Dirhodium Tetracarboxylates
 Derived from Adamantylglycine as Chiral Catalysts for Enantioselective C-H Aminations

Ravisekhara P. Reddy and Huw M. L. Davies*

Supporting Information

Experimental Procedures
Spectral Data

S2-S11
S12-S25

General Procedure:

${ }^{1} \mathrm{H}$ NMR spectra were run at either 400 or 500 MHz , and ${ }^{13} \mathrm{C}$ NMR at either 75 or 125 MHz with the sample solvent being CDCl_{3} unless otherwise noted. Mass spectral determinations were carried out in GC-MS (EI), LC-MS (ESI) or by Instrument Center, Department of Chemistry, University at Buffalo. IR spectra were obtained using a Perkin Elmer 1760X FT-IR. Optical rotations were measured using a Jasco DIP-370 digital polarimeter. Elemental analyses were performed by Atlantic Microlabs Inc., Norcross GA. Enantiomeric excess was determined by HPLC (UV detection at 254 nm). Analytical TLC was performed on 0.25 mm E. Merck silica gel (60F-254) plates using UV light.

Glassware was dried in oven overnight then flame or heat-gun dried prior to use. Reactions were conducted under argon atmosphere. Column chromatography was carried out on Merck silica gel 60 (230-400 mesh). Solvents THF, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene were dried by solvent purifier.

2-((S)-1-Adamantyl-2-hydroxyethyl)4,5,6,7-tetrachloroisoindoline-1,3-dione:

Tetrachlorophthalic anhydride ($0.76 \mathrm{~g}, 5.12 \mathrm{mmol}, 1.0$ equiv.) was added to a solution of (S)-2-amino-2-adamantylethanol ($1.0 \mathrm{~g}, 5.12 \mathrm{mmol}, 1.0$ equiv.) in DMF (6 mL) and heated at $140{ }^{\circ} \mathrm{C}$ for 12 h . After cooling, the reaction mixture was poured into water, and the product precipitated out as a white solid. The crystals were filtered and vacuum dried to give the product ($1.9 \mathrm{~g}, 80 \%$ yield) as a white sticky solid. $\mathrm{R}_{\mathrm{f}}=0.35(3: 1$
hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{25}-4.5^{\circ}\left(c 0.22, \mathrm{CHCl}_{3}\right)$; IR (neat) 3273, 2903, 2849, 1641, 1543, $1401,1343,1266,1132 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.53(\mathrm{t}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.04(\mathrm{dd}, J=5.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=5.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{bs}, 3 \mathrm{H}), 1.71-1.60$ (m, 13 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 165.1, 129.7, 127.4, 127.3, 64.4, 57.5, 40.1, 37.1, 36.7, 28.3; HRMS (ESI) m / z Calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cl}_{4} \mathrm{NO}_{3}\right]^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 462.0197$. Found: 462.0201.

(S)-Adamantan-1-yl-(4,5,6,7-tetrachloro-1,3-dioxo-1,3-dihydro-isoindol-2-yl)-acetic
acid: $\mathrm{NaIO}_{4}(3.4 \mathrm{~g}, 16.0 \mathrm{mmol}, 4.1 \mathrm{eq})$ in water $(25 \mathrm{~mL})$ was added to a stirring solution of 2-((S)-1-adamantyl-2-hydroxyethyl) 4,5,6,7-tetrachloroisoindoline-1,3-dione (1.8 g, $3.9 \mathrm{mmol})$ in $(1: 1) \mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{CN}(34 \mathrm{~mL})$, and stirred at $23{ }^{\circ} \mathrm{C}$ for $10 \mathrm{~min} . \mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ $(0.02 \mathrm{~g}, 2.2 \mathrm{~mol} \%)$ was then added and stirred vigorously for 12 h . The reaction mixture was diluted with DCM and filtered through a pad of celite and charcoal. The filtrate was washed with water and brine and dried over anhydrous MgSO_{4}, and the solvent was removed in vacuo. The resulting residue was dissolved in ether (25 mL) and filtered through a pad of celite and charcoal. The solvent was then concentrated to give the product $(1.26 \mathrm{~g}, 68 \%)$ as a white solid. $\mathrm{R}_{\mathrm{f}}=0.17$ (1:1 hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{25}-14.4^{0}(c$ $0.15, \mathrm{CHCl}_{3}$); IR (neat): 2906, 2851, 1723, 1387, 1370, $737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 4.57(\mathrm{~s}, 1 \mathrm{H}), 1.99-1.66(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,163.5$, $140.5,130.0,127.2,61.2,39.3,37.8,36.5,28.4$; HRMS (EI) m / z Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{NO}_{4}{ }^{37} \mathrm{Cl}_{1}: 476.9877$. Found: 476.9862.

