Supplementary Information

"Phosphine Catalyzed Allylic Substitution of Morita-Baylis Hillman Acetates: Synthesis of *N*-Protected β-Aminophosphonic Acid Esters"

HaeII Park,^a Chang-Woo Cho,^b and Michael J. Krische^b*

^aCollege of Pharmacy Kangwon National University Chuncheon, 200-701 Republic of Korea

^bUniversity of Texas at Austin Department of Chemistry and Biochemistry Austin, TX 78712 USA

Table of Contents

I.	Experimental Section	S2
II.	Spectral data for new compounds	S3-S14

Experimental Section

General. All reactions were run under an atmosphere of argon, unless otherwise indicated. Anhydrous solvents were transferred by an oven-dried syringe. Flasks were flame-dried and cooled under a stream of nitrogen. 1,4-Dioxane was distilled from sodium and degassed with Ar prior to use. Chemical reagents were used without further purification, unless otherwise noted.

Analytical thin-layer chromatography (TLC) was carried out using 0.2-mm commercial silica gel plates. Preparative column chromatography employing silica gel was performed according to the method of Still.¹ Melting points were determined on a Thomas-Hoover melting point apparatus in open capillaries and are uncorrected. High-resolution mass spectra (HRMS) were reported as m/e (relative intensity). Accurate masses are reported for the molecular ion (M+1) or a suitable fragment ion.

Chemical Shifts of proton nuclear magnetic resonance (¹H NMR) spectra are reported in delta (δ) units, parts per million (ppm) downfield from trimethylsilane. Coupling constants are reported in Hertz (Hz). Chemical shifts of carbon-13 nuclear magnetic resonance (¹³C NMR) are reported in delta (δ) units, parts per million (ppm) relative to the center of the triplet at 77.00 ppm for deuteriochloroform. ¹³C NMR spectra were routinely run with broadbrand decoupling.

General procedure for the preparation of acetates 1b-6b: To an acetonitrile solution (0.2 M) of alcohol **1a** (1 mmol, 100 mol%) at ambient temperature was added acetic anhydride (1.2 mmol, 120 mol%) followed by ferric chloride (0.05 mmol, 5 mol%). The reaction vessel was allowed to stir for 3 h, at which point saturated aqueous NaHCO₃ solution was added until bubbling ceased. The reaction mixture was partitioned between diethyl ether and water. The aqueous layer was extracted with diethyl ether and the combined ethereal extracts were dried (MgSO₄), filtered and evaporated onto silica gel. Purification by silica gel column chromatography provides allylic acetate **1b**.

<u>General procedure for the preparation of 4,5-dichlorophthalimides 1c-6c</u>: To a reaction vessel charged with acetate **1b** (0.5 mmol, 100 mol%), 4,5-dichlorophthalimide (1.0 mmol, 200 mol%), and PPh₃ (0.1 mmol, 20 mol%) was added a dioxane (0.3 M). The reaction vessel was placed in a heating bath at 110 °C and was allowed to stir until complete consumption of **1b** was observed by TLC analysis, at which point the reaction mixture was evaporated onto silica gel. Purification by silica gel column chromatography provides phthalimide **1c**.

⁽¹⁾ Still, W. C.; Kahn, M; Mitra, A. J. Org. Chem. 1978, 43, 2923.

¹<u>H NMR (300 MHz, CDCl₃)</u> δ 7.36-7.30 (m, 5H), 6.47 (d, J = 7.2 Hz, 1H), 6.31 (d, J = 22.5 Hz, 1H), 6.10 (d, J = 45.3 Hz, 1H), 4.04-3.89 (m, 3H), 3.72-3.64 (m, 1H), 2.10 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 169.1, 140.0, 137.7, 137.2, 130.7, 130.6, 128.3, 128.2, 127.7, 73.9, 61.9, 61.7, 20.9, 16.1, 15.8

<u>**HRMS**</u> calcd for $C_{15}H_{22}O_5P$ [M+1] 313.1205, found 313.1201

FTIR (neat) 3018, 2399, 1739, 1523, 1424, 1371, 1215, 1025, 975, 928, 769, 669 cm⁻¹

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 8.23-8.20 (m, 2H), 7.58-7.56 (m, 2H), 6.54 (d, *J* = 8.0 Hz, 1H), 6.34 (d, *J* = 22.0 Hz, 1H), 6.14 (d, *J* = 44.8 Hz, 1H), 4.07-3.94 (m, 3H), 3.89-3.79 (m, 1H), 2.15 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.14 (t, *J* = 7.2 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 169.0, 147.7, 144.6, 139.3, 136.9, 131.5, 131.4, 128.5, 123.5, 73.0, 62.2, 62.1, 20.8, 16.1, 16.0

