Supporting Information

Carboxylic Acid-Catalyzed Three-Component Aza-Friedel-Crafts Reactions in Water for the Synthesis of 3-Substituted Indoles

Seiji Shirakawa and Shū Kobayashi*
Graduate School of Pharmaceutical Sciences, The University of Tokyo, The HFRE Division, ERATO, Japan Science and Technology Agency (JST), Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
skobayas@mol.f.u-tokyo.ac.jp

General: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECX-600 spectrometer in CDCl_{3}. Tetramethylsilane (TMS) served as internal standard (0 ppm) for ${ }^{1} \mathrm{H}$ NMR, and CDCl_{3} was used as internal standard (77.0 ppm) for ${ }^{13} \mathrm{C}$ NMR. IR spectra were measured with JASCO FT/IR-610 spectrometers. High resolution mass spectrometry was carried out using BRUCKER DALTONICS BioTOFII. Preparative thin-layer chromatography was carried out using Wakogel B-5F.

General experimental procedure for aza-Friedel Crafts reactions in water (Table 1):

 Catalyst (0.010 mmol), 2-naphthaldehyde (0.20 mmol), o-anisidine $(0.20 \mathrm{mmol})$, and 1 methylindole (0.20 mmol) were added to $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$, and the mixture was stirred for 24 h at rt. After $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and NaHCO_{3} aq. $(5.0 \mathrm{~mL})$ were added to the mixture, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0 \mathrm{~mL})$ and the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration under reduced pressure, the crude product was dissolved in $\mathrm{CDCl}_{3}(2.0 \mathrm{~mL})$. Mesitylene $(0.20 \mathrm{mmol})$ as an internal standard was dissolved in the solution, and the yields of the products were determined by ${ }^{1} \mathrm{H}$ NMR analyses.

4a : ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.64(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, $J=1.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dt}, J=1.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dt}, J=1.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ $(\mathrm{s}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=1.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{brs}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 146.8,140.5,137.6,137.3,133.5,132.8,128.20$, $128.18,128.05,127.6,126.6,125.9,125.5,125.4,121.9,121.1,119.5,119.3,117.5,116.4$, 111.1, 109.3, 109.2, 55.7, 55.4, 32.7 ppm ; IR (neat) 3427, 3052, 2935, 2823, 1598, 1507, 1457, 1226, 1123, $737 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}: 393.1961\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $393.1957\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Typical experimental procedure for the synthesis of aromatase inhibitor type compounds 7 (Entry 1 of Table 2): $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{COOH}(0.020 \mathrm{mmol})$, 2-naphthaldehyde (0.20 $\mathrm{mmol}), o$-anisidine (0.20 mmol), and 1-methylindole (0.20 mmol) were added to $\mathrm{H}_{2} \mathrm{O}(2.0$ mL), and the mixture was stirred for 24 h at rt . After $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and NaHCO_{3} aq. $(5.0 \mathrm{~mL})$ were added to the mixture, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0$ mL) and the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration under reduced pressure, the crude product was dissolved in toluene (2.0 $\mathrm{mL}) . \mathrm{Sc}(\mathrm{OTf})_{3}(0.02 \mathrm{mmol})$ and $\mathrm{CDI}(0.40 \mathrm{mmo})$ were added to the solution, and the reaction mixture was stirred $70{ }^{\circ} \mathrm{C}$ for 3 h . After cooled to $\mathrm{rt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and NaHCO_{3} aq. (5.0 mL) were added to the reaction mixture. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0 \mathrm{~mL})$, and the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration under reduced pressure, the crude product was purified by preparative thin layer chromatography $\left(\mathrm{AcOEt} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1\right)$ to afford the desired product.

7a : ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.74-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H})$, $7.46(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.97$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 137.5,137.4,137.2,133.2,132.9,129.3,129.1,128.5,128.1,127.6$, $126.5,126.4,125.6,125.1,122.4,120.0,119.2,119.0,113.3,109.6,58.4,32.8 \mathrm{ppm}$; IR (neat) $3112,3054,2934,1478,1223,1069,909,738 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3}$: $338.1652\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $338.1638\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

7b : ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{dt}, J=1.4,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{dt}, J=1.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 139.9$, $137.3,137.1,129.1,129.0,128.6,128.0,127.0,126.3,122.3,119.9,119.1,119.0,113.4$, $109.5,58.3,32.8 \mathrm{ppm}$; IR (neat) 3112, 3057, 2934, 1484, 1224, 1070, $913,739 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3}: 288.1495\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $288.1493\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

