Supporting Information

for

Dynamic kinetic resolution of benzoins by enzyme-metal combo catalysis.

Pilar Hoyos, María Fernández, José V. Sinisterra, Andrés R. Alcántara

Grupo de Biotransformaciones. Dpto. Química Orgánica y Farmacéutica. Fac.

Farmacia. Universidad Complutense. Madrid (Spain).

Table of contents

1. MaterialsS	-1
2. Analytical methods	-2
3. Synthesis of <i>R</i> , <i>S</i> -1d and <i>R</i> , <i>S</i> -1e	-5
4. Synthesis of <i>R</i> , <i>S</i> -2b, <i>R</i> , <i>S</i> -2d, <i>R</i> , <i>S</i> -2g, <i>R</i> , <i>S</i> -2h, <i>R</i> , <i>S</i> -2i, <i>R</i> , <i>S</i> -2jS-5-	-12
5. Synthesis of R,S-2a and R,S-2c	-14
6. General methods for transesterification (Kinetic resolution)S-14	-19
7. General procedure for Dynamic Kinetic Resolution	S-19
8. NMR spectra for <i>R</i> , <i>S</i> -2b, <i>R</i> , <i>S</i> -2d, <i>R</i> , <i>S</i> -2g, <i>R</i> , <i>S</i> -2h, <i>R</i> , <i>S</i> -2i, <i>R</i> , <i>S</i> -2j,	
and R.S-2c	-34

1. Materials

Lipase TL® from *Pseudomonas stutzeri* was a generous gift from Meito & Sangyo Co, Ltd[®]. Shvo's catalyst (1-Hydroxytetraphenylcyclopentadienyl(tetraphenyl-2,4-cyclopentadien-1-one)-μ-hydrotetracarbonyldiruthenium (II), 98%) was obtained from Strem Chemicals Inc. (Newburyport, MA, USA).

2. Analytical methods

HPLC analysis were performed with a chiral column Chiracel OD (cellulose carbamate, 25 cm x 0.46 cm i. d) at room temperature, using HPLC (mobile phase of n-hexane/2-propanol, 90/10 at a flow rate of 0.8 mL/min).

NMR spectra were recorded on a Bruker AC-250. Chemical shifts (δ) are reported in parts per million (ppm) relative to CHCl₃ (1 H: δ 7.27 ppm) and CDCl₃ (13 C: δ 77.0 ppm).

Column chromatography purifications were conducted on silica gel 60 (40-63 μ m). TLC was carried out on aluminium sheets precoated with silica gel; the spots were visualized under UV light (λ =254 nm).

3. Synthesis of 2,2'-Thenoin (R,S-1d) and 3,3'-Thenoin (R,S-1e)

3	Ar	1
3a : 2-Thiophenecarboxaldehyde	Ar = 2-Thienyl-	1d: 2-Thenoin
3b: 3- Thiophenecarboxaldehyde	$\mathbf{Ar} = 3$ -Thienyl-	1e : 3-Thenoin

3. 1. Synthesis of 2-thenoin [2-hydroxy-1,2-di(thiophen-2-yl)ethanone], (R,S)-1d.

Thiamine hydrochloride (1.686 g, 5 mmol) was dissolved in absolute ethanol (30 mL) in a round bottom flask and triethylamine (4.2 mL, 30mmol) and 2-thiophenecarboxaldehyde were added (8.9 mL, 100mmol). The mixture was stirred at room temperature, under argon atmosphere. The solution presented a dark green color, turning to red in 15 minutes. The reaction progress was followed by TLC (n-hexane/ 2-propanol, 7/2 (v/v); 3a, $R_f = 0.25$; 1d, $R_f = 0.09$). After 24 hours the product started to precipitate. The mixture was filtered and the white solid collected (10.75 g, 48 mmol) was washed with cold ethanol (48% yield).

¹H NMR (250 MHz, CDCl₃) δ (ppm): 7.79 (1H, dd, J=3.8 Hz, J=1.0 Hz), 7.75 (1H, dd, J=4.9 Hz, J=1.1 Hz), 7.34 (1H, dd, J=5.9 Hz, J=1.1 Hz), 7.15 (1H, dd, J=4.9 Hz), 7.13 (1H, dddd, J=3.5 Hz, J=1.2 Hz, J=0.6Hz), 7.01 (1H, dd, J=5.1 Hz, J=3.5 Hz), 6.07 (1H, s), 4.41 (1H, 2d, J=1.4 Hz, J=0.8 Hz). ¹³C NMR (63 MHz, CDCl₃) δ (ppm): 190.3,

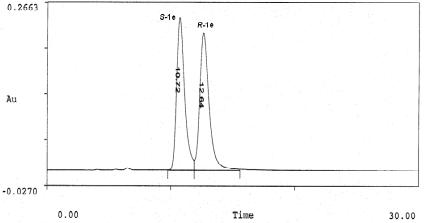
142.4, 139.6, 135.8, 134. , 128.8, 127.6 , 127.3, 127.2, 71.3. Anal. Calcd. for $C_{10}H_8O_2S_2$: C, 53.53; H, 3.59; S, 28.59. Found: C, 53.58; H, 3.62; S, 28.56.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention time (*R*)-1d= 11.17 min, (*S*)-1d= 10.17 min.

