Supporting Information

for

Wetting Behavior of Porous Silicon Surfaces Functionalized with a Fulleropyrrolidine

Davide Dattilo,^[a] Lidia Armelao,^[a] Michele Maggini,^[a] Giovanni Fois,^[b] Giampaolo Mistura^[b]

^[a] Dipartimento di Scienze Chimiche and ISTM-CNR, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.

^[b]Dipartimento di Fisica, Università di Padova, Via Marzolo 8, 35131 Padova, Italy.

Corresponding author: Michele Maggini Dipartimento di Scienze Chimiche, Via Marzolo 1, 35131 Padova, Italy. Phone: +39-049-8275662 /Fax: +39-049-8275792 e-mail: <u>michele.maggini@unipd.it</u>

Contents

FIGURE S1	HPLC trace of 1
FIGURE S2	¹ H NMR spectrum of 1
FIGURE S3	¹³ C NMR spectrum of 1
FIGURE S4	ESI-MS spectrum of 1
FIGURE S5	SEM image of a porous silicon sample after chemical etching
FIGURE S6	Si2p XPS spectrum for a H-terminated Si surface
FIGURE S7	Si2p XPS spectrum for 1-PS
FIGURE S8	FT-IR spectra of oxidized 1-PS treated with a HF/EtOH mixture
FIGURE S9	FT-IR spectra of fresh and aged 1-PS
FIGURE S10	FT-IR spectra of 1-PS before and after sonication in toluene
FIGURE S11	FT-IR spectrum of C12-PS
FIGURE S12	FT-IR spectra of CH3-10 and CH3-10-PS
FIGURE S13	FT-IR spectra of CF3-10 and CF3-10-PS

FIGURE S1

HPLC analysis of derivative **1** was performed on a Thermo Separation Spectra System P2000, with a Spectra system UV6000LP detector at 340 nm. The analysis was performed with a Phenomenex Luna column (250×4.6 mm, SiO₂, 5µm) using toluene/ethyl acetate 8:2 as eluent, at 1ml/min.

FIGURE S2 (¹H NMR of 1, CDCl₃/CS₂).

FIGURE S3 (¹³C NMR of 1, CDCl₃/CS₂)

FIGURE S4 (ESI-MS of 1)

Display Report - All Windows Selected Analysis

Analysis Name:	DD350001.D	Instrument:	LC-MSD-Trap-SL	Print Date:	12/12/2005 11:41:31 AM
Method: def_	lcms.m	Operator:	Administrator	Acq. Date:	12/12/2005 11:37:26 AM
Sample Name:	DD35				
Analysis Info:	DD35 ESI(+) MeOH+0.1%	6HCOOH, FIA			

Agilent Technologies

FIGURE S5. SEM image of porous silicon after chemical etching with pores extending from the surface of the Si(100) wafer down into the bulk. SEM images were recorded using a XL 30 ESEM Philips instrument at 20KV and 4.7 spot; the sample was gold-sputtered prior to take the image.

FIGURE S6. Si2p XPS spectrum for a H-terminated PS surface. The peak has been deconvoluted into two components that correspond to silicon types present on the surface (see text for further details).

FIGURE S7. Si2p XPS spectrum for a functionalized PS surface with fulleropyrrolidine **1**. The peak has been deconvoluted into three components that correspond to silicon types present on the surface after thermal hydrosilylation with **1**.

FIGURE S8. (b) FT-IR spectrum of **1-PS** left at ambient conditions for a week. (a) FT-IR spectrum of sample (b) after treatment with 48% aq. HF/EtOH mixture (1:1, 5min). The acid solution dissolves the accessible oxidized regions leading to the disappearance of the peaks at 1068 cm⁻¹ and at 1160 cm⁻¹. Some interstitial Si-oxide, already observed in freshly prepared PS, is still evident here at 1100 cm⁻¹.

FIGURE S9. (a) FT-IR spectrum of **1-PS** within a week in air at ambient conditions. (b) FT-IR spectrum of **1-PS** after about two weeks in air at ambient conditions. Note the substantial oxidation of the surface with time (growth of the peaks at 1160 cm⁻¹, v (Si-O-C), 1060 cm⁻¹, v (Si-O-Si). The $v(O_3Si-H)$ band appears at 2240 cm⁻¹.

FIGURE S10. FT-IR spectrum of **1-PS** after 15 minutes of sonication in toluene. No substantial changes are evident from the IR profile.

FIGURE S11. FT-IR spectrum of **C12-PS** using hydrogen-terminated PS as background. The positive peaks refer to new bonds formation on the surface. Positive alkyl (2924 and 2854 cm⁻¹) and negative silicon hydride (2110 cm⁻¹) resonances. The negative peaks correspond to a consumption of Si-H bonds. Little or no oxidation is present.

FIGURE S12. (a) FT-IR spectrum of **CH3-10** (ATR liquid film) and (b) FT-IR spectrum of **CH3-10-PS** (using a hydrogen-terminated PS as background). The disappearance of the peak at 1641 cm⁻¹ indicates the consumption of the C=C double bond. At 1741 cm⁻¹ is the ester carbonyl stretching. The negative peak at 2100 cm⁻¹ is referred to the consumption of Si-H bonds. Little or no oxidation is present.

FIGURE S13. (a) FT-IR spectrum of **CF3-10** (ATR liquid film) and (b) FT-IR spectrum of **CF3-10-PS** (using a hydrogen-terminated PS as background). The disappearance of the peak at 1645 cm⁻¹ indicates the consumption of the C=C double bond. At 1764 cm⁻¹ is the ester carbonyl stretching. The negative peak at 2112 cm⁻¹ is referred to the consumption of Si-H bonds. Little or no oxidation is present