Supporting Information

(S, S)-(+)-PSEUDOEPHEDRINE AS CHIRAL AUXILIARY IN ASYMMETRIC CONJUGATE ADDITION AND TANDEM CONJUGATE ADDITION/ $\alpha-$ alkylation reactions

Efraim Reyes, Jose L. Vicario, Luisa Carrillo, Dolores Badía,* Uxue Uria and Ainara Iza.1.- General methods S2
2.- Diastereoselective conjugate addition. S3
3.- Hydrolysis. Synthesis of carboxylic acids 4b-k, 5a, 5e, 5i, 5m, 5r and 5s S10
4.- LAB-mediated reduction. Synthesis of alcohols $\mathbf{8 b}-\mathbf{k}$ S16
5.- Synthesis of (S)-14-methyloctadec-1-ene S20
6.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of amides $\mathbf{2 a}-\mathrm{k}$. S22
7.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of mesylate $\mathbf{1 1 a}$ S33
8.- ${ }^{1} \mathrm{H}$-NMR spectrum of (+)-(S)-14-Methyloctadec-1-ene (12a) S34

1. General methods:

Melting points were determined in unsealed capillary tubes and are uncorrected. IR spectra were obtained on KBr pellets (solids) or CHCl_{3} solution (oils). NMR spectra were recorded at $20-25^{\circ} \mathrm{C}$, running at 250 MHz for ${ }^{1} \mathrm{H}$ and 62.8 MHz for ${ }^{13} \mathrm{C}$ in CDCl_{3} solution and resonances are reported in ppm relative to tetramethylsilane unless otherwise stated. Mass spectra were recorded under electron impact at 70 eV . TLC was carried out with 0.2 mm . thick silica gel plates (Merck Kiesegel GF_{254}) and visualization was accomplished by UV light or by spraying with phosphomolybdic acid. Flash column chromatography on silica gel was performed with Merck Kiesegel 60 (230-400 mesh). All solvents used in reactions were dried and purified according to standard procedures. All air- or moisture-sensitive reactions were performed under argon. The glassware was oven dried $\left(140^{\circ} \mathrm{C}\right)$ overnight and purged with argon prior to use. Organolithium reagents were titrated periodically with diphenylacetic acid. All other reagents were used as purchased. Diastereomeric ratios (dr) were determined by HPLC under conditions specified in each case. The characterization of amides 3a-s, indanone 7a and alcohols 9 a-s was reported in our preliminary communication. ${ }^{1}$

[^0]
2.- Diastereoselective conjugate addition.

General procedure:

A solution of organolithium reagent (4.10 mmol) was carefully added to a suspension of the corresponding enamide $\mathbf{1 a - e}(2.00 \mathrm{mmol})$ and $\mathrm{LiCl}(10.0 \mathrm{mmol})$ in dry THF $(60 \mathrm{~mL})$ at $-105^{\circ} \mathrm{C}$ and the reaction was stirred at this temperature for $10-30$ \min (TLC monitoring). The mixture was allowed to warm to r.t. and it was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 30 ml) and the combined organic fractions were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed in vacuo affording the wanted amides after flash column chromatography purification.
(+)-(1'S,2'S,3R)-N-(2'-hydroxy-1'-methylethyl-2'-phenyl)-N,3,4-trimethylpentanamide (2b).

Amide $\mathbf{2 b}(0.44 \mathrm{~g}, 1.61 \mathrm{mmol})$ was prepared according to the general procedure starting from enamide $\mathbf{1 a}(0.46 \mathrm{~g}, 2.00 \mathrm{mmol}), \mathrm{LiCl}(0.42 \mathrm{~g}$, $10.00 \mathrm{mmol})$ and ${ }^{\mathrm{i}} \operatorname{PrLi}$ (6.3 mL of a 0.7 M solution in hexanes). HPLC analysis of the crude reaction mixture (Chiracel OD column, hexanes/iso-propanol 98:2, flow rate $0.85 \mathrm{~mL} / \mathrm{min}$) indicated a $89: 11$ diastereomeric ratio: t_{R} for the major isomer: 35.77 min . t_{R} for the minor isomer: 41.74 min . Amide 2b was isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 1:1). Yield: $80 \% .[\alpha]_{\mathrm{D}}{ }^{20}=+95.4\left(c=0.23, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm})$ (4:1 rotamer ratio; indicates minor rotamer resonances): $0.79(\mathrm{~m}, 9 \mathrm{H}) ; 0.92^{*}(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.7 \mathrm{~Hz}) ; 1.03(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}) ; 1.53(\mathrm{~m}, 1 \mathrm{H}) ; 2.01(\mathrm{~m}, 1 \mathrm{H}) ; 2.19(\mathrm{~m}, 1 \mathrm{H}) ; 2.26(\mathrm{~m}$, 1H); 2.76 (s, 3H); 2.84* (s, 3H); 3.76* (m, 1H), $3.96(\mathrm{~m}, 1 \mathrm{H}) ; 4.52(\mathrm{~m}, 2 \mathrm{H}) ; 4.54^{*}$ (bs, $1 \mathrm{H}) ; 7.28(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm})$ ($4: 1$ rotamer ratio; indicates minor rotamer resonances): $14.3 ; 15.4 ; 15.5^{*} ; 17.9 ; 18.0^{*} ; 19.8 ; 20.0^{*} ; 26.8 ; 31.8 ; 31.9^{*} ; 35.3 ; 35.5^{*}$; 37.8*; 38.4; 58.1*; 58.2; 75.1*; 76.1; 126.2; 126.7*; 127.3; 127.8*; 128.0; 128.4*; 141.7*; 142.3; 173.9*; 175.0. IR (CHCl_{3}): $3380(\mathrm{OH}) ; 1618(\mathrm{C}=\mathrm{O}) . \mathrm{MS}(\mathrm{EI}) m / z$ (Rel. Int.): 259 ($\left.\mathrm{M}^{+}-18,9\right), 244$ (6), 216 (85); 170 (11), 148 (100), 117 (12); 91 (11), 69 (33), 58 (91), 56 (13). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{2}$: C, 73.61; H, 9.81; N, 5.05. Found: C, 73.77; H, 9.90; N, 5.01.
(+)-(1'S,2'S,3R)-N-(2'-hydroxy-1'-methylethyl-2'-phenyl)-N,3,4,4-tetramethylpentanamide (2c).

Amide 2c $(0.30 \mathrm{~g}, \quad 0.16 \mathrm{mmol})$ was prepared

according to the general procedure starting from enamide $1 \mathbf{1 a}(0.46 \mathrm{~g}, 2.00 \mathrm{mmol}), \mathrm{LiCl}(0.42 \mathrm{~g}$, $10.00 \mathrm{mmol})$ and ${ }^{\mathrm{t}} \mathrm{BuLi}(2.4 \mathrm{~mL}$ of a 1.5 M solution in hexanes). HPLC analysis of the crude reaction mixture (Chiracel OD column, hexanes/iso-propanol 95:5, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$) indicated a 90:10 diastereomeric ratio: t_{R} for the major isomer: $13.99 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}$ for the minor isomer: 12.21 min . Amide 2c was isolated as a white solid after flash column chromatography purification (hexanes/AcOEt 1:1). Yield: 52\%. M.p. $82-84^{\circ} \mathrm{C}$ (hexanes/AcOEt). $[\alpha]_{\mathrm{D}}{ }^{20}=+106.5$ ($c=0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$-NMR (δ, ppm) ($3: 1$ rotamer ratio; indicates minor rotamer resonances): $0.77^{*}(\mathrm{~s}, 9 \mathrm{H}) ; 0.81(\mathrm{~s}, 9 \mathrm{H}) ; 0.94^{*}(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ; 1.02(\mathrm{~d}, 3 \mathrm{H}, J=6.7$ $\mathrm{Hz}) ; 1.70(\mathrm{~m}, 1 \mathrm{H}) ; 1.85(\mathrm{~m}, 1 \mathrm{H}) ; 2.33(\mathrm{~m}, 1 \mathrm{H}) ; 2.75(\mathrm{~s}, 3 \mathrm{H}) ; 2.79^{*}(\mathrm{~s}, 3 \mathrm{H}) ; 4.00(\mathrm{~m}$, 1H); $4.47(\mathrm{~m}, 1 \mathrm{H}) ; 4.75(\mathrm{bs}, 1 \mathrm{H}) ; 7.27(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm})$ (3:1 rotamer ratio; indicates minor rotamer resonances): 14.2; 14.4; 14.7*; 26.9; 27.0*; 30.5; 30.8*; 31.3*; 31.7; 32.5; 36.3*; 39.3; 39.4*; 57.9*; 58.1; 75.8; 76.4*; 126.1; 126.5*; 127.1; 127.9*; 128.1; 128.3*; 142.2*; 142.3; 174.2*; 175.2. IR (KBr): $3380(\mathrm{OH}) ; 1617(\mathrm{C}=\mathrm{O}) . \mathrm{MS}$ (EI) m / z (Rel. Int.): 273 ($\mathrm{M}^{+}-18,7$), 215 (60), 170 (23), 148 (100), 118 (9); 91 (7), 69 (54), 63 (20); 58 (84), 56 (10). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{2}$: C, 74.18; H, 10.03; N, 4.81. Found: C, 74.03; H, 9.89; N, 4.74.

(+)-(1'S,2'S,3R)-N-(2'-hydroxy-1'-methylethyl-2'-phenyl)- N-methyl-3-phenyl-

butanamide (2d).