HRMS calcd for C₁₅H₂₁NO₇P [M+1] 358.1056, found 358.1057

FTIR (neat) 2983, 2927, 1747, 1523, 1348, 1225, 1024, 970, 856, 835 cm⁻¹

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.51-7.50 (m, 1H), 7.46-7.43 (m, 1H), 7.32-7.30 (m, 1H), 7.24-7.20 (m, 1H), 6.41 (d, *J* = 7.6 Hz, 1H), 6.0432 (d, *J* = 22.4 Hz, 1H), 6.11 (dt, *J* = 45.2, 1.2 Hz, 1H), 4.09-3.92 (m, 3H), 3.81-3.72 (m, 1H), 2.12 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.11 (t, *J* = 7.2 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃): δ 169.1, 139.8, 137.4, 131.6, 131.3, 130.8, 130.0, 126.7, 122.4, 73.4, 62.3, 62.1, 21.0, 16.3, 16.1

HRMS calcd for C₁₅H₂₁O₅PBr [M+1] 391.0310, found 391.0317

<u>FTIR (neat)</u>: 2982, 2929, 1747, 1572, 1476, 1429, 1370, 1227, 1194, 1024, 971, 802, 693 cm⁻¹

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 8.02 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 6.51 (d, *J* = 7.6 Hz, 1H), 6.33 (d, *J* = 22.4 Hz, 1H), 6.11 (d, *J* = 44.8 Hz, 1H), 4.07-3.93 (m, 3H), 3.91 (s, 3H), 3.81-3.71 (m, 1H), 2.13 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H), 0.871.10 (t, *J* = 7.2 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 169.4, 166.8, 142.6, 139.9, 137.6, 131.6, 131.5, 130.4, 129.8, 128.0, 73.8, 62.4, 62.2, 52.4, 21.2, 16.4, 16.3

HRMS calcd for C₁₇H₂₄O₇P [M+1] 371.1260, found 371.1264

<u>FTIR (neat)</u> 2984, 2929, 1746, 1723, 1612, 1437, 1371, 1282, 1228, 1110, 1021, 970, 810, 798, 769, 705 cm⁻¹

¹<u>H NMR (300 MHz, CDCl₃)</u> δ 8.55-8.47 (m, 2H), 7.66-7.62 (m, 1H), 7.25-7.21 (m, 1H), 6.40 (d, *J* = 7.8 Hz, 1H), 6.26 (d, *J* = 22.2 Hz, 1H), 6.10 (d, *J* = 45.0 Hz, 1H), 3.97-3.84 (m, 3H), 3.74-3.66 (m, 1H), 2.04 (s, 3H), 1.18 (t, *J* = 6.9 Hz, 3H), 1.00 (t, *J* = 6.9 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 168.8, 149.1, 148.8, 139.1, 136.7, 135.5, 130.7, 123.1, 71.7, 62.0, 61.8, 20.6, 15.9, 15.7

HRMS calcd for C₁₄H₂₁NO₅P [M+1] 314.1157, found 314.1157

<u>FTIR (neat)</u>: 3019, 2399, 1743, 1522, 1425, 1215, 1025, 929, 766, 669 cm⁻¹

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.46-7.45 (m, 1H), 7.40-7.38 (m, 1H), 6.47 (d, J = 7.5 Hz, 1H), 6.39-6.38 (m, 1H), 6.30 (d, J = 22.2 Hz, 1H), 6.16 (d, J = 45.3 Hz, 1H), 4.13-3.99 (m, 3H), 3.95-3.85 (m, 1H), 2.10 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H), 1.20 (t, J = 7.2 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 169.1, 143.1, 141.3, 139.6, 137.2, 130.7, 122.6, 66.5, 62.0, 61.9, 20.8, 16.0, 15.8

HRMS calcd for C₁₃H₂₀O₆P [M+1] 303.0998, found 303.0995

<u>FTIR (neat)</u>: 2984, 2932, 1746, 1503, 1370, 1160, 1023, 971, 798 cm⁻¹

¹<u>H NMR (300 MHz, CDCl₃)</u> δ 7.92 (s, 2H), 7.50-7.46 (m, 2H), 7.40-7.29 (m, 3H), 6.44 (dd, J = 22.2, 1.5 Hz, 1H), 6.22 (d, J = 6.3 Hz, 1H), 5.79 (dd, J = 45.9, 1.8 Hz, 1H), 4.11-3.92 (m, 4H), 1.26 (t, J = 6.9 Hz, 3H), 1.15 (t, J = 6.9 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 165.8, 138.9, 137.2, 135.7, 135.6, 134.9, 134.8, 131.0, 129.0, 128.7, 128.4, 125.3, 62.3, 62.2, 55.3, 16.2, 16.1

HRMS calcd for C₂₁H₂₁NO₅PCl₂ [M] 468.0534, found 468.0535

<u>FTIR (neat)</u> 3018, 2927, 1779, 1720, 1603, 1380, 1354, 1215, 1101, 1050, 1023, 971, 756, 668 cm⁻¹