0087						
		18 1	\mathcal{J}			
			10.17			•
0853			S-1d R-	1 d		
.0.17 .1.17	853073 841913	3038786 4422537	9.01 10.59	10.58 14.50	46.752 46.139	39.2 57.1
5.83 6.42	89974 39734	173177 110346	5.18 6.18	6.17 7.42	4.931 2.178	1.4
		Area	Start	End	% Height	% A:

3. 2. Synthesis of 3-thenoin [(2-hydroxy-1,2-di(thiophen-3-yl)ethanone] (R,S)-

1e.


3-thenoin was synthesized by the same method as for 2-thenoin, using 3-thiophenecarboxaldehyde (**3b**) as substrate. The evolution of the reaction was followed by TLC (n-hexane/2-propanol, 7/2 (v/v); **3b**, $R_f = 0.45$; **1e** $R_f = 0.25$). The reaction time was 24 hours, and 9.18 g of **1e** (41 mmol) were collected (41% yield).

¹**H NMR** (250 MHz, CDCl₃) δ: 4.34 (1H, d, *J*= 6,0 Hz), 5.84 (1H, d, *J*= 6.0 Hz), 6.99 (1H, dd, *J*= 4.9 Hz, *J*= 1.2 Hz), 7.28 (1H, d, *J*= 2.8 Hz), 7.3 (1H, dd, *J*= 2.9 Hz, *J*= 0.7 Hz), 7.33 (1H, dd, *J*= 2.7 Hz, *J*= 1.1 Hz), 7.51 (1H, dd, *J*= 5.3 Hz, *J*= 1.1 Hz), 8.04 (1H,

dd, J= 2.8 Hz, J= 1.2 Hz). ¹³C RMN (63 MHz, CDCl₃) δ : 72.4, 124.2, 124.2, 126.5, 127.0, 127.2, 134.2, 192.3. Anal. Calcd. for C₁₀H₈O₂S₂: C, 53.55; H, 3.59; S, 28.59. Found: C, 53.52; H, 3.92; S, 27.36.

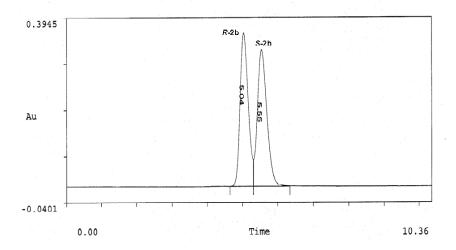
HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention time (R)-1e= 12.64 min, (S)-1e= 10.72 min.

File - \lcta	lk\integrat\1	7ENE250.012				다 하 보호하다
Retention	Height	Area	Start	End	% Height	% Are
10.72	2662420	11987064	9.76	11.89	52.632	48.6
12.64	2396114	12669785	11.90	15.60	47.368	51.3

4. Synthesis of butyric esters of benzoins: 2-oxo-1,2-diphenylethyl butyrate (R,S-2b), 1,2-di(furan-2-yl)-2-oxoethyl butyrate (R,S-2d), 2-oxo-1,2-di(thiophen-2-yl)ethyl butyrate (R,S-2g), 2-oxo-1,2-di(thiophen-3-yl)ethyl butyrate (R,S-2h), 1,2-bis(4-methoxyphenyl)-2-oxoethyl butyrate (R,S-2i), 1,2-bis(4-ethoxyphenyl)-2-oxoethyl butyrate (R,S-2j):

General procedure:

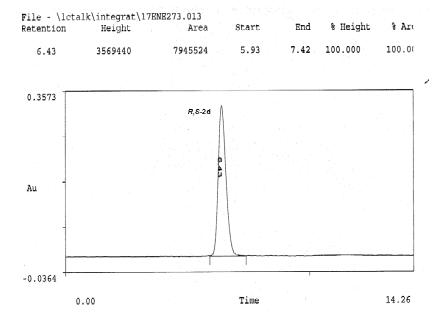
1 was dissolved in dichloromethane and triethylamine (1.1 equiv.) and butyryl chloride (1.5 equiv.) were added. The mixture was stirred at room temperature. After 15 hours the product was purified by silica-gel column chromatography (n-hexane/ethyl acetate 5/1 (v/v))


4. 1: 2-oxo-1,2-diphenylethyl butyrate (*R*,*S*-2b) (44% yield)