Amide $2 \mathrm{~d} \quad(0.63 \mathrm{~g}, \quad 1.72 \mathrm{mmol})$ was prepared
 according to the general procedure starting from enamide $1 \mathrm{a}(0.46 \mathrm{~g}, 2.00 \mathrm{mmol}), \mathrm{LiCl}(0.42 \mathrm{~g}$, $10.00 \mathrm{mmol})$ and $\mathrm{PhLi}(4.4 \mathrm{~mL}$ of a 1.0 M solution in dibutyl ether). HPLC analysis of the crude reaction mixture (Chiracel OD column, hexanes/iso-propanol 95:5, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$) indicated a $94: 6$ diastereomeric ratio: t_{R} for the major isomer: 34.42 min . t_{R} for the minor isomer: 30.34 min . Amide 2d was isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 1:1). Yield: $86 \% .[\alpha]_{\mathrm{D}}{ }^{20}=+66.5\left(c=0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm})$
(4:1 rotamer ratio; indicates minor rotamer resonances): $0.97(\mathrm{~d}, 3 \mathrm{H}, J=5.5 \mathrm{~Hz}) ; 1.31$ (d, $3 \mathrm{H}, J=6.7 \mathrm{~Hz}) ; 2.54(\mathrm{~m}, 2 \mathrm{H}) ; 2.71(\mathrm{~s}, 3 \mathrm{H}) ; 2.89^{*}(\mathrm{~s}, 3 \mathrm{H}) ; 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.40^{*}(\mathrm{~m}, 1 \mathrm{H})$; $4.53(\mathrm{~m} \mathrm{1H}) ; 4.51-4.58(\mathrm{bs}, 2 \mathrm{H}) ; 7.31(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm})$ (4:1 rotamer ratio; indicates minor rotamer resonances): 14.1; 15.2*; 21.4; 21.5*; 26.7, 32.0*; 36.1*; 36.3; 41.4*; 42.3; 57.3*; 58.1; 74.9*; 75.9; 125.8*; 126.0; 126.2; 126.6; 126.7; 127.3*; 127.8*; 128.0; 128.2; 128.4*; 141.4*; 142.1; 146.0; 146.6*; 172.4*; 173.6. IR (CHCl_{3}): 3381 (OH); 1617 (C=O). MS (EI) m / z (Rel. Int.): 311 ($\mathrm{M}^{+}-18,10$), 202 (31), 160 (10), 147 (100), 132 (11); 105 (44); 91 (17), 58 (28). Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}$: C, 77.14; H, 8.09; N, 4.50. Found: C, 77.19; H, 8.01; N, 4.51.

(+)-(1'S,2'S,3S)-3-ethyl-N-(2'-hydroxy-1'-methylethyl-2'-phenyl)-N-methyl-

 heptanamide (2e).

Amide $2 \mathrm{e}(0.45 \mathrm{~g}, 1.46 \mathrm{mmol})$ was prepared according to the general procedure starting from enamide $1 \mathrm{~b}(0.49 \mathrm{~g}, 2.00 \mathrm{mmol}), \mathrm{LiCl}(0.42 \mathrm{~g}$, 10.00 mmol) and ${ }^{\mathrm{n}} \mathrm{BuLi}(5.5 \mathrm{~mL}$ of a 0.8 M solution in hexanes). HPLC analysis of the crude reaction mixture (Chiracel OD column, hexanes/iso-propanol 95:5, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$) indicated a $98: 2$ diastereomeric ratio: t_{R} for the major isomer: $16.42 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}$ for the minor isomer: 25.16 \min. Amide 2 e was isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 1:1). Yield: $73 \% .[\alpha]_{\mathrm{D}}{ }^{20}=+82.7\left(c=0.53, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-$ NMR (δ, ppm) (3:1 rotamer ratio; indicates minor rotamer resonances): $0.87(\mathrm{~m}, 6 \mathrm{H})$; $0.94 *$ (d, 3H, $J=6.7 \mathrm{~Hz}$); 1.03 (d, 3H, $J=6.0 \mathrm{~Hz}$); 1.22 (m, 6H); 1.77 (m, 1H); 2.13 (m, 2H); 2.36 (dd, 1H, $J=14.7,6.7 \mathrm{~Hz}$); 2.76 (s, 3H); 2.83* (s, 3H); 3.97* (m, 1H); 4.51 (m, $2 \mathrm{H}) ; 4.90(\mathrm{bs}, 1 \mathrm{H}) ; 7.29(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm})(3: 1$ rotamer ratio; indicates minor rotamer resonances): 10.4; 13.7; 14.0*; 15.2; 22.6; 25.7; 25.9*; 26.7; 28.4; 28.6*; 32.4*; 32.6; 32.7*; 35.6; 35.8*; 37.7*; 38.0; 57.4*; 58.0; 74.8; 75.6; 126.0; 126.5*; 127.0; 127.5*; 127.8; 128.0; 141.8*; 142.2; 173.7*; 174.6. IR (CHCl_{3}): $3380(\mathrm{OH}) ; 1619$ (C=O). MS (EI) m / z (Rel. Int.): 287 (${ }^{+}-18,9$), 258 (10), 230 (11); 198 (11), 147 (83), 131 (10); 91 (12), 71 (11), 58 (100). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2}$: C, 74.71; H, 10.23; N, 4.59. Found: C, 74.65; H, 10.28; N, 4.67.

(+)-(1'S,2'S,3R)-N-(2'-hydroxy-1'-methylethyl-2'-phenyl)-N-methyl-3-phenyl-

 pentanamide (2f).Amide $2 \mathrm{f}(0.53 \mathrm{~g}, 1.64 \mathrm{mmol})$ was prepared
 according to the general procedure starting from enamide $1 \mathrm{~b}(0.49 \mathrm{~g}, 2.00 \mathrm{mmol}), \mathrm{LiCl}(0.42 \mathrm{~g}$, 10.00 mmol) and $\mathrm{PhLi}(4.4 \mathrm{~mL}$ of a 1.0 M solution in hexanes). HPLC analysis of the crude reaction mixture (Chiracel OD column, hexanes/iso-propanol 95:5, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$) indicated a $91: 9$ diastereomeric ratio: t_{R} for the major isomer: 24.64 min . t_{R} for the minor isomer: 30.34 \min. Amide $2 \mathbf{f}$ was isolated as a white solid after flash column chromatography purification (hexanes/AcOEt 1:1). Yield: 82%. M.p. $85-87^{\circ} \mathrm{C}$ (hexanes/AcOEt). $[\alpha]_{\mathrm{D}}{ }^{20}=$ $+72.4\left(c=0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm})(4: 1$ rotamer ratio; indicates minor rotamer resonances): $0.85(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ; 0.97(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ; 1.01^{*}(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$; 1.66 (m, 2H); 1.72 (m, 2H); 2.71 (s, 3H); 2.88* (s, 3H); 3.08 (m, 1H); 4.07* (m, 1H); $4.55(\mathrm{~m}, 3 \mathrm{H}) ; 7.32(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm})(4: 1$ rotamer ratio; indicates minor rotamer resonances): $11.9 ; 14.1 ; 15.1^{*} ; 26.7 ; 28.7 ; 32.3^{*} ; 40.0^{*} ; 40.9 ; 43.6^{*} ; 43.9$; 57.6*; 58.2; 74.9; 75.7*; 125.9*; 126.1; 126.2; 126.7*; 127.3; 127.4; 127.6*; 128.0*; 128.2; 128.3; 141.3*; 142.1; 144.1; 144.7*; 172.6*; 173.9. IR (KBr): 3381 (OH); 1619 (C=O). MS (EI) m/z (Rel. Int.): 307 ($\mathrm{M}^{+}-18,5$), 218 (10), 147 (38), 131 (9); 119 (12); 91 (42), 58 (100). Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}$: C, 77.50; H, 8.36; N, 4.30. Found: C, 77.42; H, 8.44; N, 4.21.

(+)-(1'S,2'S,3S)-N-(2'-hydroxy-1'-methylethyl-2'-phenyl)-N-methyl-3-propyl-

 heptanamide (2 g).

Amide $\mathbf{2 g}(0.46 \mathrm{~g}, 1.46 \mathrm{mmol})$ was prepared according to the general procedure starting from enamide $1 \mathbf{c}(0.52 \mathrm{~g}, 2.00 \mathrm{mmol}), \mathrm{LiCl}$ $(0.42 \mathrm{~g}, 10.00 \mathrm{mmol})$ and ${ }^{\mathrm{n}} \mathrm{BuLi}(5.5 \mathrm{~mL}$ of a 0.8 M solution in hexanes). HPLC analysis of the crude reaction mixture (Chiracel OD column, hexanes/iso-propanol 95:5, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$) indicated a $98: 2$ diastereomeric ratio: t_{R} for the major isomer: $13.54 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}$ for the minor isomer: 18.10 min. Amide $\mathbf{2 g}$ was isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 1:1). Yield: $73 \% \cdot[\alpha]_{\mathrm{D}}{ }^{20}=+76.4\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$
(δ, ppm) (3:2 rotamer ratio; indicates minor rotamer resonances): 0.85 (t, $3 \mathrm{H}, J=8.2$ Hz); 0.93* (d, 3H, $J=5.7 \mathrm{~Hz}$); 1.03 (d, 3H, $J=6.0 \mathrm{~Hz}$); $1.22(\mathrm{~m}, 10 \mathrm{H}) ; 1.83(\mathrm{~m}, 1 \mathrm{H})$; 2.12 (d, 2H, J=6.3Hz); 2.75 (s, 3H); 2.83* (s, 3H); 3.93 (m, 1H); 4.21* (m, 1H); 4.51 $(\mathrm{m}, 2 \mathrm{H}) ; 4.51^{*}(\mathrm{bs}, 1 \mathrm{H}) ; 7.28(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm})(3: 2$ rotamer ratio; indicates minor rotamer resonances): 13.8; 14.0; 14.1; 15.2*; 19.4; 22.7; 26.7; 28.4; 28.6*; 32.6^{*}; 33.2; 33.3*; 34.1; 34.4*; 35.8; 36.1*; 38.2*; 38.6; 57.8*; 58.1; 74.9*; 75.8; 126.1; 126.6*; 127.1; 127.6*; 127.9; 128.1*; 141.8*; 142.3; 173.8*; 174.8. IR (CHCl_{3}): 3380 (OH); 1620 (C=O). MS (EI) m/z (Rel. Int.): 301 ($\mathrm{M}^{+}-18,7$), 258 (11), 244 (10), 212 (10), 147 (100), 132 (9); 118 (10); 91 (12), 71 (14), 58 (76). Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{2}$: C, 75.19 ; H, 10.41; N, 4.38. Found: C, 75.03 ; H, 10.47; N, 4.44.

