Protocol for the Arrangement of F-Actins Tracks on Au Surface:

- 1. Stamp ODT on gold surface and backfill the gap with cysteamine. Stamp size is $10/20~\mu m$ (10 μm for stamped molecules, 20 μm for backfilled molecules).
- 2. Build the flow cell.
- 3. Rinse with deionized (dI) H₂O, 200 µl.
- 4. Flow in NHS-biotin (0.1 mM in DMSO/H₂O), 200 μl, incubate for 20 min.
- 5. Wash with dI H_2O , 200 μ l.
- 6. Flow in streptavidin (1 mg/ml), $2 \times 100 \mu l$, incubate for 15 min.
- 7. Wash with dI H_2O , 200 μ l.
- Flow in the complex of biotin-gelsolin and labeled F-actin slowly and continuously,
 μl, followed with rinsing with the motility buffer.
- Observe the binding behavior of actin on the gold surface under fluorescence microscope.

Protocol for Alignment of F-actins on Coverslip Surfaces:

- Modified the glass surface between Au microelectrodes with APTES by immersing coverslip into APTES solution under absolutely dry atmosphere.
- 2. Build microelectrodes as shown in Scheme 3A.
- 3. Flow in NHS-biotin solution in DMSO/H₂O at 0.1 mM, incubate for 15 min.
- 4. Wash with dI H₂O.
- 5. Flow in streptavidin at 1mg/ml in d H_2O , incubate for $10 \sim 15$ min.
- 6. Wash with dI H₂O.
- 7. Flow in the labeled biotin-gelsolin-actin complex slowly and continuously, and incubate for 2 min.
- 8. Check binding behavior under fluorescence microscope with and without electric field.

Quantification of Biotin per Gelsolin

Procedures for Biotinylation of Gelsolin:

1. Dissolve gelsolin in M buffer and get the concentration at 0.1 mg/ml, which is 1.10×10^{-6} M

mole gelsolin/ml = $(0.1/91,000 \text{ MW}) = 1.10 \text{ x } 10^{-6} \text{ M}.$

- 2. Mix NHS-biotin/DMSO/M buffer with gelsolin solution with a concentration ratio at 9:1 and incubate for 2 hours at room temperature.
- 3. Dialyze the reaction mixture in cold room for 24 hours and separate the biotinylated gelsolin from the mixture. The membrane size is 10,000 MW.
- 4. Result: biotinylation yield at 23.03 biotin/gelsolin.

Procedures to Quantify Biotin per Gelsolin:

1. Absorbance factor at 500 nm in UV spectroscopy:

Reference: 0.9619; Sample: 0.8662

2. Calculation:

a)
$$\Delta A_{500} = 0.9 (0.9619 - 0.8662) = 0.08613$$

[0.9 = dilution factor of NHS-biotin with sample]

b) μ mole biotin/ml = $(\Delta A_{500}/34)(10) = 0.0253$

[34 = mM extinction coefficient at 500 nm, 10 = dilution factor of sample into cuvette]

- c) μ mole gelsolin/ml = 1.10 μ M X 10⁻³ = 0.0011
- d) mole biotin/mole gelsolin = (μ mole biotin/ml sample)/(μ mole gelsolin/ml sample)

$$=(0.0253)/(0.0011) = 23.03$$