¹H NMR (250 MHz, CDCl₃): 7.97 (2H, dd, J=8.3, J=2.0 Hz), 7.96 (2H, dd, J=8.3, J=1.5 Hz), 7.57 (1H, t, J=1.3 Hz), 7.54 (1H, t, J=2.4 Hz), 7.51 (1H, m), 7.48 (1H, d, J=1.9 Hz), 7.45 (1H, dd, J=1.4, J=2.0 Hz), 7.42 (1H, m), 7.39 (1H, dd, J=1.9, J=2.0 Hz), 7.37 (1H, d, J=1.9 Hz), 6.89(1H, s), 2.54 (1H, c, J=7.6 Hz), 2.42 (1H, c, J=7.6 Hz), 1.74 (2H, sex, J=7.4 Hz), 1.0 (3H, t, J=7.4 Hz). ¹³C NMR (63 MHz, CDCl₃) δ (ppm): 194.37, 173.62, 135.10, 134.10, 133.86, 129.67, 129.51, 129.51, 112.80, 76.92, 36.27, 18.80, 14.03. Anal. Calcd. for C₁₈H₁₈O₃: C, 76.59; H, 6.43. Found: C, 75.44; H, 6.23.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention time (\mathbf{R}) -2b= 5.04 min, (\mathbf{S}) -2b= 5.55 min.

S-6


File - \lcta	lk\integrat\16	ENE243.013					
Retention	Height	Area	Start	End	% Height	& Are	
5.04	3944607	6314216	4.64	5.31	52.940	48.85	
5.55	3506420	6598577	5.32	6.34	47.060	51.10	

4. 2: 1,2-di(furan-2-yl)-2-oxoethyl butyrate (*R*,*S*-2d) (67% yield)

¹**H NMR** (250 MHz, CDCl₃): 7.50 (1H, dd, J=1.7 Hz, J=0.7 Hz), 7.38 (1H, dd, J=1.8 Hz, J=0.8 Hz), 7.20 (1H, dd, J=3.5 Hz, J=0.7 Hz), 6.9 (1H, s), 6.45 (1H, dd, J=3.6 Hz, J=1.7 Hz), 6.43 (1H, dd, J=3.3, J=0.4 Hz), 2.39 (1H, t, J=7.4 Hz), 2.37 (1H, t, J=7.5 Hz), 1.73 (2H, sex, J=7.4 Hz), 0.99 (3H, t, J=7.4 Hz). ¹³**C NMR** (63 MHz, CDCl₃) δ (ppm): 178.8, 171.8, 149.2, 146.1, 145.5, 143.1, 118.1, 111.4, 110.6, 110.0, 69.1, 34.5, 17.3, 12.5. Anal. Calcd. for C₁₄H₁₄O₅: C, 64.12; H, 5.38. Found: C, 62.83; H, 5.29.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention time: (**R,S**)-2d= 6.43 min.

4. 3: 2-oxo-1,2-di(thiophen-2-yl)ethyl butyrate (*R*,*S*-2g) (86% yield).

¹H NMR (250 MHz, CDCl₃): 7.84 (1H, dd, *J*=3.8 Hz, *J*=1.0 Hz), 7.70 (1H, dd, *J*=4.9 Hz, *J*=1.1 Hz), 7.4 (1H, dd, *J*=5.1 Hz, *J*=1.2 Hz), 7.40 (1H, dd, *J*=5.1 Hz, *J*=1.2 Hz), 7.21 (1H, ddd, *J*=3.6, *J*=1.1, *J*=0.5, Hz), 7.13 (1H, dd, *J*=4.93 Hz, *J*=3.9 Hz), 7.03 (1H, dd, *J*=5.2 Hz, *J*=3.5 Hz), 6.9 (1H, s), 2.49 (1H, t, *J*=7.7 Hz), 2.47 (1H, t, *J*=7.3 Hz), 1.73 (2H, sex, *J*=7.4 Hz), 0.99 (3H, t, *J*=7.4 Hz). ¹³C NMR (63 MHz, CDCl₃) δ (ppm): 185.9, 173.3, 140.7, 135.9, 135.2, 133.8, 129.2, 128.7, 128.4, 127.7, 73.2, 36.2, 18.7, 14.0. Anal. Calcd. for C₁₄H₁₄O₃S₂: C, 57.12; H, 4.79; S, 21.78. Found: C, 56.26; H, 4.64; S, 21.30.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention time: (R)-2g=6 min, (S)-2g=6.64 min.

Retention	talk\integrat\3JU Height	Area	Start	End	% Height	% Are
6.00 6.64	1739521 1579715	3327790 3521815	5.69 6.34	6.33 7.71	52.407 47.593	48.58 51.43
0.1736		a.	2g Λ			
			\$-2g			
			6.64			
Au			2			
			1 V \			
			1. [
-0.0268						
	0.00		Time			12.16

4. 4: 2-oxo-1,2-di(thiophen-3-yl)ethyl butyrate (*R*,*S*-2h) (89% yield)

