#### **Supporting Information**

# Synthesis of New Dirhodium(II) Complexes

## with Several Cyclometalated

## **Thienylphosphines**

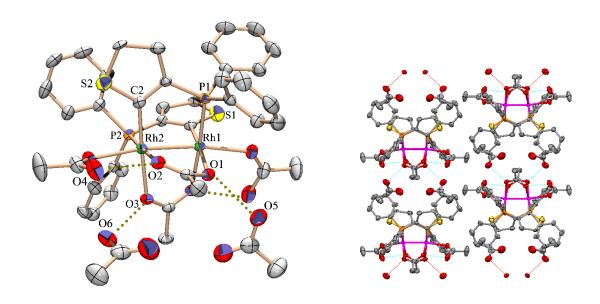
Julio Lloret, [a] Francisco Estevan, [a] Pascual Lahuerta, \* [a] Pipsa Hirva, [b] Julia Pérez-Prieto, \* [c] and Mercedes Sanaú [a]

**S4: Figure S1.** Left: ORTEP for compound **5BB.CH**<sub>3</sub>CO<sub>2</sub>H with ellipsoids representing 30% of probability. Right: selected view of crystal packing for compound **5BB.** CH<sub>3</sub>CO<sub>2</sub>H (H atoms omitted for clarity). Selected bond distances (Å) and angles (°) are: Rh(1)-Rh(2), 2.4985(8); Rh(1)-P(1), 2.215(14); Rh(2)-C(1), 1.98(5); Rh(1)-O(1), 2.186(4); Rh(2)-O(2), 2.155(4); O(2)-O(4), 2.623(4); O(1)-O(5), 2.707(5); P(1)-Rh(1)-Rh(2), 90.11(4); Rh(1)-Rh(2)-C(1), 94.62(16).

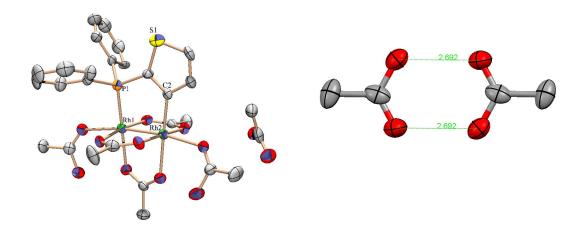
**S5: Figure S2.** Left: ORTEP for compound **7A.CH<sub>3</sub>CO<sub>2</sub>H** with ellipsoids representing 30% of probability (H atoms omitted for clarity). Selected bond distances (Å) and angles (°): Rh(1)-Rh(2), 2.4361(12); Rh(1)-P(1), 2.212(3); Rh(2)-C(2), 1.988(9); Rh(1)-Oax, 2.396(8); Rh(2)-Oax, 2.2283(7); P(1)-Rh(1)-Rh(2), 91.60(8); Rh(1)-Rh(2)-C(2), 96.0(3).

Right: ORTEP for 2·CH<sub>3</sub>COOH solvent molecules in the lattice of X-ray for compound **7A.CH<sub>3</sub>CO<sub>2</sub>H** with ellipsoids representing 30% of probability and H atoms omitted for clarity. Selected bond distances (Å) are: O(11)-O(13), 2.69(1); O(11)-C(27), 1.29(1); O(12)-C(27), 1.22(1).

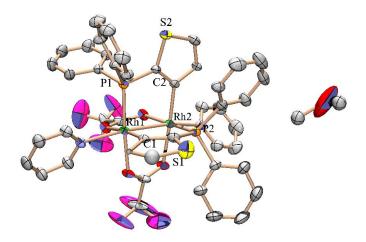
**S6: Figure S3.** ORTEP for compound **10AA·(py)**<sub>2</sub> with ellipsoids representing 30% of probability and H atoms omitted for clarity. Selected bond distances (Å) and angles (°) are: Rh(1)-Rh(2), 2.598(6); Rh(1)-P(1), 2.2151(16); Rh(2)-C(2), 1.980(6); Rh(2)-Nax, 2.268(5); P(1)-Rh(1)-Rh(2), 88.35(7); Rh(1)-Rh(2)-C(1), 95.1(3).


**S7: Figure S4.** Left: ORTEP for compound  $11AA \cdot py \cdot (H_2O)_{0.5}$  with ellipsoids representing 30% of probability. Right: bridging of two molecules of  $11AA \cdot py$  by  $H_2O$  (H atoms omitted for clarity. Selected bond distances (Å) and angles (°) are: Rh(1)-Rh(2), 2.5268(7); Rh(1)-P(1), 2.2317(16); Rh(2)-C(1), 1.988(6); P(1)-Rh(1)-Rh(2), 88.44(7); Rh(1)-Rh(2)-C(1), 94.37(3).