(+)-(1'S,2'S,3R)-3-tert-butyl-N-(2'-hydroxy-1'-methylethyl-2'-phenyl)- N-methyl-

 hexanamide (2h).

Amide $2 \mathrm{~h}(0.59 \mathrm{~g}, 1.88 \mathrm{mmol})$ was prepared according to the general procedure starting from enamide $1 \mathrm{c}(0.52 \mathrm{~g}, 2.00 \mathrm{mmol})$, LiCl $(0.42 \mathrm{~g}, 10.00 \mathrm{mmol})$ and ${ }^{\mathrm{t}} \mathrm{BuLi}(4.4 \mathrm{~mL}$ of a 1.0M solution in hexanes). HPLC analysis of the crude reaction mixture (Chiracel OD column, hexanes/iso-propanol 99:1, flow rate $0.75 \mathrm{~mL} / \mathrm{min}$) indicated a $90: 10$ diastereomeric ratio: t_{R} for the major isomer: $21.46 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}$ for the minor isomer: 24.42 \min. Amide $\mathbf{2 h}$ was isolated as a white solid after flash column chromatography purification (hexanes/AcOEt 1:1). Yield: 94%. Mp. $69-71^{\circ} \mathrm{C}$ (hexanes/AcOEt). $[\alpha]_{D}{ }^{20}=$ $+73.6\left(c=0.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm})$ (5:1 rotamer ratio; indicates minor rotamer resonances): $0.85\left(\mathrm{~s}, 9 \mathrm{H}\right.$); $0.90^{*}(\mathrm{~s}, 9 \mathrm{H}) ; 0.99^{*}(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 1.05$ (d, 3H, $J=6.7$ Hz); $1.26(\mathrm{~m}, 2 \mathrm{H}) ; 1.43(\mathrm{~m}, 2 \mathrm{H}) ; 1.92(\mathrm{~m}, 1 \mathrm{H}) ; 2.02(\mathrm{dd}, 1 \mathrm{H}, J=15.7,6.5 \mathrm{~Hz}) ; 2.31$ (dd, $1 \mathrm{H}, J=15.7,4.6 \mathrm{~Hz}) ; 2.85(\mathrm{~s}, 3 \mathrm{H}) ; 2.90^{*}(\mathrm{~s}, 3 \mathrm{H}) ; 4.07^{*}(\mathrm{~m}, 1 \mathrm{H}) ; 4.46(\mathrm{~m}, 1 \mathrm{H}) ; 4.56(\mathrm{~m}$, $1 \mathrm{H}) ; 7.33(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm})$ ($5: 1$ rotamer ratio; indicates minor rotamer resonances): 14.4; 14.6; 15.3*; 21.9; 27.1*; 27.4; 32.7; 33.4; 33.6; 33.9*; 35.0*; 35.6; 43.6; 58.0; 58.6*; 76.5; 76.7*; 126.3*; 126.4; 126.8*; 127.5; 128.3; 128.6*; 141.3*; 142.5; 176.0*; 176.2. IR (KBr): 3371 (OH); 1655 (C=O). MS (EI) m / z (Rel. Int.): 301 ($\mathrm{M}^{+}-18,4$), 244 (100), 212 (8), 148 (82), 118 (12); 105 (14); 97 (48); 91 (12), 71 (13), 58 (100). Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{2}$: C, $75.19 ; \mathrm{H}, 10.41$; N, 4.38. Found: C, $75.22 ; \mathrm{H}$, 10.37; N, 4.46.

(+)-(1'S,2'S,3R)-N-(2'-hydroxy-1'-methylethyl-2'-phenyl)-N-methyl-3-phenyl-

 hexanamide (2i).

Amide $2 \mathbf{i}(0.55 \mathrm{~g}, 1.64 \mathrm{mmol})$ was prepared according to the general procedure starting from enamide $1 \mathrm{c}(0.52 \mathrm{~g}, 2.00 \mathrm{mmol}), \mathrm{LiCl}$ $(0.42 \mathrm{~g}, 10.00 \mathrm{mmol})$ and $\mathrm{PhLi}(4.4 \mathrm{~mL}$ of a 1.0M solution in hexanes). HPLC analysis of the crude reaction mixture (Chiracel OD column, hexanes/iso-propanol 95:5, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$) indicated a $93: 7$ diastereomeric ratio: t_{R} for the major isomer: $21.85 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}$ for the minor isomer: 30.08 \min. Amide $\mathbf{2 i}$ was isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 1:1). Yield: 82%. $[\alpha]_{\mathrm{D}}{ }^{20}=+62.5\left(c=0.18, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-$ NMR (δ, ppm) (5:1 rotamer ratio; indicates minor rotamer resonances): $0.87(\mathrm{~m}, 6 \mathrm{H})$; $1.18(\mathrm{~m}, 2 \mathrm{H}) ; 1.62(\mathrm{~m}, 2 \mathrm{H}) ; 2.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.9 \mathrm{~Hz}) ; 2.63(\mathrm{~s}, 3 \mathrm{H}) ; 2.84^{*}(\mathrm{~s}, 3 \mathrm{H}) ; 3.12(\mathrm{~m}$, $1 \mathrm{H}) ; 4.02 *(\mathrm{~m}, 1 \mathrm{H}) ; 4.42(\mathrm{~m}, 2 \mathrm{H}) ; 7.45(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm})$ ($5: 1$ rotamer ratio; indicates minor rotamer resonances): 14.2; 14.7; 15.2*; 21.5; 26.3*; 32.5; 35.4*; 35.8; 40.2*; 41.4; 43.6; 58.7*; 59.2; 74.3*; 76.5; 126.3; 126.4; 126.7*; 127.2; 127.5; 128.1; 128.3*; 128.7; 141.2*; 142.0; 143.4; 144.0; 172.5*; 175.4. IR (CHCl_{3}): $3380(\mathrm{OH})$; 1620 (C=O). MS (EI) m / z (Rel. Int.): 321 (${ }^{+}-18,10$), 230 (28), 173 (28), 147 (45), 131 (9); 117 (10); 91 (46); 58 (100). Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{2}$: C, 77.84; H, 8.61; N, 4.13. Found: C, 77.98; H, 8.65; N, 4.21.

(+)-(1'S,2'S,3S)-N-(2'-hydroxy-1'-methylethyl-2'-phenyl)-N,4,4-trimethyl-3-

 phenylpentanamide (2j).

Amide $\mathbf{2 j}(0.63 \mathrm{~g}, 1.82 \mathrm{mmol})$ was prepared according to the general procedure starting from enamide $\mathbf{1 d}(0.55 \mathrm{~g}, 2.00 \mathrm{mmol}), \mathrm{LiCl}(0.42 \mathrm{~g}$, 10.00 mmol) and $\mathrm{PhLi}(4.4 \mathrm{~mL}$ of a 1.0 M solution in hexanes). HPLC analysis of the crude reaction mixture (Chiracel OD column, hexanes/iso-propanol 95:5, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$) indicated a $97: 3$ diastereomeric ratio: t_{R} for the major isomer: 22.31 min . t_{R} for the minor isomer: 18.23 min . Amide $\mathbf{2} \mathbf{j}$ was isolated as a white solid after flash column chromatography purification (hexanes/AcOEt 1:1). Yield: 84%. Mp. $115-116^{\circ} \mathrm{C}$ (hexanes/AcOEt). $[\alpha]_{\mathrm{D}}{ }^{20}=+71.3\left(c=0.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm})(3: 1$ rotamer ratio; indicates minor
rotamer resonances): 0.82 (d, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 0.91(\mathrm{~s}, 9 \mathrm{H}) ; 0.97(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}) ; 2.63$ (dd, 1H, $J=15.1,3.7 \mathrm{~Hz}) ; 2.70^{*}$ (s, 3H); 2.75 (s, 3H); 2.81 (dd, 1H, $J=15.1,4.7 \mathrm{~Hz}$); 3.08 (dd, 1H, $J=10.3,3.7 \mathrm{~Hz}) ; 4.5^{*}(\mathrm{~m}, 1 \mathrm{H}) ; 4.19(\mathrm{~m}, 1 \mathrm{H}) ; 4.42(\mathrm{~m}, 1 \mathrm{H}) ; 7.21(\mathrm{~m}, 10 \mathrm{H})$. ${ }^{13} \mathrm{C}-$ NMR (δ, ppm) (3:1 rotamer ratio; indicates minor rotamer resonances): 14.1; 15.2*; 26.7*; 28.0; 32.8*; 33.5; 34.0; 34.6; 51.7*; 52.0; 58.1; 58.5*; 74.9*; 76.2; 125.8*; 126.0; 126.2; 126.7*; 127.2; 127.4*; 127.5*; 127.6; 127.9*; 128.1; 128.4*; 129.1; 141.1*; 142.0; 142.2; 172.9*; 174.6. IR (KBr): 3381 (OH); 1621 (C=O). MS (EI) m/z (Rel. Int.): 353 ($\left.\mathrm{M}^{+}-18,8\right), 278$ (10); 246 (10); 188 (42), 147 (82), 131 (100); 104 (21); 91 (33); 77 (11); 58 (68). Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{2}$: C, 78.15; H, 8.84; N, 3.96. Found: C, 78.22; H, 8.96; N, 4.07.