¹H NMR (250 MHz, CDCl₃): 8.02 (1H, dd, J=2.9 Hz, J=1.3 Hz), 7.45 (1H, dd, J=5.1 Hz, J=1.3 Hz), 7.35 (1H, ddd, J=2.9 Hz, J=1.3 Hz, J=0.5 Hz), 7.25 (1H, dd, J=5 Hz, J=4 Hz), 7.21 (1H, dd, J=5, J=2.9 Hz), 7.06 (1H, dd, J=5 Hz, J=1.3 Hz), 6.9 (1H, s), 2.37 (1H, t, J=7.5 Hz), 2.36 (1H, t, J=7.3 Hz), 1.62 (2H, sex, J=7.4 Hz), 0.89 (3H, t, J=7.4 Hz). ¹³C NMR (63 MHz, CDCl₃) δ (ppm): 188.1, 173.4, 139.2, 134.8, 133.7, 127.7, 127.4, 127.3, 126.8, 126.0, 74.3, 36.2, 18.8, 14.0. Anal. Calcd. for C₁₄H₁₄O₃S₂: C, 57.12; H, 4.79; S, 21.78. Found: C, 56.09; H, 4.69; S, 21.43.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention time: (R)-2h= 5.92 min, (S)-2h= 6.50 min.

etention	Height	Area	Start	End	% Height	% Ar
5.92	3095434	5936883	4.25	6.17	52.494	46.8
6.50	2719124	6412933	6.18	8.17	46.112	50.5
9.42	72473	238797	8.18	10.67	1.229	1.8
20.75	9708	93670	19.17	22.42	0.165	0.7
0.3105						
	R-2h S-2					
	3-2					
	5.92					
	N o					
Au	15					
. 97 1						
1						
	11/					
	12.1	10		20.		
		The Late of the Control of the Contr		/		
0.0366						

4. 5: 1,2-bis(4-methoxyphenyl)-2-oxoethyl butyrate (R,S-2i) (85% yield)

¹H NMR (250 MHz, CDCl₃): 7.85 (2H, d, *J*=9 Hz), 7.30 (2H, d, *J*=9 Hz), 6.80 (2H, d, *J*=8.8 Hz), 6.79 (2H, d, *J*=9.0 Hz), 6.73 (1H, s), 3.75 (3H, s), 3.70 (3H, s), 2.42 (1H, c, *J*=7.6 Hz), 2.30 (1H, c, *J*=7.6 Hz), 1.63 (2H, sex, *J*=7.4 Hz), 0.90 (3H, t, *J*=7.4 Hz). ¹³C NMR (63 MHz, CDCl₃) δ (ppm): 192.7, 174.4, 164.8, 160.3, 134.6, 130.1, 129.0, 127.7, 113.4, 112.8, 75.6, 54.4, 54.2, 34.8, 17.6, 13.1. Anal. Calcd. for C₂₀H₂₂O₅: C, 70.16; H, 6.48. Found: C, 68.75; H, 6.28.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention time: (R)-2i=6.57 min, (S)-2i=9.17 min.

Tile Victa	EK\int egr at\16	ENE273.013	Service control	18	10000	
Retention	Height	Area	Start	End	% Height	% Are
6.57	2776553	6965420	5.94	7.18	59.164	48.80
7.44	184227	540208	7.19	8.10	3.926	3.71
9.17	1732168	6766009	8.48	11.18	36.910	47.40
0.2781		R-2i	1000	11/10/17		
14 14 15			s	-2 i		
		60 57		۸		
		, Table 1	9 17	1.		
Au						
				1.0		
			1			
-			1		Υ	
			4			
-0.0288						

4. 6: 1,2-bis(4-ethoxyphenyl)-2-oxoethyl butyrate (*R*,*S*-2j) (83% yield)

¹H NMR (250 MHz, CDCl₃): 7.83 (2H, d, *J*=9 Hz), 7.30 (2H, d, *J*=8.8 Hz), 6.8 (2H, d, *J*=8.8 Hz), 6.76 (2H, d, *J*=9.0 Hz), 6.72 (1H, s), 3.94 (4H, c, *J*=7Hz), 2.42 (1H, c, *J*=7.7 Hz), 2.30 (1H, c, *J*=7.6 Hz), 1.63 (2H, sex, *J*=7.4 Hz), 1.33(t, 3H, *J*=7Hz), 1.31(t, 3H, *J*=7Hz), 0.89 (3H, t, *J*=7.4 Hz). ¹³C NMR (63 MHz, CDCl₃) δ (ppm): 192.7, 173.7, 163.4, 160.0, 131.5, 130.4, 127.7, 126.4, 115.3, 114.6, 77.1, 64.1, 63.8, 36.3, 18.6, 15.1, 15.0, 13.1. Anal. Calcd. for C₂₂H₂₆O₅: C, 71.33; H, 7.07. Found: C, 70.11; H, 6.90.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention time: (\mathbf{R}) -2 \mathbf{j} = 5.33 min, (\mathbf{S}) -2 \mathbf{j} = 6.50 min.

etention	alk\integrat\7J Height	Area	Start	End	% Height	& Are
5.33	1826883	5849118	3.18	5.67	46.888	48.3
6.50	2020861	5981228	5.68	7.67	51.867	49.49
8.33	48490	263911	7.68	9.33	1.245	2.18
0.2512	R-2j					
		S-2j				
4.		A				
	U					
	5.33					
Au						
		8				
+						
		W.				
		10				
		<u> </u>				
0.0260			1.			
0.0200						

5. Synthesis of acetylated products: 2-oxo-1,2-diphenylethyl acetate (R,S-2a), 1,2-di(furan-2-yl)-2-oxoethyl acetate (R,S-2c)