$\left.\mathbf{R h}_{\mathbf{2}}(\mathbf{S}-\mathbf{T C P T A D})_{\mathbf{4}} \mathbf{(4 b}\right)$. The following procedure is similar to that reported by Callot. ${ }^{1}$ (S)-adamantan-1-yl-(4,5,6,7-tetrachloro-1,3-dioxo-1,3-dihydro-isoindol-2yl)-acetic acid ($1.2 \mathrm{~g}, 2.5 \mathrm{mmol}, 6$ equiv.) and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(188 \mathrm{mg}, 0.42 \mathrm{mmol})$ were dissolved in dry chlorobenzene (12 mL) in a flask under argon, and stirred at $23^{\circ} \mathrm{C}$ for 30 min and then the mixture was heated up to $150^{\circ} \mathrm{C}$ and the acetic acid was distilled out as an azeotrope with chlorobenzene for 3 h . Additional 25 mL was added and distilled during the reaction. The mixture was cooled and the solvent was removed in vacuo. The residue was subjected to flash chromatography (silica, 1.5:1 hexanes / EtOAc - 1:1 hexanes / EtOAc) to give $\mathbf{4 b}(0.55 \mathrm{~g}, 62 \%)$ as a bright green solid. $\mathrm{R}_{\mathrm{f}}=0.7\left(1: 3\right.$ hexanes:EtOAc); $[\alpha]_{\mathrm{D}}{ }^{25}$ $+82.6^{\circ}\left(c 0.19, \mathrm{CHCl}_{3}\right)$; FTIR: 2904, 2850, 1726, 1610, 1370, 1200, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.70(\mathrm{~s}, 1 \mathrm{H}), 1.99-1.67(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $186.2,163.4,162.8,140.2,139.8,130.1,129.3,127.3,62.3,39.3,38.4,36.9,28.5$; HRMS (FAB) calc for $\left[\mathrm{C}_{80} \mathrm{H}_{64} \mathrm{Cl}_{16} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{Rh}_{2}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$2102.7522. Found: 2102.7536.

General procedure for the intermolecular $\mathbf{C}-\mathbf{H}$ amination:

A solution of $\mathrm{PhI}(\mathrm{OAc})_{2}$ (1.5 equiv.) in trifluorotoluene $(10 \mathrm{~mL})$ was added to a solution of substrate (5 equiv.) NsNH_{2} (1 equiv.) MgO (2.3 equiv.) and the catalyst ($2 \mathrm{~mol} \%$) in trifluorotoluene $(15 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ over 0.5 h using a syringe pump. The reaction mixture

[^0]was allowed to stir for 3 h and then filtered to remove the precipitated solids and the filtrate was concentrated. The residue was purified using flash column chromatography.

(\boldsymbol{R})- \boldsymbol{N}-Indan-1-yl-4-nitro-benzenesulfonamide (5). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.38$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.93-4.89 (m, 2H), 2.97-2.90 (m, 1H), 2.85-2.76 (m, 1H), 2.35-2.42 (m, 1H), 1.76$1.82(\mathrm{~m}, 1 \mathrm{H}) ;[\alpha]_{\mathrm{D}}^{25}+16.4^{\circ}\left(c 0.68, \mathrm{CHCl}_{3}, 94 \%\right.$ ee $) . \mathrm{Lit} .[\alpha]_{\mathrm{D}}+22.7^{\circ}\left(\mathrm{c} 1.30, \mathrm{CHCl}_{3}\right) ;^{2}$ HPLC analysis: 94 \% ee. Chiralcel AD-H, $25.0 \% i-\mathrm{PrOH}, 0.8 \mathrm{~mL} / \mathrm{min}, 12.6 \mathrm{~min}$ (major), 18.3 (minor). The NMR data are consistent with the published data. ${ }^{3}$