(+)-(1'S,2'S,3R)-N-(2'-hydroxy-1'-methylethyl-2'-phenyl-)-N,4,4-trimethyl-3-

 phenylpentanamide (2 k).

Amide $2 \mathbf{k}(0.43 \mathrm{~g}, 1.22 \mathrm{mmol})$ was prepared according to the general procedure starting from enamide $1 \mathrm{e}(0.58 \mathrm{~g}, 2.00 \mathrm{mmol}), \mathrm{LiCl}(0.42 \mathrm{~g}$, 10.00 mmol) and ${ }^{\mathrm{t}} \mathrm{BuLi}(4.4 \mathrm{~mL}$ of a 1.0 M solution in hexanes). HPLC analysis of the crude reaction mixture (Chiracel OD column, hexanes/iso-propanol 95:5, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$) indicated a 91:9 diastereomeric ratio: t_{R} for the major isomer: $18.23 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}$ for the minor isomer: 22.31 min . Amide $\mathbf{2 k}$ was isolated as a white solid after flash column chromatography purification (hexanes/AcOEt 1:1). Yield: 61%. Mp. $134-137^{\circ} \mathrm{C}$ (hexanes/AcOEt). $[\alpha]_{D}{ }^{20}=+70.0$ $\left(c=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm})$ (4:1 rotamer ratio; indicates minor rotamer resonances): 0.69 (d, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}$); 0.83 (d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}$); 0.91 (s, 9 H); 2.59 (dd, 1 H , $J=14.9,4.0 \mathrm{~Hz}) ; 2.72(\mathrm{~s}, 3 \mathrm{H}) ; 2.74 *(\mathrm{~s}, 3 \mathrm{H}) ; 2.79$ (dd, $1 \mathrm{H}, J=15.0,10.5 \mathrm{~Hz}) ; 3.10(\mathrm{~m}$, $1 \mathrm{H}) ; 3.96^{*}(\mathrm{~m}, 1 \mathrm{H}) ; 4.16(\mathrm{~m}, 1 \mathrm{H}) ; 4.40(\mathrm{~m}, 1 \mathrm{H}) ; 7.23(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm})(4: 1$ rotamer ratio; indicates minor rotamer resonances): 13.9; 15.2*; 26.9*; 28.0; 33.4; 33.7*; 33.8*; 33.9; 34.5*; 34.7; 52.1*; 52.7; 58.4; 59.0*; 75.4*; 75.9; 126.0*; 126.3; 126.4; 126.7*; 127.4; 127.5*; 127.6; 127.8*; 128.1; 128.3*; 128.6*; 129.3; 141.3*; 141.9; 142.0*; 142.8; 173.8*; 174.7. IR (KBr): 3377 (OH); 1618 (C=O). MS (EI) m/z (Rel. Int.): 353 ($\mathrm{M}^{+}-18,6$), 278 (42); 246 (9); 188 (30), 147 (90), 131 (100); 117 (9); 104 (36); 91 (38); 77 (14); 58 (60). Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{2}$: C, 78.15; H, 8.84; N, 3.96. Found: C, 78.08; H, 8.75; N, 4.03.

3.- Hydrolysis. Synthesis of carboxylic acids $\mathbf{4 b - k}, \mathbf{5 a}, \mathbf{5 e}, \mathbf{5 i}, \mathbf{5 m}, \mathbf{5 r}$ and 5 s

General procedure:

$4 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$ was slowly added over a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the corresponding amide $\mathbf{2 a - k}, \mathbf{3 a}, \mathbf{3 e}, \mathbf{3 i}, \mathbf{3 m}, \mathbf{3 r}$ or $\mathbf{3 s}$ (1 mmol) in 1,4-dioxane (10 mL). The reaction was refluxed for 6 h after which it was cooled down to r.t. Water (20 mL) was added and the mixture was carefully basified to $\mathrm{pH}=12$ and washed with EtOAc $(3 \times 20 \mathrm{~mL})$. The aqueous layer was carefully driven to $\mathrm{pH}=3$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtering and removing the solvent from the basic organic extracts it was possible to recover, after crystallization (hexanes/EtOAc) pure $(+)-(S, S)$-pseudoephedrine in c.a. 83% yield. The collected organic acidic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo yielding the wanted acids $\mathbf{4 a - k}, \mathbf{5 a}, \mathbf{5 e}, \mathbf{5 i}, \mathbf{5 m}, \mathbf{5 r}$ and $\mathbf{5 s}$ as pure compounds as their ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra indicated.

(+)-(R)-3,4-Dimethylpentanoic acid (4b).

Carboxylic acid 4b ($87 \mathrm{mg}, 0.67 \mathrm{mmol}$) was obtained as a
 yellowish oil starting from amide $\mathbf{2 b}(0.21 \mathrm{~g}, 0.75 \mathrm{mmol})$ according to the general procedure. Yield: $89 \% .[\alpha]_{\mathrm{D}}{ }^{20}=+7.6$ $\left(c=1.00, \mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\right.$ Lit. $^{2}[\alpha]_{\mathrm{D}}{ }^{20}=-6.95, c=1.18, \mathrm{C}_{6} \mathrm{H}_{6}$ for the S isomer). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm})$: 0.89 (m, 9H); 1.61 (m, 1H); 1.88 (m, 1H); 2.06 (dd, $1 \mathrm{H}, J=15.0,9.1 \mathrm{~Hz}$); 2.38 (m, 1H, $J=14.6,5.2 \mathrm{~Hz}$); 10.2-11.0 (bs, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 15.7 ; 18.2 ; 19.7 ; 31.9 ; 35.7$; 39.0; 180.6. IR (CHCl_{3}): 3035 (OH); 1711 (C=O). MS (EI) m / z (Rel. Int.): 130 (M^{+}, 12), 96 (33), 81 (100), 79 (73), 68 (20), 65 (11), 51 (75).

$(+)-(R)-3,4,4-T r i m e t h y l p e n t a n o i c ~ a c i d ~(4 c)$.

Carboxylic acid $4 \mathbf{c}(0.12 \mathrm{~g}, 0.85 \mathrm{mmol})$ was obtained as a yellowish oil starting from amide $2 \mathrm{c}(0.25 \mathrm{~g}, 0.85 \mathrm{mmol})$ according to the general procedure. Yield: $99 \% .[\alpha]_{D}{ }^{20}=+19.6$ $(c=0.9, \mathrm{EtOH})\left(\right.$ Lit. $\left.^{3}[\alpha]_{\mathrm{D}}{ }^{20}=+21.7, c=0.9, \mathrm{EtOH}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.82(\mathrm{~s}, 9 \mathrm{H}) ; 1.02$ (d, $3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ; 1.82(\mathrm{~m}, 1 \mathrm{H}) ; 2.01(\mathrm{~m}, 1 \mathrm{H}) ; 2.43(\mathrm{~m}, 1 \mathrm{H}) ; 10.5-11.0(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-$

[^1]NMR (δ, ppm): 14.7; 15.4; 22.7; 25.3; 36.6; 180.7. IR $\left(\mathrm{CHCl}_{3}\right): 3027(\mathrm{OH}) ; 1711$ (C=O). MS (EI) m/z (Rel. Int.): 144 (M ${ }^{+}, 9$), 118 (20), 97 (15), 91 (24), 77 (26), 65 (100), 51 (16).

(-)-(R)-3-Phenylbutanoic acid (4d).

Carboxylic acid $4 \mathbf{d}(0.17 \mathrm{~g}, 0.96 \mathrm{mmol})$ was obtained as a yellowish oil starting from amide $2 \mathbf{2 d}(0.35 \mathrm{~g}, 1.12 \mathrm{mmol})$ according to the general procedure. Yield: $91 \% .[\alpha]_{D}{ }^{20}=-42.3$ $\left(c=0.70, \mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mathrm{Lit.}^{4}[\alpha]_{\mathrm{D}}{ }^{20}=-45.8, c=0.77, \mathrm{C}_{6} \mathrm{H}_{6}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.36(\mathrm{t}, 3 \mathrm{H}$, $J=7.2 \mathrm{~Hz}) ; 2.68(\mathrm{~m}, 2 \mathrm{H}) ; 3.35(\mathrm{~m}, 1 \mathrm{H}) ; 7.33(\mathrm{~m}, 5 \mathrm{H}) ; 11.2-11.9(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta$, ppm): 21.8; 36.0; 42.5; 126.4; 126.6; 128.5; 145.3; 179.1. IR (CHCl_{3}): 3028 (OH); 1707 (C=O). MS (EI) m / z (Rel. Int.): 164 (M ${ }^{+}$, 17), 118 (16), 105 (100), 85 (23), 79 (16), 77 (17), 57 (15).

(-)-(S)-3-Ethylheptanoic acid (4e).

Carboxylic acid $4 \mathrm{e}(46 \mathrm{mg}, 0.31 \mathrm{mmol})$ was obtained as a yellowish oil starting from amide $2 \mathrm{e}(0.12 \mathrm{~g}, 0.39 \mathrm{mmol})$ according to the general procedure. Yield: $75 \% .[\alpha]_{D}{ }^{20}=-$ $3.4\left(c=0.02, \mathrm{CHCl}_{3}\right)\left(\right.$ Lit. $\left.^{5}[\alpha]_{\mathrm{D}}{ }^{20}=-1.15, c=0.02\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.88(\mathrm{~m}, 6 \mathrm{H})$; $1.27(\mathrm{~m}, 8 \mathrm{H}) ; 1.79(\mathrm{~m}, 1 \mathrm{H}) ; 2.26(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 9.2-9.8(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta$, ppm): 10.7; 14.0; 22.8; 26.2; 28.7; 32.9; 36.2; 38.6; 180.4. IR (CHCl_{3}): $3030(\mathrm{OH})$; 1705 (C=O). MS (EI) m / z (Rel. Int.): 158 ($\mathrm{M}^{+}, 8$), 111 (13), 97 (29), 85 (47), 83 (32), 73 (15), 71 (64), 60 (20), 57 (100).