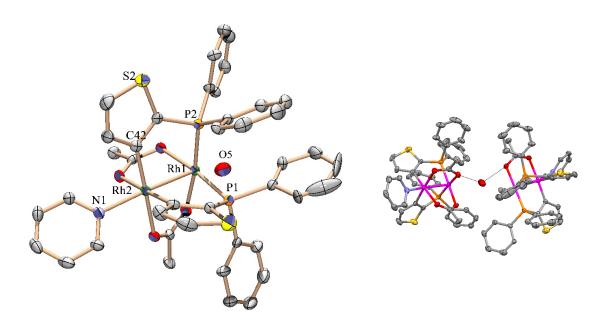
**S8: Figure S5**. COSY NMR (400 MHz, CD<sub>3</sub>CO<sub>2</sub>D) of **7A**. Correlation between the protons within the thiophene ring (7.81(1H)-7.99(1H) ppm) and the protons within the phenyl rings (7.68(4H)-7.40(2H)-7.31(4H) ppm).


**S9: Figure S6.** HMBC <sup>31</sup>P-<sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CO<sub>2</sub>D) of **7A.** Correlation between the phosphorous and the phenyl protons in *ortho*-position (at 7.68 ppm).

**S10-S14:** Evolution from **7A** to **8** in CH<sub>3</sub>CO<sub>2</sub>H (CD<sub>3</sub>CO<sub>2</sub>D): Figure S**7.** Selected <sup>31</sup>P{<sup>1</sup>H} NMR spectra of the evolution from **7A** to **8** in CH<sub>3</sub>CO<sub>2</sub>H. Figure S**8**. COSY NMR (400 MHz, CD<sub>3</sub>CO<sub>2</sub>D) spectrum from a 4:1 mixture of **7A/8**. The lines shows the <sup>1</sup>H-<sup>1</sup>H correlation for compound **8**. Figure S**9**. Selected <sup>1</sup>H NMR spectra of the evolution


from **7A** to **8** in CD<sub>3</sub>CO<sub>2</sub>D at 70°C. **Figure S10**. COSY NMR (400 MHz, CD<sub>3</sub>CO<sub>2</sub>D) spectrum from a mixture of **7A/8** after H/D interchange in CD<sub>3</sub>CO<sub>2</sub>D. The lines show <sup>1</sup>H
<sup>1</sup>H correlations for compound **8**. The signal at 7.51 is missing due to a total H/D exchange. **Figure S11**. Evolution from **7A** to **8** at 70 °C: a) in d4-acetic acid( $\diamondsuit$ ), b) in acetic acid ( $\diamondsuit$ ), c) in d4-acetic acid ( $\diamondsuit$ ), but starting with a sample which had reached the equilibrium in acetic acid.

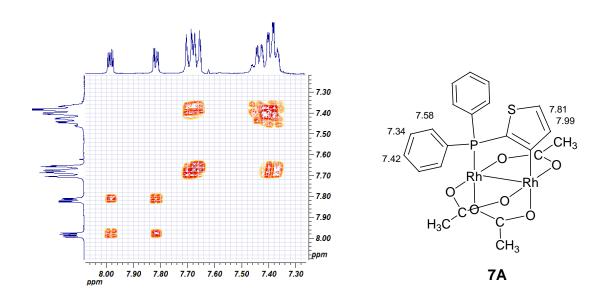



**Figure S1.** Left: ORTEP for compound **5BB.CH**<sub>3</sub>CO<sub>2</sub>H with ellipsoids representing 30% of probability. Right: selected view of crystal packing for compound **5BB.CH**<sub>3</sub>CO<sub>2</sub>H (H atoms omitted for clarity). Selected bond distances (Å) and angles (°) are: Rh(1)-Rh(2), 2.4985(8); Rh(1)-P(1), 2.215(14); Rh(2)-C(1), 1.98(5); Rh(1)-O(1), 2.186(4); Rh(2)-O(2), 2.155(4); O(2)-O(4), 2.623(4); O(1)-O(5), 2.707(5); P(1)-Rh(1)-Rh(2), 90.11(4); Rh(1)-Rh(2)-C(1), 94.62(16).

