Supporting Information

Liquid-Crystalline Bis-Adducts of [60]Fullerene

Stéphane Campidelli,[†] Ester Vázquez,[∥] Dragana Milic,[†] Julie Lenoble,[§] Carmen Atienza Castellanos,[‡] Ginka Sarova,[‡] Dirk M. Guldi,^{*,‡} Robert Deschenaux^{*,§} and Maurizio Prato^{*,†}

[†]Dipartimento di Scienze Farmaceutiche, Università degli Studi di Trieste, Piazzale Europa 1, 34127 Trieste, Italy. E-mail: prato@units.it
[¶]Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Universidad de Castilla-La Mancha, Campus Universitario, 13071 Ciudad Real, Spain.
[§]Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CP 158, 2009 Neuchâtel, Switzerland. E-mail: robert.deschenaux@unine.ch
[‡]Friedrich-Alexander-Universität Erlangen-Nürnberg Universität Erlangen, Institute for Physical and Theoretical Chemistry, Egerlandstrasse 3, 91058 Erlangen, Germany. E-mail: dirk.guldi@chemie.uni-erlangen.de

Table of contents

Table of contents	S1	
Experimental section	S3	
Materials	S3	

Techniques	
Synthesis	
Spectroscopic data for 9a-11a and 9b-11b	
Analysis	S9
Compound 1	
Compound 2	
Compound 3	S14
Compound 4	S17
Compound 5	S18
Compound 6	
Compound 8a	
Compound 9a	
Compound 10a	
Compound 11a	
Compound 9b	
Compound 10b	
Compound 11b	
References	S30

Experimental section

Materials

 C_{60} was purchased from Bucky-USA (99.5%). All other reagents and solvents were purchased and used as received. Compounds 12^1 and 13^2 were prepared according to literature procedures.

Techniques

Transition temperatures (onset point) and enthalpies were determined with a differential scanning under N₂/He, at a rate of 10°C/min. Optical studies were conducted using a polarizing microscope equipped with a variable-temperature stage, under N₂. For column chromatography, silica gel 60 (0.015-0.040 mm and 0.063-0.200 mm) were used. ¹H and ¹³C NMR spectra were recorded with the solvent as internal reference. Femtosecond transient absorption studies were performed with 387 nm laser pulses (1 kHz, 150 fs pulse width) from an amplified Ti:Sapphire laser system. Nanosecond Laser Flash Photolysis experiments were performed with 355 nm of excitation with 5 ns laser pulse width from Nd:YAG laser. Fluorescence lifetimes were measured with a Laser Strope Fluorescence Lifetime Spectrometer with 337 nm laser pulses from a nitrogen laser fiber-coupled to a lens-based T-formal sample compartment equipped with a stroboscopic detector. Details of the Laser Strobe systems are described on the manufacture's web site. For emission spectra, the experiments were performed at room temperature. Each spectrum represents an average of at least 5 individual scans, and appropriate corrections were applied whenever necessary.

Synthesis

Compound 6. To a solution of the aldehyde derivative³ (1.00 g, 0.366 mmol) in a mixture of THF (50 mL) and water (20 mL) was added NaClO₂ (50 mg, 0.553 mmol) and H₂NSO₃H (53 mg, 0.546 mmol). The reaction mixture was stirred at room temperature for 2h, and water (100 mL) was added. The solution was extracted with CH_2Cl_2 (3 × 100 mL), dried with anhydrous MgSO₄ and then the solvent was removed. Purification of the residue by precipitation (dissolution in CH_2Cl_2 and precipitation by pouring the solution into methanol) gave pure 6 (1.00 g, quantitative yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.93 (t, 1H, arom. H), 8.64 (t, 2H, arom. H), 8.36 (d, 2H, arom. H), 8.18-8.13 (m, 14H, arom. H), 8.11 (d, 4H, arom. H), 7.77-7.61 (m, 24H, arom. H), 7.32 (d, 8H, arom. H), 6.99 (d, 2H, arom. H), 6.97 (d, 8H, arom. H), 4.37 (t, 10H, CO₂CH₂), 4.03 (t, 10H, CH₂O), 1.85-1.76 (m, 20H, CO₂CH₂CH₂ and CH₂CH₂O), 1.47-1.26 (m, 60H, aliph. H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.15, 165.32, 165.25, 164.86, 164.50, 164.09, 163.49, 152.08, 151.97, 150.94, 145.25, 137.10, 135.34, 133.24, 133.06, 133.01, 132.96, 132.75, 131.51, 130.51, 130.00, 129.49, 128.85, 128.75, 128.08, 127.43, 122.97, 121.59, 120.70, 119.29, 114.95, 114.76, 111.39, 68.82, 68.74, 66.31, 66.05, 29.88, 29.83, 29.73, 29.64, 29.49, 29.04, 26.36. IR-DRIFT (KBr): v (cm⁻¹) 3081, 2928, 2852, 2225, 1730, 1604, 1509, 1253, 1067, 1005, 847, 762, 533, 426. Anal. calcd. for C169H166N4O31 (2749.18): C, 73.84, H, 6.09, N, 2.04%; found C, 73.72, H, 6.07, N, 2.15%.