(-)-(R)-3-Phenylpentanoic acid (4f).

Carboxylic acid $4 \mathbf{f}$ ($84 \mathrm{mg}, 0.45 \mathrm{mmol}$) was obtained as a yellowish oil starting from amide 2 f ($0.15 \mathrm{~g}, 0.46 \mathrm{mmol}$) according to the general procedure. Yield: $99 \% .[\alpha]_{D}{ }^{20}=-$ $41.7\left(c=0.30, \mathrm{CHCl}_{3}\right)\left(\mathrm{Lit}^{6}{ }^{6}[\alpha]_{\mathrm{D}}{ }^{20}=-43.64, c=0.35, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.83(\mathrm{t}$, $3 \mathrm{H}, J=7.5 \mathrm{~Hz}) ; 1.66(\mathrm{~m}, 2 \mathrm{H}) ; 2.66(\mathrm{~m}, 2 \mathrm{H}) ; 3.01(\mathrm{~m}, 1 \mathrm{H}) ; 7.30(\mathrm{~m}, 5 \mathrm{H}) ; 10.8-11.6(\mathrm{bs}$,

[^2]1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 11.8 ; 29.0 ; 41.1 ; 43.4 ; 126.4 ; 127.4 ; 128.4 ; 143.5 ; 179.1$. IR $\left(\mathrm{CHCl}_{3}\right): 2962(\mathrm{OH}) ; 1707(\mathrm{C}=\mathrm{O})$. MS (EI) m / z (Rel. Int.): 178 (M ${ }^{+}, 15$), 118 (37), 107 (76), 97 (10), 91 (77), 83 (100), 79 (35); 77 (29); 71 (28), 57 (49).

(+)-(S)-3-Propylheptanoic acid (4g).

Carboxylic acid $\mathbf{4 g}$ ($81 \mathrm{mg}, 0.47 \mathrm{mmol}$) was obtained as
 0.59 mmol) according to the general procedure. Yield: $79 \% .[\alpha]_{\mathrm{D}}{ }^{20}=+48.7\left(c=0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.88(\mathrm{~m}, 6 \mathrm{H}) ; 1.28(\mathrm{~m}, 10 \mathrm{H}) ;$ $1.86(\mathrm{~m}, 1 \mathrm{H}) ; 2.26(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}) ; 10.8-11.4(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 14.0 ; 14.2$; 19.6; 22.8; 28.6; 33.4; 36.1; 39.1; 180.6. IR (CHCl_{3}): $3380(\mathrm{OH}) ; 1620$ (C=O). MS (EI) m / z (Rel. Int.): 172 ($\mathrm{M}^{+}, 6$), 145 (12), 117 (10); 91 (30); 77 (100), 51 (12). Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 69.72; H, 11.70. Found: C, $69.85 ; \mathrm{H}, 11.86$

(-)-(R)-3-tert-Butylhexanoic acid (4h).

Carboxylic acid $4 \mathrm{~h}(29 \mathrm{mg}, 0.16 \mathrm{mmol})$ was obtained as
 a yellowish oil starting from amide $\mathbf{2 h}$ (62 mg , 0.19 mmol) according to the general procedure. Yield: $87 \% .[\alpha]_{\mathrm{D}}{ }^{20}=-14.7\left(c=1.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.92(\mathrm{t}, 3 \mathrm{H}$, $J=7.3 \mathrm{~Hz}) ; 0.96$ (d, $3 \mathrm{H}, J=6.5 \mathrm{~Hz}$); 1.43 (m, 4H); 1.54 (m, 1H); 2.11 (dd, $1 \mathrm{H}, J=15.2$, 6.3 Hz); 2.45 (dd, $1 \mathrm{H}, J=15.2,5.3 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 14.4 ; 21.7 ; 27.3 ; 33.4 ; 33.5$; 35.9; 44.6; 181.5. IR (CHCl_{3}): 3375 (OH); 1710 (C=O). MS (EI) m/z (Rel. Int.): 172 $\left(\mathrm{M}^{+}, 4\right), 117$ (17), 97 (14), 85 (54), 83 (73); 71 (18); 57 (100). Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 69.72; H, 11.70. Found: C, 69.62; H, 11.94.

(-)-(R)-3-Phenylhexanoic acid (4i).

Carboxylic acid $4 \mathbf{i}(0.25 \mathrm{~g}, 1.45 \mathrm{mmol})$ was obtained as a yellowish oil starting from amide $2 \mathbf{i}(0.52 \mathrm{~g}, 1.53 \mathrm{mmol})$ according to the general procedure. Yield: $97 \% .[\alpha]_{D}{ }^{20}=$ -48.3 ($c=01.1, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ; 1.23(\mathrm{~m}, 2 \mathrm{H}) ; 1.66$ (m, 2H); $2.70(\mathrm{~d}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 3.16(\mathrm{~m}, 1 \mathrm{H}) ; 11.4-12.0(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm})$: 13.8; 20.3; 38.3; 41.5; 126.4; 127.3; 128.4; 143.8; 179.0. IR (CHCl_{3}): 3350 (OH); 1703 (C=O). MS (EI) m / z (Rel. Int.): $192\left(\mathrm{M}^{+}, 6\right), 132$ (30), 117 (11), 107 (78), 104 (15); 91
(100); 85 (16), 83 (26), 79 (27), 77 (27), 51 (10). Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 74.97; H, 8.39. Found: C, 75.08; H, 8.43.
(+)-(R)-5,5-Dimethyl-3-phenylhexanoic acid (4j).

Carboxylic acid $\mathbf{4 j}$ ($33 \mathrm{mg}, 0.16 \mathrm{mmol}$) was obtained as a yellowish oil starting from amide $\mathbf{2 j}$ ($87 \mathrm{mg}, 0.24 \mathrm{mmol}$) according to the general procedure. Yield: $64 \% .[\alpha]_{D}{ }^{20}=$ $+19.7\left(c=2.2, \mathrm{CHCl}_{3}\right)\left(\mathrm{Lit.}^{7}[\alpha]_{\mathrm{D}}{ }^{20}=-20.4, c=2.2, \mathrm{CHCl}_{3}\right.$ for the S isomer). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta$, ppm): $0.88(\mathrm{~s}, 9 \mathrm{H}) ; 2.71(\mathrm{~m}, 2 \mathrm{H}) ; 2.95(\mathrm{dd}, 1 \mathrm{H}, J=10.4,4.5 \mathrm{~Hz}) ; 9.5-10.5(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($\delta, \mathrm{ppm}): 27.8 ; 33.6 ; 35.4 ; 51.7 ; 126.4 ; 127.6 ; 129.2 ; 141.3 ; 179.3$. IR $\left(\mathrm{CHCl}_{3}\right)$: 3340 (OH); 1708 (C=O). MS (EI) m/z (Rel. Int.): 206 (M ${ }^{+}$, 4), 150 (23), 104 (20), 91 (15), 85 (69), 83 (100), 71 (16), 57 (67), 55 (12).

(-)-(S)-5,5-Dimethyl-3-phenylhexanoic acid (4k).

Carboxylic acid $\mathbf{4 k}(0.23 \mathrm{~g}, 1.08 \mathrm{mmol})$ was obtained as a yellowish oil starting from amide $\mathbf{2 k}$ ($0.39 \mathrm{~g}, 1.09 \mathrm{mmol}$) according to the general procedure. Yield: $99 \% .[\alpha]_{\mathrm{D}}{ }^{20}=-$ $19.8\left(c=2.2, \mathrm{CHCl}_{3}\right)\left(\mathrm{Lit.}^{7}[\alpha]_{\mathrm{D}}{ }^{20}=-20.4, c=2.2, \mathrm{CHCl}_{3}\right)$. The rest of spectroscopic properties recorded were identical to those of its enantiomer $\mathbf{4 j}$.

(+)-(2S,3R)-2-methyl-3-phenylbutanoic acid (5a).

Carboxylic acid 5a ($166 \mathrm{mg}, 0.93 \mathrm{mmol}$) was obtained as a yellowish oil starting from amide $\mathbf{3 a}(0.31 \mathrm{~g}, 0.95 \mathrm{mmol}$) according to the general procedure. Yield: 98%. $[\alpha]_{\mathrm{D}}{ }^{20}=+11.3$ $\left(c=0.30, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.02(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ; 1.38(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ; 2.61$ $(\mathrm{m}, 1 \mathrm{H}) ; 2.98(\mathrm{~m}, 1 \mathrm{H}) ; 7.33(\mathrm{~m}, 5 \mathrm{H}) ; 9.2-10.4(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 16.2 ; 20.8 ;$ 43.1; 46.8; 126.6; 127.6; 128.5; 143.9; 183.1. IR (CHCl_{3}): 1964 (OH); 1889 (C=O). MS (EI) m / z (Rel. Int.): $178\left(\mathrm{M}^{+}, 5\right), 117$ (4), 105 (73), 85 (69), 83 (100), 87 (15). Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 74.13; H, 7.92. Found: C, 74.01; H, 8.11.

[^3]
(+)-(2S,3S)-2,3-dimethylpentanoic acid (5e).

Carboxylic acid 5e ($131 \mathrm{mg}, 0.82 \mathrm{mmol}$) was obtained as a
 yellowish oil starting from amide $3 \mathrm{e}(0.27 \mathrm{~g}, 0.88 \mathrm{mmol})$ according to the general procedure. Yield: $93 \% .[\alpha]_{\mathrm{D}}{ }^{20}=+38.7$ (c $\left.=0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.90(\mathrm{~m}, 6 \mathrm{H}), 1.31(\mathrm{~m}, 9 \mathrm{H})$, $1.69(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 13.0 ; 13.2 ; 17.3 ; 22.6 ; 28.7 ; 32.2 ; 35.1$; 44.2; 182.6. IR (CHCl_{3}): 1706 (C=O), 3010 (OH). MS (EI) m / z (Rel. Int.): 159 ($\mathrm{M}^{+}, 7$), 144 (3), 115 (12), 105 (73), 85 (100). Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 68.31; H, 11.47. Found: C, 68.44; H, 11.56.

