and $\mathbf{1 9}$ as a white solid (combined yield 31\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz): 7.88-7.85 [m, $1 \mathrm{H}(\mathbf{1 8})+1 \mathrm{H}$ (19)], 7.72-7.64 [m, 1H(18) $+1 \mathrm{H}(\mathbf{1 9})], 7.57-7.34[\mathrm{~m}, 3 \mathrm{H}(\mathbf{1 8})+3 \mathrm{H}(\mathbf{1 9})], 7.27-7.10$ $[\mathrm{m}, 3 \mathrm{H}(\mathbf{1 8})+3 \mathrm{H}(\mathbf{1 9})], 6.19[\mathrm{~s}, 1 \mathrm{H}(\mathbf{1 8}$ or $\mathbf{1 9})], 6.16[\mathrm{~s}, 1 \mathrm{H}(\mathbf{1 9}$ or $\mathbf{1 8})], 4.18-3.78[\mathrm{~m}$, $3 \mathrm{H}(\mathbf{1 8})+3 \mathrm{H}(\mathbf{1 9})], 3.89[\mathrm{~s}, 3 \mathrm{H}(\mathbf{1 9})], 3.86[\mathrm{~s}, 3 \mathrm{H}(\mathbf{1 8})], 2.37[\mathrm{~s}, 3 \mathrm{H}(\mathbf{1 8})+3 \mathrm{H}(\mathbf{1 9})]$, $1.73[\mathrm{~s}, 3 \mathrm{H}], 1.70[\mathrm{~s}, 3 \mathrm{H}], 1.35[\mathrm{~d}, J 7.0 \mathrm{~Hz}, 3 \mathrm{H}(\mathbf{1 8})], 1.34[\mathrm{~d}, J 7.0 \mathrm{~Hz}, 3 \mathrm{H}]$.

Configurational assignment of 20:

Representative ${ }^{1} \mathrm{H}$-NMR signals from $\mathbf{2 0}$:

Entry	proton	$\delta(\mathrm{ppm})$	Multiplicity	$J(\mathrm{~Hz})$
1	H_{6}	3.94	ddd	$11.9,4.7,1.7$
2	H_{4}	3.65	tt	$10.9,4.5$
3	H_{2}	3.41	dtd	$11.1,6.4,1.9$
4	H_{6}	3.29	dt	$12.4,2.1$
5	H_{7}	2.87	dd	$13.6,6.6$
6	$\mathrm{H}_{7^{\prime}}$	2.62	dd	$13.7,7.0$

Trans coupling constants were observed for $\mathrm{H}_{2}(11.1 \mathrm{~Hz})$ and $\mathrm{H}_{4}(10.9 \mathrm{~Hz})$, showing their axial arrangement in alcohol 20. Therefore, the compound presents $(2 R, 4 R)$ configuration.

Configurational assignment of 22:

22
Representative ${ }^{1} \mathrm{H}$-NMR signals from $\mathbf{2 2}$:

Entry	proton	$\delta(\mathrm{ppm})$	Multiplicity	$J(\mathrm{~Hz})$
1	$\mathrm{H}_{4 \mathrm{ax}}$	3.79	dt	$11.3,5.0$
2	H_{6}	3.72	dd	$11.5,1.6$
3	H_{6}	3.42	dd	$11.5,2.2$
4	H_{2}	3.42	dtd	$13.2,6.6,2.2$
5	H_{7}	2.87	dd	$13.7,6.3$
6	H_{7}	2.64	dd	$13.7,6.6$
8	$\mathrm{H}_{3 \mathrm{ec}}$	1.56	dddd	$12.6,4.7,2.2,0.9$
9	$\mathrm{H}_{3 \mathrm{ax}}$	1.36	q	11.0
10	CH_{3}	0.97	d	6.9

H_{6} and H_{6} protons appear as double doublets, with a high coupling constant $(11.5 \mathrm{~Hz})$, related to their geminal relationship, and low coupling constants with $\mathrm{H}_{5}(1.6,2.2 \mathrm{~Hz}$, respectively), indicating the equatorial position of this proton. Then, methyl group adopts the axial arrangement. On the other hand, both H_{4} and H_{2} present a high constant, indicating that both protons are in axial position. Therefore, compound 22 presents ($2 R, 4 S, 5 R$) configuration.

[^0]: ${ }^{1}$ (a) Mikami, K.; Matsumoto, S.; Okubo, Y.; Fujitsuka, M.; Ito, O.; Suenobu, T.; Fukuzumi. S. J. Am . Chem. Soc. 2000, 122, 2236. (b) Danishefsky, S.; Yan, C.-F.; Singh, R. K.; Gammill, R. B.; McCurry, P. M.; Fritsch, N.; Clardy. J. J. Am. Chem. Soc. 1979, 101, 7001.