$7 \mathrm{c}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dt}, J=1.4$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{dt}, J=1.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 159.2,137.3,137.0$, $131.9,128.9,128.8,128.3,126.2,122.3,119.8,119.1,119.0,113.95,113.89,109.5,57.9$, $55.2,32.8 \mathrm{ppm}$; IR (neat) $3109,3050,2933,2836,1507,1469,1247,1068,1028,741 \mathrm{~cm}^{-1}$;

HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}: 318.1601\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $318.1596\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

7d : ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.51(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{dt}, J=1.4,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H})$, $6.56(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 138.5,137.4,137.0,133.9$, $129.2,129.0,128.9,128.4,126.1,122.5,120.0,118.9,112.9,109.6,57.7,32.9 \mathrm{ppm}$; IR (neat) $3111,3055,2930,1485,1224,1081,740 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClN}_{3}$: $322.1106\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $322.1098\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

7e : ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 1 \mathrm{H})$, $7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H})$, 3.73 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 141.2,137.3,136.8,129.0,128.5,126.8$, $126.5,126.1,122.8,122.3,119.9,119.0,118.8,113.3,109.6,54.5,32.8 \mathrm{ppm}$; IR (neat) 3106, 3055, 2932, 2887, 1477, 1221, 1070, 909, 775, $741 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaS}: 316.0879\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found $316.0878\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

$7 f:{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{dt}, J=1.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dt}, J=1.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~s}$, $1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=6.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.18(\mathrm{~m}, 2 \mathrm{H})$, $1.46-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 137.2,136.3,129.0,126.4,126.2,122.2,119.6,118.7,117.7,114.2,109.5$,
$52.7,44.6,32.8,24.7,22.8,22.0 \mathrm{ppm}$; IR (neat) $3109,3054,2954,2870,1471,1221,1072$, $742 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3}: 268.1808\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $268.1812\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

$7 \mathbf{g}:{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.46(\mathrm{~m}, 1 \mathrm{H})$, 1.13-1.30 (m, 3H), 0.93-1.04 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 136.9,136.7$, $128.8,126.9,126.8,122.1,119.6,118.7,118.0,112.7,109.5,60.2,42.4,32.8,31.3,30.1$, $26.2,26.0,25.8 \mathrm{ppm}$; IR (neat) $3108,3055,2927,2852,1483,1226,1073,740 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3}$: $294.1965\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $294.1957\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

7h : ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 8.81$ (brs,1H), $7.54(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.39(\mathrm{~m}, 4 \mathrm{H})$, $7.17-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H})$, 6.72-6.73 (m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 139.8,137.1,136.7,129.0,128.7$, $128.1,127.1,125.9,124.8,122.8,120.3,119.2,118.9,115.0,111.5,58.5 \mathrm{ppm}$; IR (neat) 3144, 3114, 2916, 2855, 1493, 1452, 1217, 1071, 912, $732 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3}: 274.1339\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $274.1328\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

$7 \mathrm{i}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.07(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 140.3$,
$137.2,136.6,135.4,129.0,128.6,127.6,126.8,126.2,121.1,119.8,119.3,118.7,108.9$, $57.9,29.5,10.5 \mathrm{ppm}$; IR (neat) 3102, 3056, 3035, 2933, 2909, 1473, 1221, 1072, 908, 740 cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{Na}: 324.1471\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found $324.1460\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

7j : ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 3 \mathrm{H})$, $7.08(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=2.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 154.3,140.0,137.1$, 132.6, 129.6, 129.0, 128.7, 128.0, 127.0, 126.7, 119.1, 112.8, 112.6, 110.4, 100.7, 58.4, $55.7,33.0 \mathrm{ppm}$; IR (neat) $3111,3060,3032,2997,2939,2832,1492,12191067,725 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}: 340.1420\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found $340.1430\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

2 : ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.12-7.14 (m, 2H), $7.09(\mathrm{~s}, 1 \mathrm{H}), 7.03-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H})$, $4.09(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) —163.2, 161.6, 136.9, 135.27, 135.25, 135.1, 129.3, 128.8, 128.7, 128.2, 127.9, 125.3, $121.5,118.9,115.8,115.7,113.3,113.1,111.2,57.5,41.3,15.3 \mathrm{ppm}$; IR (neat) 3115, 3062, 2979, 2935, 2888, 1509, 1223, 1072, 822, 785, $732 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrFN}_{3}: 398.0663\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $398.0667\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Experimental procedure for larger scale synthesis (Scheme 3): $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{COOH}(1.0 \mathrm{mmol})$, 2-naphthaldehyde (10 mmol), o-anisidine (10 mmol), and 1-methylindole (10 mmo) were added to $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, and the mixture was stirred for 24 h at rt . Then NaHCO_{3} aq. (30 mL) was added, and the mixture was stirred for 15 min at rt . The resulting slightly brown white solid was collected by filtration and dried under reduced pressure. Purification of
the resulting solid by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane provided the pure product $\mathbf{4 a}$ as a white solid.