(+)-(2S,3R)-2-methyl-3-phenylpentanoic acid (5i).

Carboxylic acid $\mathbf{5 i}$ ($127 \mathrm{mg}, 0.66 \mathrm{mmol}$) was obtained as a yellowish oil starting from amide $\mathbf{3 i}$ ($0.28 \mathrm{~g}, 0.83 \mathrm{mmol}$) according to the general procedure. Yield: 80%. $[\alpha]_{D}{ }^{20}=$ $+5.1\left(c=0.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.81(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.97(\mathrm{~d}, 3 \mathrm{H}, J=7.4$ $\mathrm{Hz}), 1.35(\mathrm{~m}, 1 \mathrm{H}) ; 1.42(\mathrm{~m}, 1 \mathrm{H}) ; 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 5 \mathrm{H}), 9.50(\mathrm{bs}$, $1 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 13.6 ; 15.4 ; 28.4 ; 43.8 ; 47.6 ; 126.7 ; 127.5 ; 128.1 ; 141.7 ; 181.9$. IR (CHCl_{3}): $1970(\mathrm{OH}) ; 1884(\mathrm{C}=\mathrm{O})$. MS (EI) m / z (Rel. Int.): 192 (${ }^{+}$, 17), 177 (9), 133 (15), 85 (58), 83 (100). Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 74.97; H, 8.39. Found: C, 75.08; H, 8.48.
(+)-(2S,3R)-2-methyl-3-phenylhexanoic acid (5m).
Carboxylic acid $\mathbf{5 m}$ ($173 \mathrm{mg}, 0.84 \mathrm{mmol}$) was obtained as a yellowish oil starting from amide $\mathbf{3 m}(0.30 \mathrm{~g}$, $0.85 \mathrm{mmol})$ according to the general procedure. Yield: $99 \% .[\alpha]_{\mathrm{D}}{ }^{20}=+7.8\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.81(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.94$ $(\mathrm{d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.06(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~m}$, 5 H), 8.44 (bs, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 13.8 ; 16.0 ; 20.5 ; 36.6 ; 46.0 ; 48.5 ; 126.4 ; 127.4$; 128.2; 141.9; 182.4. IR $\left(\mathrm{CHCl}_{3}\right): 1648$ (OH); 3439 (C=O). MS (EI) m / z (Rel. Int.): 206 $\left(\mathrm{M}^{+}, 12\right), 191$ (7), 105 (54), 85 (17), 83 (100), 58 (8). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 75.69; H, 8.80. Found: C, 75.77; H, 8.86.

(-)-(2S,3S)-2,4,4-trimethyl-3-phenylpentanoic acid (5r).

Carboxylic acid $\mathbf{5 r}$ ($107 \mathrm{mg}, 0.48 \mathrm{mmol}$) was obtained as a
 yellowish oil starting from amide 3 r ($0.18 \mathrm{~g}, 0.49 \mathrm{mmol}$) according to the general procedure. Yield: 99%. $[\alpha]_{D}{ }^{20}=-$ $4.4\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.90(\mathrm{~m}, 12 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 18.7 ; 28.5 ; 34.7 ; 39.9 ; 58.1 ; 126.0 ; 127.2 ; 130.1 ; 141.2 ; 184.0$. IR $\left(\mathrm{CHCl}_{3}\right): 1705(\mathrm{C}=\mathrm{O}), 3225(\mathrm{OH}) . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ (Rel. Int.): $220\left(\mathrm{M}^{+}, 1\right), 215$ (18), 160 (22), 101 (58), 85 (91), 57 (100). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 76.33; H, 9.15. Found: C, 76.21; H, 9.07.

(+)-(2S,3S)-3-tert-Butyl-2-methylheptanoic acid (5s).

Carboxylic acid $5 \mathrm{~s}(95 \mathrm{mg}, 0.47 \mathrm{mmol})$ was obtained as a yellowish oil starting from amide $3 \mathrm{~s}(0.21 \mathrm{~g}, 0.61 \mathrm{mmol})$ according to the general procedure. Yield: 78%. $[\alpha]_{D}{ }^{20}=$ $\left.+44.1\left(\mathrm{c}=0.07, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): ~\right): 0.87(\mathrm{~m}, 12 \mathrm{H}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$, $1.39(\mathrm{~m}, 6 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 12.1 ; 13.9 ; 23.0 ; 25.9$; 27.3; 28.5; 31.8; 38.5; 49.0; 184.3. IR (CHCl_{3}): 1645 (C=O), 3426 (OH). MS (EI) m/z (Rel. Int.): $200\left(\mathrm{M}^{+}, 2\right), 105$ (21), 153 (48), 85 (100), 57 (62). Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}$: C, 71.95; H, 12.08. Found: C, 71.89; H, 12.14.

4.- LAB-mediated reduction. Synthesis of alcohols $\mathbf{8 b}-\mathrm{k}$

(+)-(R)-3,4-Dimethylpentan-1-ol (8b).

Alcohol $\mathbf{8 b}$ ($100 \mathrm{mg}, 0.86 \mathrm{mmol}$) was prepared according to the
 general procedure starting from amide $\mathbf{3 b}(0.38 \mathrm{~g}, 1.37 \mathrm{mmol})$, ${ }^{\mathrm{n}} \mathrm{BuLi}(7.6 \mathrm{~mL}$ of a 0.7 M solution in hexanes, 5.36 mmol), ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NH}(0.7 \mathrm{~mL}, 5.36 \mathrm{mmol})$ and $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}(0.19 \mathrm{~g} 5.48 \mathrm{mmol})$ and isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 8:2). Yield: 63\%. $[\alpha]_{D}{ }^{20}=+13.2\left(c=1.0, C H C l_{3}\right)\left(\right.$ Lit. $^{5}[\alpha]_{D}{ }^{20}=-13.5$, neat for the S isomer). ${ }^{1}$ H-NMR $(\delta$, ppm): $0.85(\mathrm{~m}, 9 \mathrm{H}) ; 1.47(\mathrm{~m}, 5 \mathrm{H}) ; 3.66(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 15.4 ; 17.9 ; 20.2 ;$ 31.7; 35.0; 38.2; 61.5. IR (CHCl_{3}): 3204 (OH). MS (EI) m / z (Rel. Int.): $130\left(\mathrm{M}^{+}, 35\right)$, 115 (33), 99 (100), 85 (27), 65 (36), 59 (12), 52 (26). MS (EI) m/z (Rel. Int.): 116 (M^{+}, 5), 101 (33), 91 (100), 79 (15), 65 (30), 55 (32), 52 (23).

(+)-(R)-3,4,4-Trimethylpentan-1-ol (8c).

Alcohol $8 \mathbf{8 c}(132 \mathrm{mg}, 1.00 \mathrm{mmol})$ was prepared according to the general procedure starting from amide $3 \mathrm{c}(0.39 \mathrm{~g}, 1.35 \mathrm{mmol})$, ${ }^{\mathrm{n}} \mathrm{BuLi}(5.4 \mathrm{~mL}$ of a 1.0 M solution in hexanes, 5.43 mmol), ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NH}(0.7 \mathrm{~mL}, 5.43 \mathrm{mmol})$ and $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}(0.18 \mathrm{~g} 5.43 \mathrm{mmol})$ and isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 8:2). Yield: $75 \% .[\alpha]_{\mathrm{D}}{ }^{20}=+23.7(c=3.32, \mathrm{EtOH})\left(\right.$ Lit. ${ }^{8}[\alpha]_{\mathrm{D}}{ }^{20}=+27.5, c=3.32$, EtOH). ${ }^{1} \mathrm{H}-$ NMR (δ, ppm): 0.76 (t, 3H, $J=7.2 \mathrm{~Hz}$); $0.82(\mathrm{~s}, 9 \mathrm{H}) ; 1.25(\mathrm{~m}, 2 \mathrm{H}) ; 1.74(\mathrm{~m}, 1 \mathrm{H}) ; 2.27$ (bs, 1H); $3.55(\mathrm{~m}, 1 \mathrm{H}) ; 3.67(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 14.3 ; 32.7 ; 34.7 ; 39.2 ; 62.1$. IR (CHCl_{3}): $3440(\mathrm{OH}) . \mathrm{MS}(\mathrm{EI}) m / z\left(\right.$ Rel. Int.): $130\left(\mathrm{M}^{+}, 7\right), 115$ (28), 91 (100), 79 (12), 65 (43), 55 (12), 51 (14).

(+)-(R)-3-Phenylbutan-1-ol (8d).

Alcohol $8 \mathbf{d d}(85 \mathrm{mg}, 0.57 \mathrm{mmol})$ was prepared according to the general procedure starting from amide $\mathbf{3 d}(0.24 \mathrm{~g}, 0.79 \mathrm{mmol})$, ${ }^{\mathrm{n}} \mathrm{BuLi}(4.4 \mathrm{~mL}$ of a 0.7 M solution in hexanes, 3.12 mmol), ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NH}(0.4 \mathrm{~mL}, 3.12 \mathrm{mmol})$ and $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}(100 \mathrm{mg} 3.12 \mathrm{mmol})$ and isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 8:2).