Compound 7. To a solution of **6** (100 mg, 0.036 mmol) in dry CH_2Cl_2 (5 mL), was added SOCl₂ (150 mg, 1.300 mmol). The reaction mixture was stirred under reflux for 5 h, then the solvent and the excess of thionyl chloride were removed (quantitative yield). Compound **7** was dried under high vacuum and used directly in the next step.

Compound 1. To a solution of **8b** (15 mg, 0.016 mmol) and Et_3N (100 µl) in CH_2Cl_2 (3 mL), was added a solution of freshly prepared 7 (45 mg, 0.016 mmol) in CH₂Cl₂ (3 mL). The reaction was stirred for 16 h, and the solvent was removed. Purification of the crude material by column chromatography (silica gel, 63-200 µm, toluene/ethyl acetate 9:1 to 7:3) and precipitation of the product from CH₂Cl₂ with MeOH gave pure **1** (11 mg, 19%). ¹H NMR (200 MHz, CDCl₃): δ (ppm) 8.95 (t, 1H, arom. H), 8.66 (t, 2H, arom. H), 8.38 (d, 2H, arom. H), 8.24-8.05 (m, 16H, arom. H), 8.01 (d, 2H, arom. H), 7.82-7.58 (m, 24H, arom. H), 7.46 (br s, 1H, NH), 7.39-7.27 (m, 8H, arom. H), 7.00 (d, 10H, arom. H), 4.53 (s, 4H, pyrrolidine), 4.45-4.27 (m, 10H, CO₂CH₂), 4.13-3.98 (m, 12H, CH₂O and CH₂NH), 3.45 (t, 2H, NCH₂), 1.92-1.70 (m, 20H, CO₂CH₂CH₂ and CH₂CH₂O), 1.58-1.26 (m, 60H, aliph. H). ¹³C NMR (50 MHz, CDCl₃): δ 165.52, 164.73, 164.68, 163.97, 163.55, 162.92, 154.40, 151.46, 150.41, 146.18, 145.99, 145.80, 145.38, 145.19, 144.73, 144.41, 142.56, 142.04, 141.93, 141.77, 140.14, 138.22, 136.58, 135.92, 133.08, 132.54, 132.24, 131.01, 129.75, 128.97, 128.23, 127.58, 126.93, 122.47, 121.12, 120.52, 118.78, 114.50, 114.28, 110.92, 70.51 68.30, 65.84, 65.47, 51.84, 38.05, 29.42, 29.32, 29.22, 29.08, 28.64, 25.96. IR-DRIFT (KBr): v (cm⁻¹) 3077, 2928, 2851, 2225, 1730, 1604, 1508, 1252, 1065, 1005, 843, 762, 527, 426. UV-Vis (CH₂Cl₂): λ_{max} (nm) 274, 431, 703.