(R)-N-(1-Phenyl-ethyl)- 4-nitro-benzenesulfonamide (7a). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 8.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.06(\mathrm{~m}$, $2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.55(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.69(\mathrm{~m}$, $3 \mathrm{H}) ;[\alpha]_{\mathrm{D}}{ }^{25}+11.6^{\circ}\left(c 0.73, \mathrm{CHCl}_{3}\right) . \operatorname{Lit}[\alpha]_{\mathrm{D}}+6.23^{\circ}\left(\mathrm{c} 0.80, \mathrm{CHCl}_{3}\right) ;{ }^{2}$ HPLC analysis: 74 \% ee. Chiralcel OD-H, 1.0 \% $i-\operatorname{PrOH}, 0.7 \mathrm{~mL} / \mathrm{min}, 5.8 \mathrm{~min}$ (major), 11.1 min (minor). The NMR data are consistent with the published data. ${ }^{3}$

[^1](R)- N-(5-Methoxy-indan-1-yl)-4-nitrobenzenesulfonamide (7b). white solid; $\mathrm{mp}=95$ $98{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.40\left(2: 1\right.$ hexanes:EtOAc); $[\alpha]_{\mathrm{D}}{ }^{25}+44.9^{\circ}$ (c 0.12, acetone); FTIR: 3286, 2946, 1607, 1530, 1493, 1434, 1349, 1164, 1093, 1029, 851, 736, 643, $619 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 8.38(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}$, 1H), $1.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,157.1,147.2,145.3,133.0$ 128.1, 125.1, 124.6, 103.1, 100.4, 58.8, 55.9, 35.5, 30.1; HRMS (EI) m / z calc for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}\left[(\mathrm{M})^{+}\right]: 348.0774\right.$. Found: 348.0779; HPLC analysis: Chiralcel AD-H, $25.0 \% \mathrm{ipa}, 0.7 \mathrm{~mL} / \mathrm{min}, 24.0 \mathrm{~min}$ (major), 26.3 min (minor).

(R)- N -(1,2,3,4-Tetrahydronaphthalene-1-yl)-4-nitrobenzenesulfonamide (7c). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-$ $4.55(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.66(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.71(\mathrm{~m}, 4 \mathrm{H}) ;[\alpha]_{\mathrm{D}}{ }^{25}+34.1^{\circ}\left(c 0.64, \mathrm{CHCl}_{3}, 73 \%\right.$ ee), Lit. $[\alpha]_{\mathrm{D}} 44.3^{\circ}\left(\mathrm{c} 1.40, \mathrm{CHCl}_{3}\right){ }^{2}$ HPLC analysis: 73% ee. Chiralcel AD-H, $25.0 \% i-$ $\mathrm{PrOH}, 0.7 \mathrm{~mL} / \mathrm{min}, 12.9 \mathrm{~min}$ (major), 19.6 min (minor). The NMR data are consistent with the published data. ${ }^{3}$

(\boldsymbol{R})- N -(3-Oxo-indan-1-yl)-4-nitrobenzenesulfonamide (7d). yellow solid, $\mathrm{mp}=198$ $200{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.40\left(2: 1\right.$ hexanes:EtOAc); $[\alpha]_{\mathrm{D}}{ }^{25}-10.5^{\circ}(c 0.19$, acetone, 76% ee $)$; FTIR:

2966, 2906, 2854, 1707, 1530, 1349, 1259,1166, 1067, 854, $736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO, $500 \mathrm{MHz}) \delta 8.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.13(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J$ $=19.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=19.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.0$ (C), 153.2 (C), 149.7 (C), $136.0(\mathrm{CH}), 135.5(\mathrm{C}), 129.2(\mathrm{CH}), 128.1(\mathrm{CH}), 126.2(\mathrm{CH})$, $124.8(\mathrm{CH}), 122.5(\mathrm{CH}), 50.9(\mathrm{CH}), 43.8(\mathrm{CH})$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 54.21$; H, 3.64; N, 8.43. Found: C, 54.40; H, 3.55; N, 8.39; HPLC analysis: 76% ee. Chiralcel OJ, $5 \% i-\mathrm{PrOH}, 0.8 \mathrm{~mL} / \mathrm{min}, 5.4 \mathrm{~min}$ (minor), 7.1 min (major).