5. 1: 2-oxo-1,2-diphenyethyl acetate (R,S-2a)

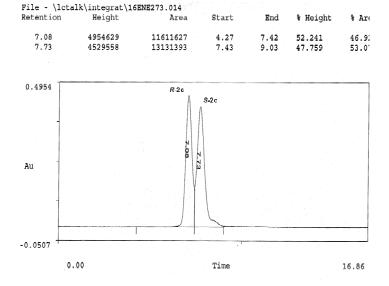
1a (4.2 g, 19.78 mmol) was solved in glacial acetic acid (4mL) and acetic anhydride (4 mL). 0.4 mL of H₂SO₄ were slowly added. The mixture was stirred in a 100°C bath during 30 min and then was added over 50 mL of water. After 2 h the flask was introduced in an ice bath and the product started to precipitate. It was filtered and the yellow solid was recrystallized, producing white crystals of **2a** (3.97 g, 79% yield).

¹**H NMR** (250 MHz, CDCl₃) δ (ppm): 7.96 (1H, m), 7.93 (1H, m), 7.53 (1H, t, J=2.3 Hz), 7.50 (1H, t, J=1.3 Hz), 7.48 (1H, d, J=1.9 Hz), 7.46 (1H, d, J=1.8 Hz), 7.43 (1H, c, J=2.4 Hz), 7.41 (1H, q, J=1.4 Hz), 7.38 (1H, d, J=2 Hz), 7.36 (1H, d, J=1.9 Hz),

6.87, 2.54. ¹³C RMN (63 MHz, CDCl₃) δ (ppm): 133.9, 129.7, 129.5, 129.1, 129.0, 129.0, 78.0, 21.2. Anal. Calcd. for C₁₆H₁₄O₃: C, 75.57; H, 5.55. Found: C, 74.28; H, 5.45.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention time: (R)-2a= 5.55 min, (S)-2a= 6.97 min.

etention	Height	Area	Start	End	% Height	% Ar
5.55 6.97	4442152 3430726	8390406 8394702	5.16 6.38	6.38 7.99	56.423 43.577	49.9 50.0
0.4442		R-2a				· ·
			S-2a			
		di Gn	6.97			
Au		· · · · · · · · · · · · · · · · · · ·				
0.0459		1 1	<u> </u>			
	.00		Time			14.88


5. 2: 1,2-di(furan-2-yl)-2-oxoethyl acetate (*R*,*S*-2c)

2-Furoin (200mg, 1.04mmol) was solved in 11mL of THF and 155 μ L of DBU and 111.43 μ L of acetyl chloride were added. After 24 h the product was purified by silica gel column chromatography (n-hexane/ethyl acetate, 7/2 (v/v)). The fractions were evaporated under vacuum, collecting a white solid (206 mg, 85% yield).

¹**H NMR** (250 MHz, CDCl₃) δ (ppm): 7.51 (1H, dd, J=1.6 Hz, J=0.7 Hz), 7.39 (1H, dd, J=1.8 Hz, J= 0.7Hz), 7.19 (1H, s), 6.69 (1H, s), 6.46 (1H, dd, J=3.6 Hz, J=1.7Hz), 6.44 (1H, dd, J=3.3 Hz, J=0.3 Hz), 6.32 (1H, dd, J= 3.3 Hz, J=1.8 Hz), 2.14

(3H, s). ¹³C **NMR** (63 MHz, CDCl₃) δ (ppm): 178.6, 169.1, 149.1 148.4, 146.1, 145.4, 143.2, 119.5, 110.7, 110.0, 69.3, 19.6. Anal. Calcd. for $C_{12}H_{10}O_5$: C, 61.54; H, 4.30. Found: C, 60.43; H, 4.21.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention time: (R)-2c=7.08 min, (S)-2c=7.73 min.

6. General methods for transesterification (Kinetic resolution)

The reactions were generally performed in the following manner: 0,47 mmol of 1 were dissolved in 5 mL of organic solvent (dry THF) and 2.82 mmol of acyl donor were added. The reaction was started by the addition of 20 mg/mL of Lipase TL® (previously dried under vacuum overnight), and the mixture was stirred under argon atmosphere. The reactions were monitored by HPLC, taking 20 μ L at different time intervals for analysis. As THF may damage the chiral column (Chiralcel OD®), each sample was evaporated under vacuum and the solid collected was re-solved n-hexane/2-propanol (50:50, v/v) before analyzing by HPLC (1a, λ_{max} =246 nm; 2a and 2b, λ_{max} =243 nm; 1b, λ_{max} =273 nm; 2c and 2d, λ_{max} =273 nm; 1c, λ_{max} =255 nm; 2e, λ_{max} =252 nm, 1d, λ_{max} =261 nm; 2f and 2g, λ_{max} =249 nm; 1e, λ_{max} =250 nm; 2h,

 λ_{max} =247 nm; **1f**, λ_{max} =276 nm; **2i**, λ_{max} =274 nm; **1g**, λ_{max} =278 nm; **2j**, λ_{max} =275 nm). The conversions and ee values were determined by the HPLC data.