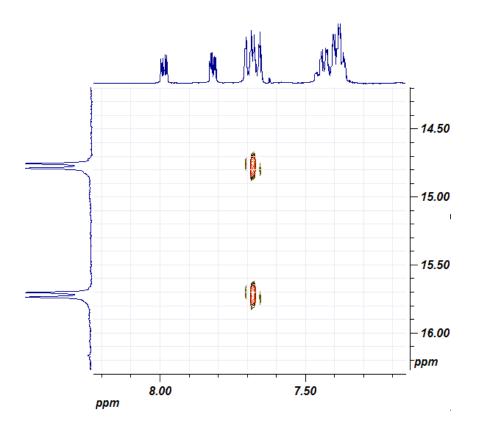


**Figure S2.** Left: ORTEP for compound **7A.CH<sub>3</sub>CO<sub>2</sub>H** with ellipsoids representing 30% of probability (H atoms omitted for clarity). Selected bond distances (Å) and angles (°): Rh(1)-Rh(2), 2.4361(12); Rh(1)-P(1), 2.212(3); Rh(2)-C(2), 1.988(9); Rh(1)-Oax, 2.396(8); Rh(2)-Oax, 2.2283(7); P(1)-Rh(1)-Rh(2), 91.60(8); Rh(1)-Rh(2)-C(2), 96.0(3). Right: ORTEP for 2·CH<sub>3</sub>COOH solvent molecules in the lattice of X-ray for compound **7A.CH<sub>3</sub>CO<sub>2</sub>H** with ellipsoids representing 30% of probability and H atoms omitted for clarity. Selected bond distances (Å) are: O(11)-O(13), 2.69(1); O(11)-C(27), 1.29(1); O(12)-C(27), 1.22(1).



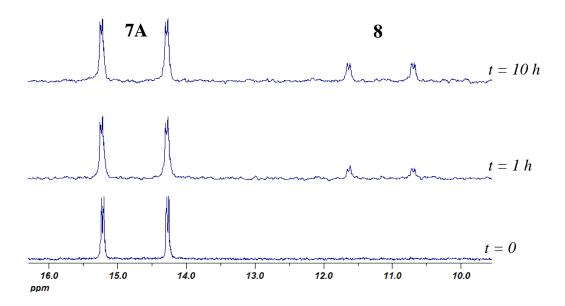

**Figure S3.** ORTEP for compound **10AA·(py)**<sup>2</sup> with ellipsoids representing 30% of probability and H atoms omitted for clarity. Selected bond distances (Å) and angles (°) are: Rh(1)-Rh(2), 2.598(6); Rh(1)-P(1), 2.2151(16); Rh(2)-C(2), 1.980(6); Rh(2)-Nax, 2.268(5); P(1)-Rh(1)-Rh(2), 88.35(7); Rh(1)-Rh(2)-C(1), 95.1(3).



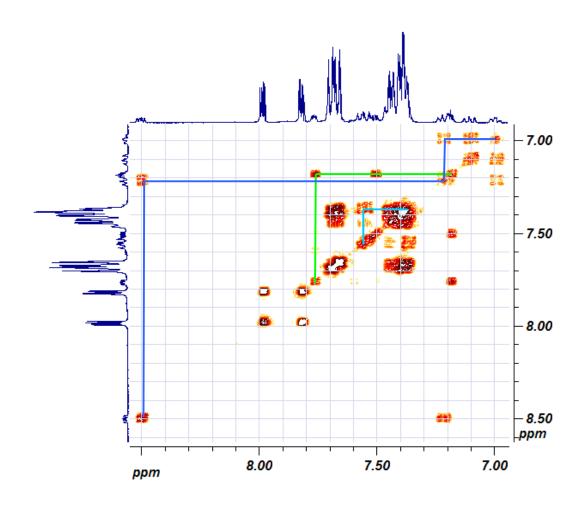

**Figure S4.** Left: ORTEP for compound  $11AA \cdot py \cdot (H_2O)_{0.5}$  with ellipsoids representing 30% of probability. Right: bridging of two molecules of  $11AA \cdot py$  by  $H_2O$  (H atoms omitted for clarity. Selected bond distances (Å) and angles (°) are: Rh(1)-Rh(2), 2.5268(7); Rh(1)-P(1), 2.2317(16); Rh(2)-C(1), 1.988(6); P(1)-Rh(1)-Rh(2), 88.44(7); Rh(1)-Rh(2)-C(1), 94.37(3).