(R)-N-(5-Methoxy-3-oxo-indan-1-yl)-4-nitrobenzenesulfonamide (7e). yellow solid, $\mathrm{mp}=165-167{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.37(2: 1 \mathrm{Hex}: \mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}{ }^{25}-20.9^{\circ}(c 0.45$, acetone, 74% ee $)$; FTIR: $3305,1711,1692,1527,1493,1350,1285,1155,1089,855,740,669,616 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO, 500 MHz$) \delta 8.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=2.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H})$, $5.00(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{dd}, J=18.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=18.5,3.0 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.8$ (C), 160.3 (C), 149.7 (C), 146.9 (C), 145.7 (C), $137.5(\mathrm{C}), 128.1(\mathrm{CH}), 127.2(\mathrm{CH}), 124.8(\mathrm{CH}), 123.7(\mathrm{CH}), 104.4(\mathrm{CH}), 55.7$ (CH3), $50.5(\mathrm{CH}), 44.4(\mathrm{CH} 2)$; HRMS (ESI) m / z calc for $\left[\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}\right]^{+}(\mathrm{M}+\mathrm{Na})^{+}$ 385.0465. Found: 385.0460 ; HPLC analysis: 74% ee: Chiralcel OJ, $5.0 \% i$-PrOH, 0.8 $\mathrm{mL} / \mathrm{min}, 6.9 \mathrm{~min}$ (major), 12.4 min (minor).

(R)-N-(5-Bromo-3-oxo-indan-1-yl)-4-nitrobenzenesulfonamide (7f). yellow sticky solid; $\mathrm{R}_{\mathrm{f}}=0.47(2: 1 \mathrm{Hex}:$ EtOAc $) ;[\alpha]_{\mathrm{D}}{ }^{25}-6.25^{\circ}(c 0.32$, acetone, 73% ee $)$; FTIR: 3419, 2360, 2325, 1653, 1023, $762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO, 500 MHz$) \delta 8.76(\mathrm{bs}, 1 \mathrm{H}), 8.46(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{bs}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=7.5,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=3.0,18.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.6,152.1,149.7,146.6,138.0,137.8,128.4$, 128.1, 125.0, 124.7, 122.7, 50.7, 43.9; HRMS (EI) m / z calc for $\left[\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}\left(\mathrm{M}^{+}\right)\right.$: 409.9567. Found: 409.9576; HPLC analysis: 73 \% ee. Chiralcel OJ, 5.0 \% i-PrOH, 0.8 $\mathrm{mL} / \mathrm{min}, 5.4 \mathrm{~min}$ (major), 7.1 min (minor).

(R)- N -(4-Oxo-1,2,3,4-tetrahydronaphthalene-1-yl)-4-nitrobenzenesulfonamide (7g). $\mathrm{R}_{\mathrm{f}}=0.40$ (2:1 hexanes:EtOAc); $[\alpha]_{\mathrm{D}}{ }^{25}-13.4^{\circ}$ (c 1.02, acetone, 78% ee); FTIR: 2966, 2906, 2854, 1707, 1530, 1349, 1259,1166, 1067, 854, $736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO, 300 $\mathrm{MHz}) \delta 8.75(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.84$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.78(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}\right) \delta$ 196.1, $149.6,147.4,143.1,133.8,131.5,128.1,127.9,127.7,126.3,124.7,51.2,35.2,29.5$; HRMS (EI) m / z calc for $\left[\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\right]^{+}\left(\mathrm{M}^{+}\right)$: 346.0623. Found: 346.0634; HPLC
analysis: 78 \% ee. Chiralcel OJ, 5.0 \% i-Propanol, $0.8 \mathrm{~mL} / \mathrm{min}, 15.4 \mathrm{~min}$ (minor), 18.1 \min (major).