<u>M.P.</u> 114~115 ℃

¹<u>H NMR (300 MHz, CDCl₃)</u> δ 8.19 (d, *J* = 8.7 Hz, 2H), 7.91 (s, 2H), 7.63 (d, *J* = 9.0 Hz, 2H), 6.43 (dd, *J* = 22.2, 1.5 Hz, 1H), 6.30 (d, *J* = 6.9 Hz, 1H), 5.72 (dd, *J* = 45.3, 1.8 Hz, 1H), 4.09-3.89 (m, 4H), 1.22 (t, *J* = 6.9 Hz, 3H), 1.14 (t, *J* = 6.9 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 165.5, 147.6, 142.7, 139.2, 136.6, 134.7, 134.2, 130.6, 130.0, 125.5, 123.7, 62.5, 62.4, 54.4, 16.1, 16.0

HRMS calcd for C₂₁H₂₀N₂O₇PCl₂ [M+1] 513.0385, found 513.0381

<u>FTIR (neat)</u> 2984, 2924, 1781, 1721, 1523, 1385, 1344, 1251, 1101, 1048, 1020, 969, 742 cm⁻¹

<u>**M.P.**</u> 144~145 °C

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.93 (s, 2H), 7.63-7.62 (m, 1H), 7.48-7.45 (m, 1H), 7.43-7.41 (m, 1H), 7.26-7.22 (m, 1H), 6.44 (dd, J = 22.0, 1.6 Hz, 1H), 6.18 (dt, J = 6.4, 2.0 Hz, 1H), 5.80 (dd, J = 46.0, 2.0 Hz, 1H), 4.08-3.93 (m, 4H), 1.26 (t, J = 7.2 Hz, 3H), 1.15 (t, J = 7.2 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 165.7, 139.1, 138.0, 136.9, 134.8, 134.6, 132.0, 131.6, 130.9, 130.2, 127.7, 125.4, 122.7, 62.4, 62.3, 54.7, 16.1, 16.0

HRMS calcd for C₂₁H₂₀NO₅PCl₂Br [M+1] 545.9640, found 545.9639

<u>FTIR (neat)</u> 2982, 2926, 1780, 1721, 1570, 1475, 1375, 1350, 1252, 1101, 1050, 1021, 968, 772, 744 cm⁻¹

<u>**M.P.**</u> 119~120 °C

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 8.03 (d, J = 8.0 Hz, 2H), 7.94 (s, 2H), 7.54 (d, J = 8.0 Hz, 2H), 6.45 (d, J = 22.0, 1H), 6.29 (d, J = 6.4 Hz, 1H), 5.77 (dt, J = 45.6, 1.6 Hz, 1H), 4.10-3.94 (m, 4H), 3.91 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.16 (t, J = 7.2 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 166.2, 165.6, 140.5, 139.0, 136.8, 134.8, 134.4, 130.8, 130.0, 129.8, 128.9, 125.3, 62.3, 62.2, 54.8, 52.0, 16.1, 16.0

HRMS calcd for C₂₃H₂₃NO₇PCl₂ [M+1] 526.0589, found 526.0591

FTIR (neat) 2984, 2925, 1780, 1721, 1612, 1436, 1375, 1351, 1280, 1253, 1102, 1049, 1020, 966, 743 cm⁻¹

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 8.69-8.59 (m, 2H), 7.93 (s, 2H), 7.92-7.90 (m, 1H), 7.34-7.31 (m, 1H), 6.45 (dd, *J* = 22.0, 1.6 Hz, 1H), 6.26 (d, *J* = 6.4 Hz, 1H), 5.79 (dd, *J* = 45.2, 1.6 Hz, 1H), 4.08-3.92 (m, 4H), 1.25 (t, *J* = 7.2 Hz, 3H), 1.17 (t, *J* = 7.2 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 165.5, 150.0, 149.5, 139.2, 137.2, 136.8, 134.5, 134.3, 130.7, 125.4, 123.5, 62.5, 62.4, 53.0, 16.1, 16.0

<u>**HRMS**</u> calcd. for $C_{20}H_{20}N_2O_5PCl_2$ [M+1] 469.0487, found 469.0487

<u>FTIR (neat)</u> 3018, 2399, 1781, 1722, 1520, 1429, 1378, 1355, 1214, 1100, 1049, 1025, 973, 929, 758, 669 cm⁻¹

<u>**M.P.**</u> 128~129 °C

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.92 (s, 2H), 7.53 (s, 1H), 7.42 (t, *J* = 1.6 Hz, 1H), 6.59 (d, *J* = 1.6 Hz, 1H), 6.41 (dd, *J* = 21.6, 1.6 Hz, 1H), 6.17-6.15 (m, 1H), 6.04 (dd, *J* = 45.2, 2.0 Hz, 1H), 4.13-3.88 (m, 4H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.12 (t, *J* = 7.2 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 169.1, 143.1, 141.3, 139.6, 137.2, 130.7, 122.6, 109.3, 66.5, 66.3, 62.0, 61.9, 20.8, 16.0, 15.8

HRMS calcd. for C₁₉H₁₉NO₆PCl₂ [M+1] 458.0327, found 458.0323

<u>FTIR (neat)</u> 2982, 2925, 1780, 1720, 1614, 1386, 1365, 1349, 1253, 1161, 1101, 1050, 1022, 967, 778, 742 cm⁻¹

<u>**M.P.**</u> 124~126 °C

