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Supporting Information 
 
 
I.  On the Empirical Nature of Chemical Kinetics  
 

The rate of a general (uncatalyzed) reaction, r, for the process: 

 

 aA + bB → cC + dD         (A1) 

 

may be expressed as: 

 

r = (-1/a)(d[A]/dt) = (-1/b)(d[B]/dt) = (1/c)(d[C]/dt) = (1/d)(d[D]/dt)  (A2) 

 

From experimental observations, it is known that the rate of a reaction typically shows a 

dependence on the concentration of reagents in the system, at any time, t, as well as the 

temperature, T.  In general terms, one can write, at constant T, the following expression 

for the rate of formation of product C (for example): 

 

d[C]/dt = k[A]a[B]b        (A3) 

 

where it is highlighted that a and b sometimes, but not always, match the stoichiometry in 

the balanced Eqn (A1).  From Eqn (A3) one can see that the rate of the reaction is 

proportional to the reagent concentration(s) via the proportionality (i.e. rate) constant, k.  

Rate constants are determined experimentally, by measuring the dependence of the 

conversion rate on the concentrations of A and B (once the values of a and b have been 
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verified experimentally).  Arrhenius showed that the rate constant has a temperature 

dependence due to the presence of an activation energy barrier, Ea, which must be 

overcome in order for reaction to occur.  The Arrhenius equation, shown below, relates k 

in terms of Ea, T and Λ* (Λ* is considered here to be temperature-independent, though a 

temperature dependence is clearly supported by the author’s earlier derivation of Eqn. 

(20) in the manuscript) where Λ* describes the frequency of intermolecular collisions 

which have the correct geometry to lead to product(s):  

 

k = Λ*exp(Ea/RT)        (A4) 

 

Together, Λ* and the exponential term in Eqn (A4), describe the concentration-

independent frequency of successful collisions (i.e. those forming products) at any given 

T; in other words, the number of colliding reagent molecules which have sufficient 

energy to overcome Ea.  Combining Eqn (A3) and Eqn (A4) one obtains a more 

fundamental kinetic expression for the rate of formation of product C: 

 

d[C]/dt = {A*exp(Ea/RT)}[A]a[B]b      (A5) 

 

Unfortunately, this result is not entirely satisfying, in a physical sense, in that it, too, is 

empirical.   

 

Unlike thermodynamic (i.e. state) quantities, which can be readily predicted, the rates of 

chemical reactions are often obtained through experimentation.  Two of the most 
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noteworthy attempts, to-date, to predict reaction rates based on thermodynamic 

quantities/concepts came from Eyring’s Transition State Theory (discussed in the 

manuscript) and Marcus Theory (discussed later in this Supporting Information section).  

However, despite these theories, the fact that the study of chemical kinetics involves 

empirical manipulations of experimental data remains largely unchanged; in the majority 

of cases it remains impossible to predict reaction rates without some level of 

experimentation.  (It is noted here that computer modeling of certain chemical reactions 

may be performed on a ‘dimensionless time’ scale in order to obtain apparent reaction 

rates, but experimentation is usually needed to correlate such values with absolute 

reaction rates.) 

 

The underlying issue is that reaction rates are generally quantified using units of time (or 

‘dimensionless time’, but the point is unchanged), in which the definition of time is quite 

arbitrary from a physical standpoint:  the fundamental SI unit of time, the second, is 

based on the duration of 9192631770 periods of the radiation corresponding to the 

transition between the two hyperfine ground state levels of the 133Cs atom.  From this 

definition, time cannot be expressed in terms of any other physical parameters.  

