Supporting Information

Switching of Structural Order in a Cross-linked Polymer Triggered by the Desorption/Adsorption of Guest Molecules

Yasuhiro Ishida,*Sayaka Amano, Nobutaka Iwahashi, and Kazuhiko Saigo*
Department of Chemistry and Biotechnology, Graduate School of Engineering
The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Materials

The carboxylic acid $\mathbf{1}$ was prepared according to the literature with some modification. ${ }^{1}$ The amino alcohols (-)-2, (+)-2, and (+)-4 were purchased from Tokyo Chemical Industry and purified by distillation before use. The amino alcohols (-)-3 and (+)-3 were prepared from (-)-2 and (+)-2, respectively, according to the procedure in a literature. ${ }^{2}$ Diethyl ether was distilled from sodium/benzophenone ketyl before use.

Methods

X-ray diffraction (XRD) profiles were obtained with a Rigaku R-AXIS IV, using monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($40 \mathrm{kV}, 30 \mathrm{~mA}$). The liquid crystalline salt $\mathbf{1 \bullet}(-)-\mathbf{2}$ and the cross-linked polymers were transferred to a quartz capillary tube and used for XRD analyses. IR spectra were recorded on a JASCO model FT/IR-480plus. High-pressure liquid column chromatography (HPLC) experiments were performed at $0^{\circ} \mathrm{C}$ on a JASCO PU-980 intelligent HPLC pump equipped with a UV-970 intelligent UV/VIS detector: Column, Daicel CHIRALCEL CROWNPAK CR (+) (4.6 \times 153 mm); eluent, aqueous HClO_{4} solution (pH 1.0); flow rate. $0.60 \mathrm{~mL} \mathrm{~min}^{-1}$; detection of 2 and 3, UV absorption (190 nm); detection of 4, UV absorption (345 nm) of a derivative formed by the post-column derivertization with o-phthalaldehyde.

[^0]
Preparation of the cross-linked polymer

A diethyl ether solution (10 mL) of $\mathbf{1}(843 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $(-) \mathbf{- 2}(151 \mathrm{mg}, 1.00 \mathrm{mmol})$ was partitioned into three glass tubes (length 100 mm , diameter 20 mm), and the solvent was removed by argon flow and subsequent evaporation under reduced pressure at room temperature to afford the liquid crystalline salt $\mathbf{1} \cdot(-)-\mathbf{2} .{ }^{60} \mathrm{Co} \gamma$-ray induced polymerization was conducted at room temperature (dose rate, $1.7 \mathrm{kGy} \mathrm{h}^{-1}$; irradiation time, 48 h) in evacuated and sealed glass tubes. The irradiated samples detached from the glass tubes were combined, mechanically ground, washed with CHCl_{3}, and collected by filtration (Advantec T050A047A PTFE membrane filter, $0.5 \mu \mathrm{~m}$ mesh). In the CHCl_{3} washing, only small amounts ($<2 \%$) of $\mathbf{1}$ and (-)-2 were contained, which was confirmed by an HPLC analysis. The resultant white powder was dried in vacuo to give the cross-linked polymer ($952 \mathrm{mg}, 96 \%$).

Desorption of (-)-2 from the cross-linked polymer

The cross-linked polymer prepared by the above procedure $(45.0 \mathrm{mg}$, calculated to contain 45 $\mu \mathrm{mol}$ of the carboxylic acid-amine pair) was soaked in a mixture of 3.0 M aqueous $\mathrm{HCl}(2.5 \mathrm{~mL})$ and methanol $(2.5 \mathrm{~mL})$ and left to stand at room temperature. The amount of $(-) \mathbf{2}$ desorbed from the cross-linked polymer was estimated by an HPLC analysis; a fraction of the supernatant ($10 \mu \mathrm{~L}$) was directly injected to an HPLC system. The cross-linked polymer was separated from the supernatant by centrifugation ($3000 \mathrm{rpm}, 3 \mathrm{~min}$). Residual HCl in the solid was removed by repeating the following process twice; the solid was suspended in methanol (5.0 mL) and collected by centrifugation ($3000 \mathrm{rpm}, 3$ $\mathrm{min})$. The cross-linked polymer thus obtained was dried in vacuo and used for FT-IR and XRD analyses and re-adsorption experiments.

Re-adsorption of amino alcohols 2-4 to the apo-polymer

The apo-polymer obtained by the above procedure $(35.5 \mathrm{mg}$, calculated to contain 40 and 12 $\mu \mathrm{mol}$ of the carboxylic acid unit and (-)-2, respectively) was soaked in a methanol solution of (-)-2 (16 $\mathrm{mm}, 5.0 \mathrm{~mL}$) and left to stand at room temperature. The amount of (-)-2 adsorbed to the cross-linked polymer was estimated by the HPLC analysis of the supernatant, and the reconstituted polymer was recovered from the mixture by centrifugation, as described for the desorption process. The re-adsorptions of the other amino alcohols, (+)-2, (-)-3, (+)-3, and (+)-4, were conducted in the same procedure as that of $(-) \mathbf{- 2}$.

Changes in FT-IR spectra of the cross-linked polymer through the desorption/adsorption of (-)-2

Dark-shaded and bright-shaded peaks were attributable to the absorption of the ammonium-carboxylate salt and the free carboxylic acid, respectively.

Two dimensional images of the X-ray diffractions

(i) Liquid crystalline salt $\mathbf{1 \bullet (-)} \mathbf{2}^{\mathbf{3}}$

Camera length: 150 mm

mesophase	Miller indices	d-spacing/®	
		calcd.	found
$\mathrm{Col}_{\text {rec }} \quad a=45.7$	(010)	26.9	26.9
$(P 2 \mathrm{~m}) \quad b=26.9$	(110)	23.2	22.8
	(200)	22.9	22.8
	(210)	17.4	16.9
$\xrightarrow{45.7}$	(300)	15.2	15.5
$26.9 \AA \downarrow$	(020)	13.5	13.4
\bigcirc	(310)	13.3	13.4
	(120)	12.9	12.6
	(220)	11.6	11.4
	(400)	11.4	11.4
	(410)	10.5	10.6
	(320)	10.1	10.1
	(001)	3.8	3.8

3 For more information about the liquid crystalline salt $\mathbf{1 \bullet (-) - 2 , ~ s e e : ~ I s h i d a , ~ Y . ; ~ A m a n o , ~ S . ; ~ S a i g o , ~ K . ~}$ Chem. Comтип. 2003, 2338 and its supplementary information.
(ii) Cross-linked polymer: initial state

Camera length: 295 mm
(iii) Cross-linked polymer: after the desorption of (-)-2

Camera length: 295 mm
(iv) Cross-linked polymer: after the re-adsorption of (-)-2

Camera length: 295 mm

[^0]: 1 Smith, R. C.; Fischer, W. M.; Gin, D. L. J. Am. Chem. Soc. 1997, 119, 4092.
 2 Colman, B.; de Sausa, S. E.; O’Brien, P.; Towers, T. D.; Watson, W. Tetrahedron: Asymmetry 1999, 10, 4175.