When the reaction was finished the product (2) was purified by silica gel column chromatography (n-hexane/ethyl acetate 5:1, v/v) and the optical rotation was measured. NMR spectra of optically pure acylated benzoins were similar to those ones of the racemic mixtures previously described on each case.

6.1. Transesterification of (R,S)-1a with vinyl acetate:

$$(R,S)$$
-1a (R) -1a (R) -1a (R) -2a

The NMR data of S(+)-2a are similar to those of the racemic (R,S)-2a.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention times: (\mathbf{R})-1 \mathbf{a} = 13.11 min, (\mathbf{S})-1 \mathbf{a} = 9.52 min., (\mathbf{S})-2 \mathbf{a} = 6.90 min. 1 \mathbf{a} , λ_{max} =246 nm; 2 \mathbf{a} , λ_{max} =243 nm. Conversions and e.e are shown in manuscript (Table 2).

(S)-2a:
$$[\alpha]^{20}_D$$
: +91.8 (c 0.2 CHCl₃)

6.2. Transesterification of (R,S)-1a with vinyl butyrate:

OH lipase
$$R(-)-1a$$
 $S(+)-2b$

The NMR data of S(+)-2b are similar to those of the racemic (R,S)-2b.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention times: (R)-1a= 13.11 min, (S)-1a= 9.52 min., (S)-2b= 5.53 min. 1a; λ_{max} =246 nm; 2b, λ_{max} =243 nm. Conversions and e.e are shown in manuscript (Table 2).

(*S*)-**2b**:
$$[\alpha]^{20}_{D}$$
: +117.8 (*c* 3.5 CHCl₃)

6.3. Transesterification of (R,S)-1b with vinyl acetate:

$$(R,S)$$
-1b (R) -1b (R) -2c

The NMR data of S(+)-2c are similar to those of the racemic (R,S)-2c.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention times:

(*R*)-1b= 13.33 min, (*S*)-1b= 11.54 min., (*S*)-2c= 7.75 min. 1b; λ_{max} =273 nm; 2c, λ_{max} =273 nm. Conversions and e.e are shown in manuscript (Table 2).

(S)-2c:
$$[\alpha]^{20}_{D}$$
: +103.8 (c 3.0 CHCl₃)

6.4. Transesterification of (R,S)-1b with vinyl butyrate:

$$(R,S)$$
-1b $R(-)$ -1b $S(+)$ -2d

The NMR data of S(+)-2d are similar to those of the racemic (R,S)-2d.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention times: (\mathbf{R})-1 \mathbf{b} = 13.33 min, (\mathbf{S})-1 \mathbf{b} = 11.54 min., (\mathbf{S})-2 \mathbf{d} = 6.40 min. 1 \mathbf{b} ; λ_{max} =273 nm; 2 \mathbf{d} , λ_{max} =273 nm. Conversions and e.e are shown in manuscript (Table 2).

6.5. Transesterification of (R,S)-1c with vinyl acetate:

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention times: (\mathbf{R})-1 \mathbf{c} = 12.88 min, (\mathbf{S})-1 \mathbf{c} = 11.91 min., (\mathbf{S})-2 \mathbf{e} = 7.52 min. 1 \mathbf{c} ; λ_{max} =255 nm; 2 \mathbf{e} , λ_{max} =252 nm. Conversions and e.e are shown in manuscript (Table 2).

6.6. Transesterification of (R,S)-1d with vinyl acetate:

$$(R,S)$$
-1d (R,S) -1d

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8mL/min): retention times: (R)-1d= 11.15 min, (S)-1d= 10.13 min., (S)-2f= 6.20 min. 1d; λ_{max} =261 nm; 2f, λ_{max} =249 nm. Conversions and e.e are shown in manuscript (Table 2).

6.7. Transesterification of (R,S)-1d with vinyl butyrate:

$$(R,S)$$
-1d S-17 $R(-)$ -1d $S(+)$ -2g

The NMR data of S(+)-2g are similar to those of the racemic (R,S)-2g.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention times:

(*R*)-1d= 11.15 min, (*S*)-1d= 10.13 min., (*S*)-2g= 6.64 min. 1d; λ_{max} =261 nm; 2g, λ_{max} =249 nm. Conversions and e.e are shown in manuscript (Table 2).

(S)-2g:
$$[\alpha]^{20}_D$$
: +95.9 (c 3.15 CHCl₃)

6.8. Transesterification of (R,S)-1e with vinyl butyrate:

SOH Sipase
$$R(-)$$
-1e $S(+)$ -2h

The NMR data of S(+)-2h are similar to those of the racemic (R,S)-2h.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention times:

(*R*)-1e= 12.60 min, (*S*)-1e= 10.72 min., (*S*)-2h= 6.50 min. 1e; λ_{max} =250 nm; 2h, λ_{max} =247 nm. Conversions and e.e are shown in manuscript (Table 2).