[^4]Yield: $72 \% .[\alpha]_{\mathrm{D}}{ }^{20}=+1.3\left(c=1.02, \mathrm{CHCl}_{3}\right)\left(\mathrm{Lit.}^{9}[\alpha]_{\mathrm{D}}{ }^{20}=-1.28, c=1.02, \mathrm{CHCl}_{3}\right.$ for the S isomer). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.25(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 1.87(\mathrm{~m}, 2 \mathrm{H}) ; 2.80(\mathrm{~m}, 1 \mathrm{H}) ; 3.62$ (m, 2H); 7.26 (m, 5H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 21.7 ; 35.4 ; 40.3 ; 65.4 ; 126.2 ; 126.8 ; 127.3$ 145.3; IR $\left(\mathrm{CHCl}_{3}\right): 3355(\mathrm{OH})$. MS (EI) m/z (Rel. Int.): 132 ($\mathrm{M}^{+}-18,32$), 117 (100), 105 (70), 96 (65); 85 (40), 83 (32), 79 (25), 77 (33), 69 (45), 55 (23).

(-)-(S)-3-Ethylheptan-1-ol (8e).

Alcohol $8 \mathrm{e}(37 \mathrm{mg}, 0.26 \mathrm{mmol})$ was prepared according to
 the general procedure starting from amide $3 \mathrm{e}(0.12 \mathrm{~g}$, 0.39 mmol), ${ }^{\mathrm{n}} \mathrm{BuLi}(1.56 \mathrm{~mL}$ of a 1.0 M solution in hexanes, 1.56 mmol$),{ }^{i} \mathrm{Pr}_{2} \mathrm{NH}(0.22 \mathrm{~mL}, 1.56 \mathrm{mmol})$ and $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}(33 \mathrm{mg} 1.56 \mathrm{mmol})$ and isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 9:1). Yield: $65 \% .[\alpha]_{\mathrm{D}}{ }^{20}=-2.4\left(c=1.0, \mathrm{CHCl}_{3}\right)\left(\mathrm{Lit}^{5}[\alpha]_{\mathrm{D}}{ }^{20}=-0.32\right.$, $c=0.05, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.83(\mathrm{~m}, 6 \mathrm{H}) ; 1.26(\mathrm{~m}, 8 \mathrm{H}) ; 1.54(\mathrm{~m}, 2 \mathrm{H}) ; 3.63(\mathrm{~d}$, $2 \mathrm{H}, J=6.1 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 10.7 ; 14.1 ; 23.0 ; 25.9 ; 28.8 ; 32.8 ; 35.5 ; 36.4 ; 61.3$. IR (CHCl_{3}): 3447 (OH). MS (EI) m / z (Rel. Int.): 126 ($\mathrm{M}^{+}-18,5$), 106 (56), 92 (42), 77 (81), 63 (100), 51 (42).

(+)-(R)-3-Phenylpentan-1-ol (8f).

Alcohol $\mathbf{8 f}(55 \mathrm{mg}, 0.34 \mathrm{mmol})$ was prepared according to the general procedure starting from amide $3 f(0.14 \mathrm{~g}$, 0.43 mmol), ${ }^{\mathrm{n}} \mathrm{BuLi}(2.8 \mathrm{~mL}$ of a 0.6 M solution in hexanes, $1.74 \mathrm{mmol}),{ }^{i} \mathrm{Pr}_{2} \mathrm{NH}(0.2 \mathrm{~mL}, 1.74 \mathrm{mmol})$ and $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}(53 \mathrm{mg} 1.74 \mathrm{mmol})$ and isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 8:2). Yield: $78 \% .[\alpha]_{\mathrm{D}}{ }^{20}=+6.3\left(c=0.95, \mathrm{CHCl}_{3}\right)\left(\mathrm{Lit.}^{10}[\alpha]_{\mathrm{D}}{ }^{20}=-7.0, c=0.95, \mathrm{CHCl}_{3}\right.$ for the S isomer). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.78(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 1.65(\mathrm{~m}, 2 \mathrm{H}) ; 1.74(\mathrm{~m}, 1 \mathrm{H}) ; 1.93(\mathrm{~m}$, $1 \mathrm{H}) ; 2.59(\mathrm{~m}, 1 \mathrm{H}) ; 3.50(\mathrm{~m}, 1 \mathrm{H}) ; 7.18(\mathrm{~m}, 3 \mathrm{H}) ; 7.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 12.0 ;$ 29.7; 39.2; 44.2; 61.1; 126.1; 127.6; 128.3; 144.9. IR (CHCl_{3}): 3454 (OH). MS (EI) m/z (Rel. Int.): 164 ($\mathrm{M}^{+}, 26$), 125 (61), 113 (73), 99 (100), 85 (12), 73 (6), 59 (7).

[^5]
(-)-(S)-3-Propylheptan-1-ol (8g).

Alcohol $\mathbf{8 g}(0.20 \mathrm{~g}, 1.27 \mathrm{mmol})$ was prepared according to the general procedure starting from amide $\mathbf{3 g}(0.61 \mathrm{~g}$, $1.92 \mathrm{mmol}),{ }^{\mathrm{n}} \mathrm{BuLi}(10.7 \mathrm{~mL}$ of a 0.7 M solution in hexanes, 7.52 mmol$),{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NH}(1.1 \mathrm{~mL}, 7.52 \mathrm{mmol})$ and $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}(0.26 \mathrm{~g} 7.51 \mathrm{mmol})$ and isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 8:2). Yield: $66 \% .[\alpha]_{\mathrm{D}}{ }^{20}=-1.8\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm})$: $0.84(\mathrm{~m}, 6 \mathrm{H}) ; 1.22(\mathrm{~m}, 10 \mathrm{H}) ; 1.47(\mathrm{~m}, 3 \mathrm{H}) ; 2.33(\mathrm{bs}, 1 \mathrm{H}) ; 3.60(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-$ NMR ($\delta, \mathrm{ppm}): 14.0 ; 14.3 ; 19.6 ; 23.0 ; 28.7 ; 33.3 ; 33.9 ; 36.0 ; 36.7 ; 60.9$. IR $\left(\mathrm{CHCl}_{3}\right)$: 3333 (OH). MS (EI) m/z (Rel. Int.): 158 ($\mathrm{M}^{+}, 1$), 140 (3), 112 (25), 97 (22), 83 (36); 70 (56); 55 (100). Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 75.88$; H, 14.01. Found: C, 75.92 ; H, 13.93.

(-)-(R)-3-tert-Butylhexan-1-ol (8h).

Alcohol 8h $(0.18 \mathrm{~g}, 1.15 \mathrm{mmol})$ was prepared according to the general procedure starting from amide $3 \mathrm{~h}(0.61 \mathrm{~g}$, $1.92 \mathrm{mmol}),{ }^{\mathrm{n}} \mathrm{BuLi}(10.8 \mathrm{~mL}$ of a 0.7 M solution in hexanes, 7.71 mmol), ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NH}(1.2 \mathrm{~mL}, 7.71 \mathrm{mmol})$ and $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}(0.26 \mathrm{~g} 7.71 \mathrm{mmol})$ and isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 8:2). Yield: $84 \% .[\alpha]_{\mathrm{D}}{ }^{20}=-20.7\left(c=0.06, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm})$: $0.85(\mathrm{~s}, 9 \mathrm{H}) ; 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ; 1.34(\mathrm{~m}, 6 \mathrm{H}) ; 1.40(\mathrm{bs}, 1 \mathrm{H}) ; 1.54(\mathrm{~m}, 1 \mathrm{H}) ; 3.62(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 14.5 ; 22.8 ; 27.6 ; 33.6 ; 33.9 ; 34.8 ; 44.7 ; 63.3$ IR $\left(\mathrm{CHCl}_{3}\right)$: 3458 (OH). MS (EI) m/z (Rel. Int.): 140 ($\mathrm{M}^{+}-18,4$), 95 (35), 77 (100), 63 (77), 51 (28). Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 75.88 ; \mathrm{H}, 14.01$. Found: C, $76.01 ; \mathrm{H}, 13.88$.

(-)-(R)-3-Phenylhexan-1-ol (8i).

Alcohol $8 \mathbf{8 i}(71 \mathrm{mg}, 0.40 \mathrm{mmol})$ was prepared according to the general procedure starting from amide $3 \mathbf{i}(0.18 \mathrm{~g}$, $0.54 \mathrm{mmol}),{ }^{\mathrm{n}} \mathrm{BuLi}(3.5 \mathrm{~mL}$ of a 0.6 M solution in hexanes, 2.1 mmol), ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NH}(0.3 \mathrm{~mL}, 2.1 \mathrm{mmol})$ and $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}(70 \mathrm{mg} 2.1 \mathrm{mmol})$ and isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 9:1). Yield: $74 \% .[\alpha]_{\mathrm{D}}{ }^{20}=-6.7\left(c=2.0, \mathrm{CHCl}_{3}\right)\left(\right.$ Lit. $^{11}[\alpha]_{\mathrm{D}}{ }^{20}=-3.5$,

[^6]$\left.c=0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.86(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ; 1.18(\mathrm{~m}, 2 \mathrm{H}) ; 1.59(\mathrm{~m}, 2 \mathrm{H}) ;$ $1.89(\mathrm{~m}, 2 \mathrm{H}) ; 2.70(\mathrm{~m}, 1 \mathrm{H}) ; 3.50(\mathrm{~m}, 2 \mathrm{H}) ; 7.18(\mathrm{~m}, 3 \mathrm{H}) ; 7.33(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta$, ppm): 14.0; 20.5; 39.1; 39.5; 42.1; 61.0; 126.0; 127.5; 128.3; 145.2. IR $\left(\mathrm{CHCl}_{3}\right): 3418$ (OH). MS (EI) m/z (Rel. Int.): $178\left(\mathrm{M}^{+}, 7\right), 120(5), 95(30), 81$ (70), 77 (100), 65 (60), 53 (16).

(-)-(S)-4,4-Dimethyl-3-phenylpentan-1-ol (8j).