Compound 4. To a solution of **11b** (19 mg, 0.017 mmol) and Et₃N (300 µl) in dry CH₂Cl₂ (3 mL) at 0°C, was added a solution of freshly prepared **7** (100 mg, 0.036 mmol) in dry CH₂Cl₂ (4 mL). The reaction was stirred for 1 h at room temperature, and the solvent was removed. Purification of the crude material by column chromatography (silica gel, 63-200 µm, toluene/ethyl acetate 15:1 to 8:2) and precipitation of the product from CH₂Cl₂ with MeOH gave pure **4** (18 mg, 17%). ¹H NMR (200 MHz, CDCl₃): δ (ppm) 8.95 (t, 2H, arom. H), 8.65 (t, 4H, arom. H), 8.37 (d, 4H, arom. H), 8.23-8.10 (m, 32H, arom. H), 8.04-7.87 (m, 6H, arom. H and

NH), 7.80-7.59 (m, 48H, arom. H), 7.40-7.26 (m, 16H, arom. H), 7.00 (d, 20H, arom. H), 4.37 (t, 20H, CO₂CH₂), 4.32-3.94 (series of m, 28H, CH₂O and pyrrolidine), 3.95-3.80 (m, 4H, CH₂NH), 3.32-3.15 (m, 4H, NCH₂), 1.92-1.72 (m, 40H, CO₂CH₂CH₂ and CH₂CH₂O), 1.56-1.24 (m, 120H, aliph. H). ¹³C NMR (50 MHz, CDCl₃): δ 166.33, 164.76, 164.70, 164.32, 163.99, 163.58, 162.96, 158.82, 151.48, 150.44, 148.03, 147.67, 147.14, 146.61, 145.18, 144.75, 144.57, 144.34, 143.04, 142.14, 141.66, 140.52, 138.89, 136.59, 132.57, 132.26, 131.63, 131.05, 129.75, 129.62, 128.99, 128.25, 127.61, 126.94, 122.48, 121.14, 120.24, 118.80, 114.51, 114.31, 110.95, 69.68, 68.32, 65.86, 54.65, 29.72, 29.48, 29.44, 29.34, 29.25, 29.10, 28.67, 25.99. IR-DRIFT (KBr): v (cm⁻¹) 30713, 2931, 2852, 2225, 1733, 1603, 1508, 1251, 1065, 1005, 846, 761, 529, 435. UV-Vis (CH₂Cl₂): λ_{max} (nm) 277, 421, 552.

Compound 5. To a solution of **6** (96 mg, 0.035 mmol), HOBt (9 mg, 0.070mmol) and EDC (13 mg, 0.070 mmol) in CH₂Cl₂ (3 mL), was added after 15 min a solution of **13**² (20 mg, 0.017 mmol) and Et₃N (300 μ l) in CH₂Cl₂ (2 mL). The reaction was stirred at room temperature 3h, and the solvent was removed. Purification of the crude material by column chromatography (silica gel, 63-200 μ m, toluene/ethyl acetate 10:0.5 to 10:1) and precipitation of the product from CH₂Cl₂ with MeOH gave pure **3** (17 mg, 15%). ¹H NMR (200 MHz, CDCl₃): δ (ppm) 8.91 (t, 2H, arom. H), 8.61 (t, 4H, arom. H), 8.33 (d, 4H, arom. H), 8.18-8.01 (m, 32H, arom. H), 7.85 (d, 4H, arom. H), 7.78-7.54 (m, 48H, arom. H), 7.37-7.21 (m, 16H, arom. H), 7.03-6.89 (m, 22H, arom. H and NH), 4.44-4.21 (m, 24H, CO₂CH₂ and pyrrolidine), 4.18-3.90 (m 28H, CH₂O, pyrrolidine and ethylene glycol), 3.84-3.59 (m, 16H, ethylene glycol), 3.28-3.15 (m, 4H, ethylene glycol), 1.87-1.67 (m, 40H, CO₂CH₂CH₂ and CH₂CH₂O), 1.54-1.17 (m, 120H, aliph. H). ¹³C NMR (50 MHz, CDCl₃): δ (ppm) 166.60, 165.89, 164.88, 164.83, 164.46, 164.08, 163.67, 163.07, 158.79, 155.55, 154.87, 151.67, 151.57, 150.53, 148.98, 146.53, 145.28, 145.12, 144.86,