Additionally, ‘the arrow of time’ that the scientific community is accustomed to is useful 

only in monitoring macroscopic changes in matter, since, on a molecular level, over a 

given period of time, any two molecules in an ensemble, with equivalent electronic, 

translational, vibrational and rotational energies, can move in opposite directions from 

their origin and, additionally, one may collide (and react) while the other may not.  For 

these reasons, ultimately, time has not been successfully quantized to-date.   
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Time is widely recognized as the fourth dimension in the universe, with the first three 

dimensions used to treat space.  Following Einstein’s development of the theory of 

special relativity, Minkowski, realizing the shortcomings of our current definition of 

time, treated space and time together.  Today it is generally accepted that, in a relativistic 

sense, as speeds approach that of light, temporal and spatial dimensions may become 

‘warped’.  Thus, by defining a new quantity, spacetime (s) as: 

 

s2 = r2 – c2t2         (A6)  

 

where c is the speed of light and r defines spatial coordinates (using the Cartesian 

coordinate system x, y and z;  i.e. r2 = x2 + y2 + z2), it is possible to more accurately relate 

changes in four-dimensional space under relativistic conditions.  Note that s2 can be 

positive, negative or zero, depending on whether a given event is more ‘space-like’, 

‘time-like’ or ‘light-like’.  Additionally, spacetime, like energy, can be quantized (e.g. in 

String/M-Theory). 

 

In the study of chemical kinetics, generally one needs not concern themselves with time-

scales approaching the speed of light.  However, the concept of combining time and 

distance to yield a parameter with a clearer physical significance (i.e. that may be 

quantized) is very attractive.  In order to pursue this idea further, one can introduce the 

concept of temperature, a second fundamental parameter (which is independent of both 
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time and concentration) key to our current understanding of the rates of chemical 

reactions. 

 

Definitions of temperature exist based on both the Zeroth Law and Second Law of 

thermodynamics.  The Ideal Gas Law, which is a classical result which may also be 

obtained from first principles using statistical thermodynamics, yields: 

 

T = PV/nR         (A7) 

 

Where P and V are the pressure and volume occupied by the gas, respectively, and n is 

the number of moles of gas present in the system.  In this case, temperature is a measure 

of the average kinetic energy of a system.  For a given atom, the kinetic energy, εKE, is 

described by:  εKE = ½mv2, where m is the mass of the particle and v is its speed.  In the 

manuscript, it was mentioned that for an ideal gas, the distribution of kinetic energies, 

and thus speeds, is described by the M-B distribution. 

 

Rewriting the classical expression for kinetic energy, one obtains: 

 

v = (2εKE/m)½         (A8) 

 

and thus one can see that in using molecular speeds one obtains a direct measure of the 

kinetic energy in both a space- and time-dependent fashion, since speed = distance/time.  

As per relativistic spacetime, molecular speeds can be quantized (i.e. as per the M-B 
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distribution).  Thus, the author’s hypothesis is that molecular speeds may be useful in 

describing the reaction kinetics (e.g. of dispersive chemical systems), in a more 

physically meaningful fashion than using the time domain (alone). 

 

Unfortunately, the measurement/calculation of ‘kinetic energy distributions’ for 

polyatomic molecules in the gas phase and for molecules in condensed phases is non-

trivial.  Thus, time-based (i.e. traditional) kinetic approaches provide a simpler and more 

convenient means of describing reaction rates.  It turns out that the treatment of 

dispersive kinetics described in this work, using assumptions about the kinetic energies of 

the species defining the r.d.s. of the conversion (possessing the functional form of the M-

B equation), in conjunction with the present-day convention of studying chemical 

conversions in the time domain, is able to yield semi-empirical model equations.  These 

equations differ from traditional models in that they are not entirely phenomenological.  

Additionally, they have a broad range of applicability to various (dispersive) chemical 

reactions/phase transformations occurring on very different time-scales.  Their success, 

to-date, may be attributable to the ‘quantization of the activation energy barrier’ that was 

able to be achieved, fundamentally, by starting with the hypothesis that molecular 

dynamics are important in modeling the reaction kinetics of dispersive systems. 

 

 
II.  Three-Dimensional Marcus Theory Supports Dispersive Kinetics 

 

Marcus Theory (MT) provides a fairly good approximation for the activation energy of 

simple chemical reactions, such as redox and acid-base processes (in which either an 
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electron or proton is transferred, respectively, during the reaction), based solely on the 

change in free energy of the reaction, ∆Gr, the solvent reorganization energy, λ, and the 

work needed to move the reactants, wr, in the following general reaction scheme 

 

 A + BC → AB + C,  

 

from their respective equilibrium positions along the reaction coordinate to some 

intermediate point where the Lennard-Jones (L-J) potential curves for the two reactant 

species intersect, defining the transition state (TS) [see Figure 9.10 in Masel, R. I.  