#### Characterization of the mono-cyclometalated compound 7A.

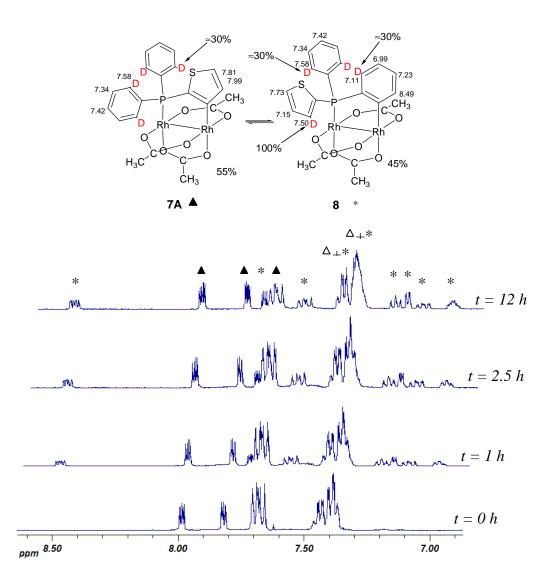
2D NMR, COSY and HMBC <sup>31</sup>P-<sup>1</sup>H for compound **7A**.



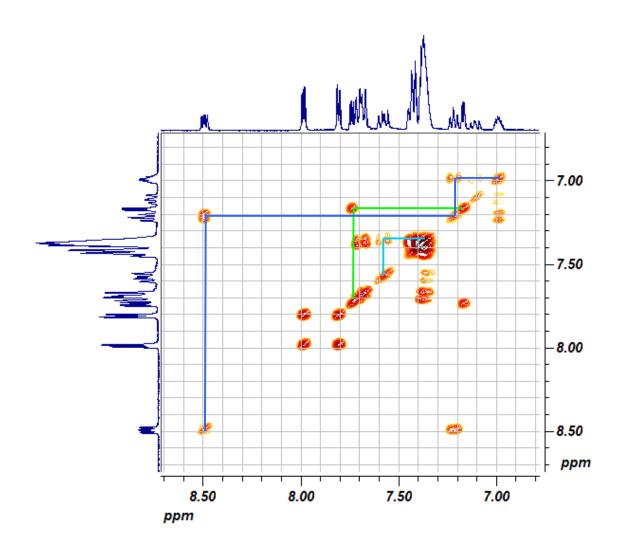

**Figure S5**. COSY NMR (400 MHz,  $CD_3CO_2D$ ) of **7A**. Correlation between the protons within the thiophene ring (7.81(1H)-7.99(1H) ppm) and the protons within the phenyl rings (7.68(4H)-7.40(2H)-7.31(4H) ppm).



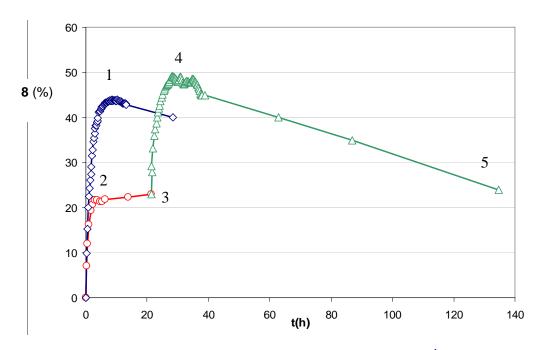

**Figure S6**. HMBC <sup>31</sup>P-<sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CO<sub>2</sub>D) of **7A**. Correlation between the phosphorous and the phenyl protons in *ortho*-position (at 7.68 ppm).


### Evolution from 7A to 8 in CH<sub>3</sub>CO<sub>2</sub>H (CD<sub>3</sub>CO<sub>2</sub>D)




**Figure S7.** Selected <sup>31</sup>P{<sup>1</sup>H} NMR spectra of the evolution from **7A** to **8** in CH<sub>3</sub>CO<sub>2</sub>H.




**Figure S8**. COSY NMR (400 MHz, CD<sub>3</sub>CO<sub>2</sub>D) spectrum from a 4:1 mixture of **7A/8**. The lines shows the <sup>1</sup>H-<sup>1</sup>H correlation for compound **8**.



**Figure S9.** Selected <sup>1</sup>H NMR spectra of the evolution from **7A** to **8** in CD<sub>3</sub>CO<sub>2</sub>D at 70 °C.



**Figure S10**. COSY NMR (400 MHz, CD<sub>3</sub>CO<sub>2</sub>D) spectrum from a mixture of **7A/8** after H/D interchange in CD<sub>3</sub>CO<sub>2</sub>D. The lines show <sup>1</sup>H-<sup>1</sup>H correlations for compound **8**. The signal at 7.51 is missing due to a total H/D exchange.



**Figure S11**. Evolution from **7A** to **8** at 70 °C: a) in d4-acetic acid( $\diamondsuit$ ), b) in acetic acid ( $\bigcirc$ ), c) in d4-acetic acid ( $\triangle$ ), but starting with a sample which had reached the equilibrium in acetic acid.