(R)-N-Indan-1-yl-4-nitro- N-prop-2-ynyl-benzenesulfonamide (8). light yellow solid, $\mathrm{mp}=102-105^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.40\left(5: 1\right.$ hexanes:EtOAc) $;[\alpha]_{\mathrm{D}}^{25}-12.3^{\circ}\left(c 1.17, \mathrm{CHCl}_{3}\right) ;$ FTIR: $3281,3101,2946,1528,1348,1158,1093,855,737,684 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 8.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.15(\mathrm{~m}, 4 \mathrm{H}), 5.61(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=19.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=19.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~m}$, $1 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.9(\mathrm{C})$, 146.5 (C), 143.6 (C), 138.8 (C), $128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 127.1(\mathrm{CH}), 125.1(\mathrm{CH}), 124.5$ $(\mathrm{CH}), 124.1(\mathrm{CH}), 78.9(\mathrm{C}), 72.9(\mathrm{C}), 63.8(\mathrm{CH}), 32.8(\mathrm{CH} 2), 30.1(\mathrm{CH} 2), 29.1(\mathrm{CH} 2)$; HRMS (EI) m / z calc for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right]^{+}\left(\mathrm{M}^{+}\right): 356.0825$. Found: 356.0819.

(R)-Indan-1-yl-prop-2-ynyl-amine (9). solid, $m p=148{ }^{\circ} \mathrm{C} \quad \mathrm{R}_{\mathrm{f}}=0.33$ (3:1 hexanes:EtOAc); $[\alpha]_{\mathrm{D}}{ }^{25}+18.8^{\circ}$ (c 1.7, CHCl_{3}); FTIR: 3281, 2929, 2848, 1456, 1349, 1161, 1088, $649 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}$, $3 \mathrm{H}), 4.62(\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.46$ (s, 1H), $2.12(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 144.5(\mathrm{C}), 143.8(\mathrm{C}), 127.6(\mathrm{CH})$, $126.2(\mathrm{CH}), 124.8(\mathrm{CH}), 124.2(\mathrm{CH}), 82.5(\mathrm{C}), 71.3(\mathrm{C}), 61.9(\mathrm{CH}), 36.1(\mathrm{CH} 2), 33.3$ (CH2), 30.4 (CH2); HRMS (ESI) m / z calc for $\left[\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NNa}\right]^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 194.0946. Found: 194.0932.

General Procedure for Intramolecular C-H Amination:

To a solution of N-tosyloxycarbamate $(0.5 \mathrm{mmol})$ in dichloromethane $(10.0 \mathrm{~mL})$, were added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($1.5 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Rh}_{2}(S-\mathrm{TCPTAD})_{4}(0.01 \mathrm{mmol})$. The resulting suspension was stirred at $23^{\circ} \mathrm{C}$ for 4 h . The mixture was filtered to remove the precipitate and the solvent was removed under vacuum. The crude reaction mixture was then purified by flash chromatography.

(R)-4-Phenyloxazolidin-2-one (11a). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.32(\mathrm{~m}, 5 \mathrm{H})$, $6.11(\mathrm{bs}, 1 \mathrm{H}), 4.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=8.8,7.6 \mathrm{~Hz}$, $1 \mathrm{H}) ;[\alpha]_{\mathrm{D}}{ }^{25}-40.8^{\mathrm{o}}\left(c 0.86, \mathrm{CHCl}_{3}, 82 \%\right.$ ee $)$ Lit. $[\alpha]_{\mathrm{D}}$ for (R)-4-phenyloxazolidin-2-one: ${ }^{4}$ -57.7° (c 1.00, CHCl_{3}); HPLC analysis. 82% ee. Chiralcel OD-H, $7 \% i-\mathrm{PrOH}, 0.9$ $\mathrm{mL} / \mathrm{min}, 14.0 \mathrm{~min}$ (major), 17.2 min (minor). The NMR data are consistent with the published data. ${ }^{5}$