Alcohol $\mathbf{8 j}$ ($72 \mathrm{mg}, 0.38 \mathrm{mmol}$) was prepared according to the general procedure starting from amide $\mathbf{3 j}(0.15 \mathrm{~g}$, 0.43 mmol), ${ }^{\mathrm{n}} \mathrm{BuLi}(2.8 \mathrm{~mL}$ of a 0.6 M solution in hexanes, $1.74 \mathrm{mmol}),{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NH}(0.2 \mathrm{~mL}, 1.74 \mathrm{mmol})$ and $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}(53 \mathrm{mg} 1.74 \mathrm{mmol})$ and isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 8:2). Yield: $80 \% .[\alpha]_{D}{ }^{20}=-7.4\left(c=0.1, \mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\right.$ Lit. $^{12}[\alpha]_{\mathrm{D}}{ }^{20}=+7.31, c=1.0, \mathrm{C}_{6} \mathrm{H}_{6}$ for the R isomer). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.88(\mathrm{~s}, 9 \mathrm{H}) ; 2.0(\mathrm{~m}, 2 \mathrm{H}) ; 2.50(\mathrm{dd}, 1 \mathrm{H}, J=11.9,3.2 \mathrm{~Hz}) ;$ $2.31(\mathrm{~m}, 1 \mathrm{H}) ; 3.47(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 28.1 ; 32.4 ; 33.6 ; 52.8 ; 62.1 ; 126.1$; 127.7; 129.4; 142.3. IR $\left(\mathrm{CHCl}_{3}\right): 3320(\mathrm{OH}) . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ (Rel. Int.): $192\left(\mathrm{M}^{+}, 2\right), 178$ (15), 141 (12), 125 (35), 99 (100), 85 (9), 73 (6), 58 (5).

(+)-(R)-4,4-Dimethyl-3-phenylpentan-1-ol (8k).

Alcohol $\mathbf{8 k}$ ($107 \mathrm{mg}, 0.30 \mathrm{mmol}$) was prepared according to
 the general procedure starting from amide $\mathbf{3 k}(0.15 \mathrm{~g}$, 0.43 mmol), ${ }^{\mathrm{n}} \mathrm{BuLi}$ (2.8 mL of a 0.6 M solution in hexanes, $1.74 \mathrm{mmol}),{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NH}(0.2 \mathrm{~mL}, 1.74 \mathrm{mmol})$ and $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}(53 \mathrm{mg} 1.74 \mathrm{mmol})$ and isolated as a yellowish oil after flash column chromatography purification (hexanes/AcOEt 8:2). Yield: $71 \% .[\alpha]_{\mathrm{D}}{ }^{20}=+7.7\left(c=0.1, \mathrm{CHCl}_{3}\right)\left(\right.$ Lit. $\left.^{12}[\alpha]_{\mathrm{D}}{ }^{20}=+7.31, c=1.0, \mathrm{C}_{6} \mathrm{H}_{6}\right)$. The rest of spectroscopic properties recorded were identical to those of its enantiomer $\mathbf{7 j}$.

[^7]
5.- Synthesis of (S)-14-methyloctadec-1-ene

(+)-(S)-3-Methylheptyl methanesulfonate (11a).

$n-\mathrm{BuLi}(3.7 \mathrm{~mL}$ of a 1.25 M solution in hexanes, 4.71 mmol)
 was added over a solution of diisopropylamine $(0.71 \mathrm{~mL}$, $5.00 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 15 minutes. The reaction was warmed to $0^{\circ} \mathrm{C}$ and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(0.15 \mathrm{~g}, 4.8$ mmol) was added at once. The mixture was stirred 15 min at $0^{\circ} \mathrm{C}$ and another 15 min at room temperature, after which a solution of the amide $\mathbf{2 a}(0.35 \mathrm{~g}, 1.2 \mathrm{mmol})$ in THF (20 mL) was added via canula at $0^{\circ} \mathrm{C}$ and the reaction was stirred for 2 hours at room temperature. Then the reaction was quenched with $1 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$ and extracted with AcOEt ($3 \times 15 \mathrm{~mL}$). The organic fractions were collected, washed with sat. NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed in vacuo. Next, the resulting oil was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and the mixture was cooled down to $0^{\circ} \mathrm{C}$, at which temperature $\mathrm{Et}_{3} \mathrm{~N}(0.51 \mathrm{~mL}, 3.62 \mathrm{mmol})$ and $\mathrm{MsCl}(0.27 \mathrm{~mL}, 3.62 \mathrm{mmol})$ were added at once. After stirring for $2 \mathrm{~h}, \mathrm{NH}_{4} \mathrm{Cl}$ (sat.) was added (15 mL) and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The organic fractions were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed in vacuo. affording mesylate $11 \mathrm{a}(0.20 \mathrm{~g}, 0.82$ mmol) after flash column chromatography purification (hexanes/AcOEt 8:2). Yield: $89 \% .[\alpha]_{\mathrm{D}}{ }^{20}=+2.13\left(c=0.1, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 0.86(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{~m}, 6 \mathrm{H})$, $1.51(\mathrm{~m}, 3 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}): 13.1 ; 19.8$; 22.6; 24.7; 25.2; 36.6; 37.2; 38.9; 67.5 .

(+)-(S)-14-Methyloctadec-1-ene (12a).

t-BuLi (1.49 mL of a 1.10 M solution in
 hexanes, 1.64 mmol) was added to a cooled ($78^{\circ} \mathrm{C}$) solution of 11-bromoundec-1-ene $(0.17$ $\mathrm{mL}, 0.82 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$. After stirring for 15 min . at this temperature, a solution of mesylate $\mathbf{1 1 a}(0.17 \mathrm{~g}, 0.82 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ was added at once and the mixture was stirred for 60 min at $-78^{\circ} \mathrm{C}$ and for further 60 min at rt . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 15 mL). The organic fractions were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed in vacuo. affording target compound 12a ($0.11 \mathrm{~g}, 0.40$ mmol) after flash column chromatography purification (hexanes/AcOEt 8:2). Yield:
$48 \% .[\alpha]_{\mathrm{D}}{ }^{20}=+0.90\left(c=1, \mathrm{CHCl}_{3}\right)$. Lit. $^{13}[\alpha]_{\mathrm{D}}{ }^{20}:+1.18,\left(c=5.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta$, $\mathrm{ppm}): ~ 0.89(\mathrm{~m}, 6 \mathrm{H}), 1.32(\mathrm{~m}, 22 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~m}$, $2 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H})$. The other spectroscopic and analytical data matched with those reported in the literature.

[^8]6.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of amides $2 \mathrm{a}-\mathrm{k}$.
6.1.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR espectra of amide $\mathbf{2 a}$.

6.2.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR espectra of amide $\mathbf{2 b}$.

6.3.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR espectra of amide 2c.

6.4.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR espectra of amide 2d.

6.5.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR espectra of amide $\mathbf{2 e}$.

6.6.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR espectra of amide $\mathbf{2 f}$.

6.7.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR espectra of amide $\mathbf{2 g}$.

6.8.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR espectra of amide $\mathbf{2 h}$.

6.9.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR espectra of amide $\mathbf{2 i}$.

6.10.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR espectra of amide $\mathbf{2} \mathbf{j}$.

6.11.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR espectra of amide $\mathbf{2 k}$.

7.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR espectra of mesylate 11a.

8.- ${ }^{1}$ H-NMR espectra of (+)-(S)-14-Methyloctadec-1-ene (12a)

(S)-14-methyloctadec-1-ene

[^0]: ${ }^{1}$ Reyes, E.; Vicario, J. L.; Badia, D.; Carrillo, L.; Iza, A.; Uria, U. Org. Lett. 2006, 8, 2535.

[^1]: ${ }^{2}$ Enders, D.; Rendebach, B. E. M. Tetrahedron 1986, 42, 2235.
 ${ }^{3}$ Zhang, W.-Y.; Jakiela, D. J.; Maul, A.; Knors, C.; Lauher, J. W.; Helquist, P.; Enders, D. J. Am. Chem. Soc. 1988, 110, 4652.

[^2]: ${ }^{4}$ Suzuki, I.; Kin, H.; Yamamoto, Y. J. Am. Chem. Soc. 1993, 115, 10139.
 ${ }^{5}$ Norsikian, S.; Marek, I.; Klein, S., Poisson, J. F.; Normant, J. F. Chem. Eur. J. 1999, 2055.
 ${ }^{6}$ Chiacchio, U.; Corsaro, A.; Gambera, G., Rescifina, A.; Piperno, A.; Romeo, R.; Romeo, G.
 Tetrahedron: Asymmetry 2002, 13, 1915

[^3]: ${ }^{7}$ Tanaka, K.; Fu, G. C. J. Org. Chem. 2001, 66, 8177.

[^4]: ${ }^{8}$ Giacomelli, G.; Lardicci, L.; Caporusso, A. M. J. Chem. Soc. Perkin Trans. 1 1975, 1795.

[^5]: ${ }^{9}$ Ito, H.; Nagahara, T.; Ishihara, K.; Saito, S.; Yamamoto, H. Angew. Chem. Int. Ed. 2004, 43, 994
 ${ }^{10}$ Pridgen, L. N.; Mokhallalati, M. K.; Wu, M.-J. J. Org. Chem. 1992, 57, 1237.

[^6]: ${ }^{11}$ Chang, C.-J.; Fang, J.-M.; Liao, L.-F. J. Org. Chem. 1993, 58, 1754.

[^7]: ${ }^{12}$ Menicagli, R.; Lardicci, L. Chem. Ind. 1974, 576.

[^8]: ${ }^{13}$ Kharisov, R. Y.; Latypova, E. R.; Talipov, R. F.; Muslukhov, R. R.; Ishmuratov, G. Y.; Tolstikov, G. A. Russ. Chem. Bull. 2003, 52, 2267.