143.93, 143.59, 141.54, 141.23, 140.98, 139.72, 138.52, 138.71, 136.35, 135.49, 132.99, 132.68, 132.63, 132.37, 131.14, 129.77, 129.15, 128.38, 127.72, 127.24, 127.07, 122.60, 121.22, 120.32, 118.93, 114.59, 114.40, 111.03, 97.21, 70.60, 70.42, 70.02, 69.81, 68.42, 65.98, 65.60, 54.41, 40.13, 29.84, 29.60, 29.56, 29.46, 29.37, 29.21, 28.76, 26.11. IR-DRIFT (KBr): v (cm⁻¹) 3052, 2927, 2860, 2225, 1727, 1602, 1500, 1252, 1064, 998, 843, 756, 533, 433. UV-Vis (CH₂Cl₂): λ_{max} (nm) 277, 462.

Spectroscopic data for 9a-11a and 9b-11b

9a (trans-2): (49.4 mg, 3.6%). ¹H NMR (200 MHz, CDCl₃): δ (ppm) 5.43-5.25 (br. s, 2H, NH), 4.68 (d, 2H, pyrrolidine), 4.50 (d, 2H, pyrrolidine), 4.37 (d, 2H, pyrrolidine), 4.34 (d, 2H, pyrrolidine), 3.80-3.60 (m, 4H, CH₂NHBoc), 3.27 (t, 4H, NCH₂), 1.51 (s, 18H, Boc). ¹³C NMR (50 MHz, CDCl₃): δ (ppm) 158. 87, 156.16, 153.24, 153.04, 152,45, 148.44, 147.74, 147.13, 147.09, 146.48, 146.30, 146.12, 145.70, 145.60, 145.38, 145.21, 144.26, 143.86, 143.72, 142.64, 142.60, 142.55, 142.44, 141.60, 141.51, 139.64, 134.55, 133.80, 79.67, 69.43, 69.26, 67.93, 67.77, 54.27, 39.40, 28.66. IR-DRIFT (KBr): v (cm⁻¹) 3345, 2971, 2786, 1710, 1514, 1168, 771, 525. UV-Vis (CH₂Cl₂): λ_{max} (nm) 284, 478, 627, 660, 722, 775. ES-MS: *m/z* 1093 (MH⁺). **10a** (trans-3): (79.8 mg, 5.8%). ¹H NMR (200 MHz, CDCl₃): δ (ppm) 5.30-5.10 (br. s, 2H, NH), 4.43 (d, 2H, pyrrolidine), 4.35 (d, 2H, pyrrolidine), 4.18 (d, 2H, pyrrolidine), 4.09 (d, 2H, pyrrolidine), 3.70-3.53 (m, 4H, CH₂NHBoc), 3.15 (t, 4H, NCH₂), 1.47 (s, 18H, Boc). ¹³C NMR (50 MHz, CDCl₃): δ (ppm) 158. 18, 156.09, 155.54, 154.87, 149,13, 148.94, 148.83, 148.26,

146.66, 145.36, 145.23, 144.90, 144.66, 143.68, 142.60, 141.64, 141.51, 141.32, 141.07, 139.82,

S7

136.46, 135.59, 79.62, 70.02, 69.78, 67.89, 67.02, 54.20, 39.05, 28.61. IR-DRIFT (KBr): v (cm⁻¹) 3346, 2973, 2781, 1692, 1516, 1181, 794, 472. UV-Vis (CH₂Cl₂): λ_{max} (nm) 285, 467, 704, 743, 775. ES-MS: *m/z* 1093 (MH⁺).