(\boldsymbol{R})-4-Adamantyloxazolidin-2-one (11b). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.62(\mathrm{bs}, 1 \mathrm{H})$, $4.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.51(\mathrm{~m}, 12 \mathrm{H}) ;[\alpha]_{\mathrm{D}}{ }^{25}$ -12.5 (c 0.62, $\mathrm{CHCl}_{3}, 78 \%$ ee); lit. $[\alpha]_{\mathrm{D}}$ for (S)-4-adamantyloxazolidin-2-one ${ }^{6}:+8.1(c$ $0.78, \mathrm{CHCl}_{3}$); HPLC analysis. 78 \% ee. Chiralcel OD-H, $0.9 \mathrm{~mL} / \mathrm{min}, 7 \% i-\mathrm{PrOH}, 13.1$ \min (minor), 24.7 min (major). The NMR data are consistent with the published data. ${ }^{5}$

[^2]
(R)-4-Styryloxazolidin-2-one (11c). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.30(\mathrm{~m}, 5 \mathrm{H})$, $6.62(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{bs}, 1 \mathrm{H}), 4.63-4.54(\mathrm{~m}$, $2 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}) ;[\alpha]_{\mathrm{D}}{ }^{25}+22.5^{\circ}\left(c 0.26, \mathrm{CHCl}_{3}\right)$, Lit. $[\alpha]_{\mathrm{D}}$ for (R)-4-styryloxazolidin-2one: ${ }^{7}+19.3$ (c 1.945, CHCl_{3}); HPLC analysis. 79% ee. Chiralcel OD-H, $10.0 \% i$-PrOH, $0.9 \mathrm{~mL} / \mathrm{min}, 8.5 \mathrm{~min}$ (minor), 15.3 min (major). The NMR data are consistent with the published data. ${ }^{5}$

(4R,5S)-Indano[1,2-d] oxazolidin-2-one (11d). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.26$ $(\mathrm{m}, 4 \mathrm{H}), 6.87(\mathrm{bs}, 1 \mathrm{H}), 5.43-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=7.0,1 \mathrm{H}), 3.44-3.34(\mathrm{~m}, 2 \mathrm{H})$; $[\alpha]_{\mathrm{D}}{ }^{25}+12.1^{\circ}\left(c 0.36, \mathrm{CHCl}_{3}, 43 \%\right.$ ee $)$; Lit. $[\alpha]_{\mathrm{D}}$ for $(4 R, 5 S)$-indano $[1,2-d]$ oxazolidin-2one: ${ }^{8}+76.9\left(c 1.2, \mathrm{CHCl}_{3}\right)$; HPLC analysis. 43 \% ee. Chiralcel AD-H, 7\% $i-\mathrm{PrOH}, 0.9$ $\mathrm{mL} / \mathrm{min}, 17.0 \mathrm{~min}$ (major), 29.0 min (minor). The NMR data are consistent with the published data. ${ }^{5}$

[^3]

:-

coles)

$$
\infty
$$

[^0]: ${ }^{1}$ Callot, H. J.; Metz, F. Tetrahedron 1985, 41, 4495.

[^1]: ${ }^{2}$ Yamawaki, M.; Tsutsui, h.; Kitagaki, S.; Anada, M.; Hashimoto. S. Tetrahedron Lett. 2002, 42, 9561.
 ${ }^{3}$ Nageli, I.; Baud, C.; Bernardinelli, G.; Jacquier, Y.; Moran, M.; Muller, P. Helv. Chim. Acta 1997, 80 , 1087.

[^2]: ${ }^{4}$ Evans, D. A.; Sjogren, E. B. Tetrahedron Lett. 1985, 26, 3783.
 ${ }^{5}$ (a) Espino, C.G.; Du Bois, J. Angew. Chem. Int. Ed. 2001, 40, 598. (b) Lebel, H.; Huard, K.; Lectard, S. J. Am. Chem. Soc. 2005, 127, 14198.
 ${ }^{6}$ Takacs, J. M.; Jaber, M. R.; Vellekoop, A. S. J. Org. Chem. 1998, 63, 2742.

[^3]: ${ }^{7}$ Sibi, M.P.; Rutherford, D.; Renhowe, P. A.; Li, B. J. Am. Chem. Soc. 1999, 121, 7509.
 ${ }^{8}$ Ghosh, A. K.; Kincaid, J. F.; Haske, M. G. Synthesis, 1997, 5, 541.