(S)-2h:
$$[\alpha]^{20}_{D}$$
: +92.1 (c 2.6 CHCl₃)

6.9. Transesterification of (R,S)-1f with vinyl butyrate:

MeO OH OH OH OH OH OME
$$(R,S)$$
-1f $R(-)$ -1f $S(+)$ -2i

The NMR data of S(+)-2i are similar to those of the racemic (R,S)-2i.

HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8 mL/min): retention times: (R)-1f= 11.28 min, (S)-1f= 10.04 min., (S)-2i= 9.00 min. 1f; λ_{max} =276 nm; 2i, λ_{max} =274 nm. Conversions and e.e are shown in manuscript (Table 2).

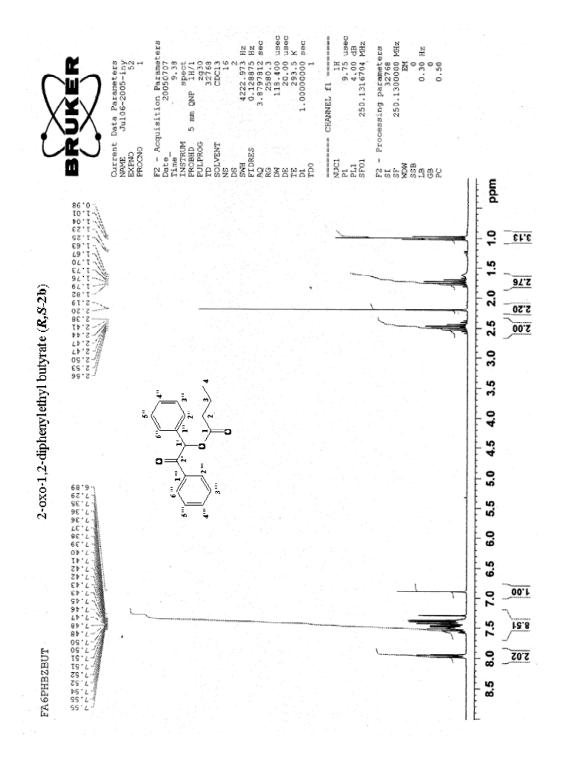
(*S*)-2i:
$$[\alpha]^{20}_D$$
: +104.0 (*c* 3.7 CHCl₃)

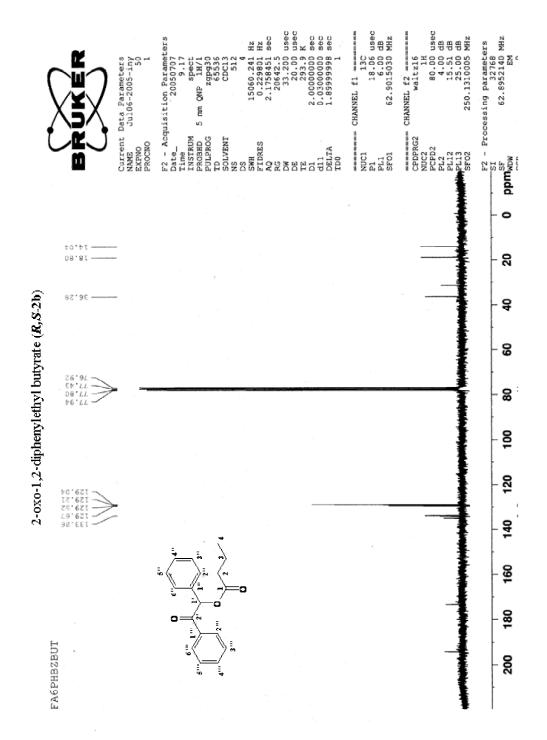
6.9. Transesterification of (R,S)-1g with vinyl butyrate:

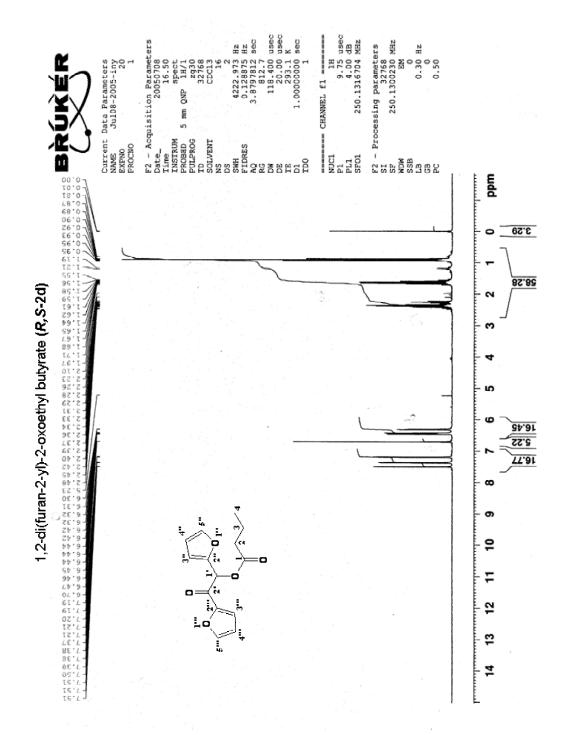
EtO OH lipase OEt
$$R(-)-1g$$
 $S(+)-2j$