General experimental procedure for transformations of 4a (Scheme 4): AFC product 4a $(0.20 \mathrm{mmol})$ was dissolved in toluene $(2.0 \mathrm{~mL})$, and then $\mathrm{Sc}(\mathrm{OTf})_{3}(0.02 \mathrm{mmol})$ and a nucleophile were added to the solution. The reaction mixture was stirred $70{ }^{\circ} \mathrm{C}$ for 24 h , and then cooled to rt. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and NaHCO_{3} aq. $(5.0 \mathrm{~mL})$ were added to the reaction mixture. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0 \mathrm{~mL})$ and the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration under reduced pressure, the crude product was purified by preparative thin layer chromatography to afford the desired product.

8: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.69-7.81(\mathrm{~m}, 5 \mathrm{H}), 7.51(\mathrm{dd}, J=1.4,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37-7.42 (m, 3H), 7.29 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H})$, $5.99(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 153.7,141.7,137.4,133.6$, $132.3,131.8,128.5,127.9,127.8,127.7,127.53,127.48,127.43,126.6,125.6,125.2,124.6$, $121.4,120.1,119.3,118.6,117.8,111.9,111.7,109.1,101.8,55.8,40.2,32.7 \mathrm{ppm}$; IR (neat) 3414, 3051, 2938, 2830, 1587, 1478, 1211, 907, $738 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}: 417.1961\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $417.1903\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

$9:{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.77-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H})$, $7.37-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.9 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{brs}, 1 \mathrm{H}), 6.22(\mathrm{brd}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ $(\mathrm{s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 157.7$, $150.3,142.7,137.4,133.5,132.1,130.5,128.8,128.3,127.8,127.6,127.5,127.3,126.6$, $125.4,125.0,121.3,120.2,118.54,118.52,108.9,104.6,96.5,55.6,40.8,40.6,32.6 \mathrm{ppm}$; IR (neat) 3050, 2935, 2880, 2831, 2802, 1615, 1516, 1469, 1353, 1239, $737 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}: 421.2274\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $421.2306\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

$10:{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{dd}, J=1.4,8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.43-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.07-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 138.9,137.4,136.7,133.3,132.7,130.2,128.7,128.6,128.2,128.0,127.6,126.8$, $126.7,126.6,126.3,126.0,125.8,122.0,119.7,119.2,114.6,109.4,50.1,32.8 \mathrm{ppm}$; IR (neat) 3053, 2925, 1587, 1472, 1367, 1335, 1121, 1020, 903, 736, $691 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NNaS}: 402.1287\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found $402.1310\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

11 : ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.76-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.45$ (m, 4H), $7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}$, $1 \mathrm{H}), 5.80-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.94-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.99-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.90(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) —142.3, 137.3, 137.1, 133.5, 132.2, 127.9, 127.7, 127.5, 127.3, 126.7, 126.2, 126.1, 125.7, $125.2,121.5,119.5,118.7,118.1,116.0,109.1,43.1,40.4,32.7 \mathrm{ppm}$; IR (neat) 3053, 2921, 1633, 1474, 1370, 1329, 1124, 1005, 910, 813, $740 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}$: $312.1747\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $312.1723\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

12: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.76(\mathrm{~m}$, $3 \mathrm{H}), 7.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 198.4,141.8$, $137.3,137.0,133.5,133.0,132.2,128.5,128.1,127.7,127.5,127.0,126.7,126.4,125.8$, $125.3,121.7,119.5,118.9,117.6,109.2,45.1,38.1,32.7 \mathrm{ppm}$; IR (neat) 3054, 2931, 1685, 1597, 1474, 1328, 1272, 906, 737, $691 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}: 390.1852$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $390.1853\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

$13:{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.69-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.43(\mathrm{~m}, 3 \mathrm{H})$, $7.25-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}$, $2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{br}, 2 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 147.4,142.2,137.4,134.6,133.8,133.5,132.1,128.8,127.92,127.85$, $127.6,127.5,127.4,126.9,125.7,125.2,121.5,121.4,120.0,118.7,118.5,115.0,111.6$, 109.0, 55.4, 48.4, 32.6 ppm ; IR (neat) 3449, 3369, 3048, 2930, 1617, 1516, 1465, 1228, 1145, 1033, 906, $737 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}: 393.1961\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $393.1998\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Ph-1MelND-1MDA

无ca¥data¥data¥Chirakawa¥200