11a (equatorial): (42.9, 3.1%). ¹H NMR (200 MHz, CDCl₃): δ (ppm) 5.21-5.8 (br. s, 2H, NH), 4.09 (d, 2H, pyrrolidine), 4.07 (s, 2H, pyrrolidine), 3.97 (d, 2H, pyrrolidine), 3.93 (s, 2H, pyrrolidine), 3.62-3.43 (m, 4H, CH₂NHBoc), 3.10-2.95 (m, 4H, NCH₂), 1.47 (s, 9H, Boc), 1.44 (s, 9H, Boc). ¹³C NMR (50 MHz, CDCl₃) δ (ppm): 158. 93, 156.02, 153.53, 152.92, 152,59, 149,81, 148.91, 148.08, 147.78, 147.25, 147.21, 146.67, 146.65, 145.77, 145.21, 145.04, 144.67, 144.42, 143.75, 143.23, 142.29, 141.82, 141.65, 141.51, 140.69, 139.16, 136.80, 135.58, 79.58, 69.87, 69.67, 69.54, 67.72, 67.31, 66.81, 54.25, 54.04, 39.18, 28.62, 28.59. IR-DRIFT (KBr): v (cm⁻¹) 3336, 2970, 2790, 1703, 1515, 1169, 771, 462. UV-Vis (CH₂Cl₂): λ_{max} (nm) 283, 317, 423, 704, 744, 775. ES-MS: *m/z* 1093 (MH⁺).

9b: from 9a (20 mg, 0.018 mmol), TFA (1.5 mL), CH₂Cl₂ (1.5 mL); 9b (21 mg, quantitative yield). IR-DRIFT (KBr): v (cm⁻¹) 3330-2850, 1679, 1528, 1195, 1132, 727. UV-Vis (H₂O): λ_{max} (nm) 208, 244, 260, 298, 428, 473, 624, 651, 684, 718. ES-MS: *m/z* 894 (MH⁺), 447 (MH₂²⁺/2).
10b: from 10a (43 mg, 0.039 mmol), TFA (3 mL), CH₂Cl₂ (3 mL); 10b (43 mg, quantitative yield). IR-DRIFT (KBr): v (cm⁻¹) 3640-2792, 1677, 1528, 1195, 1053. UV-Vis (H₂O): λ_{max} (nm) 244, 412, 460, 492. ES-MS: *m/z* 894 (MH⁺), 447 (MH₂²⁺/2).

11b: from **11a** (42 mg, 0.038 mmol), TFA (3 mL), CH₂Cl₂ (3 mL); **11b** (41 mg, quantitative yield). IR-DRIFT (KBr): v (cm⁻¹) 3640-2780, 1684, 1528, 1196, 1133. UV-Vis (H₂O): λ_{max} (nm) 239, 316, 420. ES-MS: *m/z* 894 (MH⁺), 447 (MH₂²⁺/2).

Analysis

Fluorescence spectra of mono-adduct 1, trans-2 2, trans-3 3 and equatorial 4 bis-adducts.

Transient absorption spectrum of the triplet excited state of 1.

Transient absorption spectrum of 1 (i.e. visible-near-infrared part) obtained upon femtosecond flash photolysis at 387 nm in deoxygenated CH₂Cl₂.

Transient absorption spectrum of the triplet excited state of **2**.

Transient absorption spectrum of 2 (i.e. visible-near-infrared part) obtained upon femtosecond flash photolysis at 387 nm in deoxygenated CH₂Cl₂.

Transient absorption spectrum of the triplet excited state of **3**.

Transient absorption spectrum of **3** (i.e. visible-near-infrared part) obtained upon femtosecond flash photolysis at 387 nm in deoxygenated CH₂Cl₂.

Compound 5

Compound 6

Compound 8a

Compound 9a

Compound 10a

Compound 11a

Compound 9b

Compound 10b

Compound 11b

References

- (1) Kordatos, K.; Da Ros, T.; Bosi, S.; Vázquez, E.; Bergamin, M.; Cusan, C.; Pellarini, F.; Tomberli, V.; Baiti, B.; Pantarotto, D.; Georgakilas, V.; Spalluto, G.; Prato, M. *J.Org.Chem.* 2001, *66*, 4915.
- (2) Bosi, S.; Feruglio, L.; Milic, D.; Prato, M. Eur.J. Org. Chem. 2003, 4741.
- (3) Campidelli, S.; Lenoble, J.; Barberá, J.; Paolucci, F.; Marcaccio, M.; Paolucci, D.; Deschenaux, R. *Macromolecules* 2005, 38, 7915.