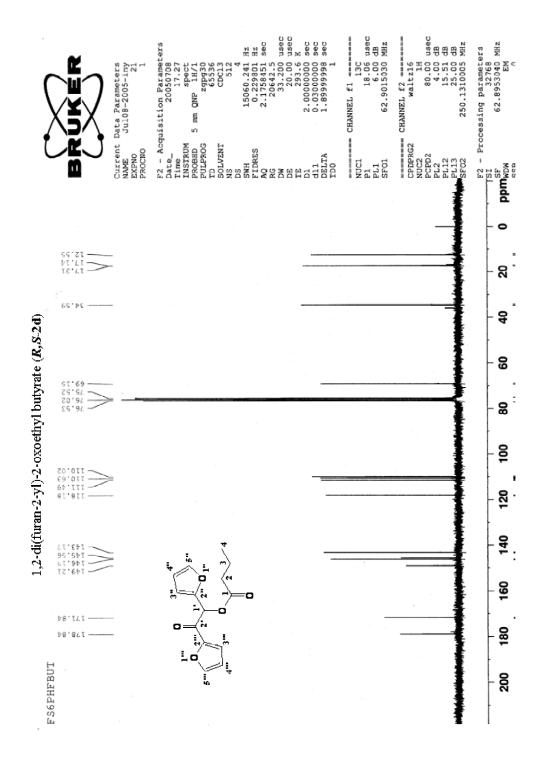
The NMR data of S(+)-2j are similar to those of the racemic (R,S)-2j.

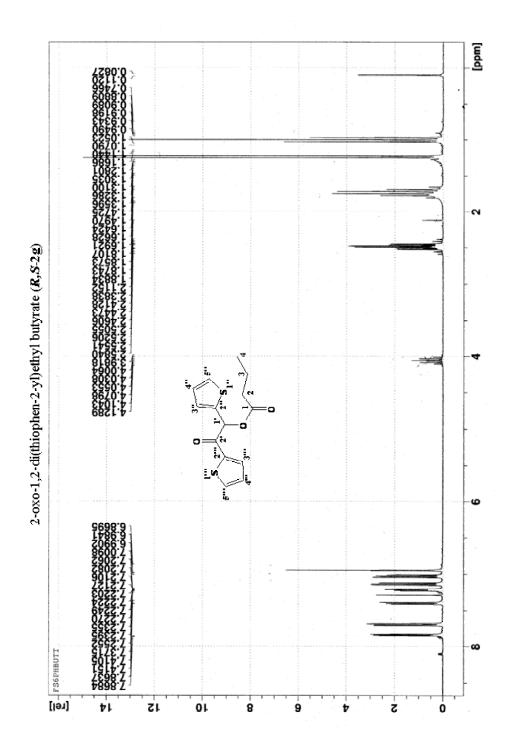
HPLC analysis (n-hexane/2-propanol, 90/10; Flow 0.8mL/min): retention times: (\mathbf{R})-1 \mathbf{g} = 8.00 min, (\mathbf{S})-1 \mathbf{g} = 7.52 min., (\mathbf{S})-2 \mathbf{j} = 6.50 min. 1 \mathbf{g} ; λ_{max} =278 nm; 2 \mathbf{j} , λ_{max} =275 nm. Conversions and e.e are shown in manuscript (Table 2).


(S)-2**j**:
$$[\alpha]^{20}_{D}$$
: +94.6 (c 3.2 CHCl₃).


7. General procedure for the Dynamic Kinetic Resolution.


7. 1. One pot DKR: 12 mg of SHVO's catalyst (0.011 mmol) and 50mg of lipase TL[®] from *Pseudomonas stutzeri* were added to a 5 ml flask, and 2,5 mL of solution of (*R*,*S*)-1a 94.22 mM in anhydrous THF were added. The reaction was started adding the acylating agent trifluoroethyl butyrate (200 μL, 1.32 mmol). The mixture was stirred at 50°C under argon. Each sample taken was evaporated under vacuum and


the solid collected was re-solved in n-hexane/2-propanol (50:50, v/v) before analyzing by HPLC.


7. 2. Sequential DKR: 25 mg of lipase TL® from *Pseudomonas stutzeri* were added to 2.5 mL of a solution 94.22 mM of **1a** in anhydrous THF. The reaction was started by addition of 300 μL of vinyl butyrate (2.36 mmol) and it was stirred at 50°C under argon for 2.75 h, until 30% conversion was reached. Then, the mixture was filtered under vacuum and the THF and remnant vinyl butyrate were evaporated. The solid collected (70% substrate; 30% product) was re-solved in 2.5 mL of anhydrous THF, and 6 mg of SHVO's catalyst (0.0055 mmol) and 200 μL of trifluoroethyl butyrate (1.32 mmol) were added. The reaction was stirred again at 50°C. After 17 h, 25 mg of fresh enzyme were added, and the reaction was followed until almost no remnant substrate was detected by HPLC. 92% conversion and e.e_p>99.9% were reached.