Principles of Adsorption and Reaction on Solid Surfaces.; John Wiley & Sons, Inc.:  New 

York, 1996, pp.628-629.].   The power of the theory lays in the fact that it introduces the 

possibility of predicting the activation energy based on thermodynamic quantities.  

Practically, however, the Marcus Equation defines a correlation between the rates of 

simple chemical reactions and corresponding thermodynamic quantities such as 

equilibrium constants, the Gibbs free energy change or the applied potential.  The Marcus 

Equation, which can be written as: 

   

 Ea = λ(1 + ∆Gr/4λ)2 + wr      (A9) 

 

is elegant in its simplicity and its usefulness in describing kinetic trends.  The equation 

predicts a linear dependence of Ea on ∆Gr over a limited range of ∆Gr, but a quadratic 

dependence over a wide range of free energy change (which is experimentally justified). 
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Following the derivation of the Marcus Equation given by Masel, one can approximate 

the L-J potentials of species BC and AB using parabolas in the vicinity of the TS (this 

approximation has a basis in the vibrational energies of a harmonic oscillator and it is 

useful for simple molecules/reactions).  Using the terminology of Masel, one can write: 

 

 Eleft (rx) = SS1(rx-r1)
2 + E1      (A10) 

 

 Eright (rx) = SS2(rx-r2)
2 + ∆Gr + E2     (A11) 

 

for the energies of the BC and AB parabolas, respectively, as a function of the location 

on the reaction coordinate, rx.  The constants SS1, SS2, r1 and r2 are ‘fit parameters’.  

Defining r‡ as the value of rx where the two energy parabolas intersect (i.e. where Eleft = 

Eright) and using the Marcus simplifications SS1 = SS2 and E1 = E2, one can obtain the 

following expression for r‡: 

 

 r‡ = (r1+r2)/2 + ∆Gr/[2SS1(r2-r1)]     (A12) 

 

At this point, one may introduce the idea that r‡ does not have to be single-valued.  If r‡ is 

allowed the flexibility to vary with time (thus one may redefine the variable as r‡(t)), one 

may conclude that SS1 in Eqn (A12) must also be a function of the reaction time, t.  This 

makes sense as SS1 is related to the vibrational frequency of the atom, B, being 

transferred.  If not all atoms are inherently transferred with the same frequency, one may 

observe dispersion in the rate of reaction.  Thus, one can rewrite Eqn (A12) as: 
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  r‡(t) = (r1+r2)/2 + ∆Gr/{2[SS1(t)][(r2-r1)]}    (A13) 

 

Inserting Eqn (A13) into Eqn (A10) and solving, one ultimately obtains an expression for 

a time-dependent activation energy, Ea(t): 

 

 Ea(t) = λ(t)[1 + ∆Gr/4λ(t)]2 + wr      (A14) 

 

in which λ(t) ≡ {[SS1(t)][r2-r1]
2}/4 (note that one can expect wr to be nearly constant for a 

group of related reactions).  Eqn (A14) provides a description of a reaction time-

dependent activation energy, potentially useful for describing dispersive kinetics; the 

equation is referred to here as the ‘3-D Marcus Equation’.  From this equation, one can 

see that the time-dependent reorganization energy, λ(t), is fundamentally responsible for 

the variation in Ea(t), which is entirely consistent with the idea that molecular motion is 

responsible for the ‘dispersion in the activation energy’ in the majority of dispersive 

kinetic systems.  Returning to the earlier discussion of Eqn (A13), one may also conclude 

that the rate at which atom B is transferred from C to A may be limited, to a notable 

extent, by the time-scale of the reorganization (i.e. of molecules solvating the various 

species in the above reaction scheme). 


