Skeletal Diversity via Ring Contraction of Glycal-Derived Scaffolds

Adam R. Yeager, Geanna K. Min, John A. Porco, J..,* and Scott E. Schaus.*
Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, 24 Cummington St., Boston, Massachusetts 02215

Supporting Information

General Information: All reactions were carried out in oven or flame-dried glassware under an atmosphere of argon unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Mercury 400 MHz spectrometer at ambient temperature and are reported in ppm relative to solvent $\left(\mathrm{CHCl}_{3}\right.$ at 7.26 ppm). Proton decoupled ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100.0 MHz at ambient temperature, and are reported in ppm relative to solvent $\left(\mathrm{CHCl}_{3}\right.$ at 77.0 ppm$)$. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift, integration, multiplicity ($a p p=$ apparent, $s=$ singlet, $d=$ doublet, $t=$ triplet, q $=$ quartet, $\mathrm{m}=$ multiplet) and coupling constants (reported in Hz.). High pressure liquid chromatography/mass spectral (LC-MS) analyses were performed using a Micromass 2Q 2000 mass spectrometer in atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI) modes. LC separations were performed using a Waters Alliance 2996 module and a Waters Symmetry C8 column ($4.6 \times 30 \mathrm{~mm}$). ELS detection was performed using a Sedere Sedex 75 ELS detector. Product purities are reported as ELSD area percent. Infrared spectra were recorded on a Nicolet Nexus 670 FT-IR spectrophotometer. Low and high-resolution mass spectra were obtained in the Boston University Mass Spectrometry Laboratory using Finnegan MAT-90 and Waters Q-Tof spectrometers. Microwave mediated reactions were performed using the CEM Discover / Explorer system, equipped with either 10 mL or 80 mL reaction vessels. Chromatography was performed using the ISCO Companion system. Reaction planning and was performed using the Synthematix electronic notebook program (http://www.synthematix.com/). X-ray crystal structures were obtained by Dr. Emil Lobkovsky (Department of Chemistry and Chemical Biology, Cornell University). Analytical thin layer chromatography was performed on $0.25 \mathrm{~mm} \mathrm{SiO} 260-\mathrm{F}$ plates. Flash chromatography was performed using 200-400 mesh SiO_{2} (Scientific Absorbent Incorporated). Methylene chloride and tetrahydrofuran were purified by passing through two packed columns of neutral alumina (Glass Contour, Irvine, CA). MeOH, dichloroethane, and dimethyformamide were used as supplied from Dri-Solv (EMD) bottles. MP-Carbonate ($2.98 \mathrm{mmol} / \mathrm{gram}$) was obtained from Biotage. All other reagents and solvents were used as supplied by Sigma-Aldrich, Fluka, Acros, and Strem Chemicals.

Synthesis of C-Glycosides 3c (cf. Scheme 2):

Table SI-1: Alkyne addition to glycals

Alkynyl C-glycoside SI-1: Zinc chloride (520 mg 3.8 mmol), was added to a flame-dried 80 mL -microwave flask under an inert atmosphere (glove box). The flask was removed from the glove box and placed under argon. Dichloroethane (10 mL) was added, followed by N, N - diethyl- $1,1,1-$ trimethylsilylamine $(0.570 \mathrm{~mL}, 2.9 \mathrm{mmol})$ and p-methoxyphenylacetylene $(0.250 \mathrm{~mL}, 1.9 \mathrm{mmol})$. The flask was sealed and heated at $150^{\circ} \mathrm{C}$ using microwave irradiation (150-300 W, Powermax enabled) for 15 min . The reaction was again placed under argon and transferred to a $-25^{\circ} \mathrm{C}$ cold bath. Tri-O-acetyl-D-glucal ($260 \mathrm{mg}, 0.96 \mathrm{mmol}$) and scandium triflate ($20 \mathrm{mg}, 0.05 \mathrm{mmol}$) were added. After 1.5 h , the reaction was diluted with sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic fraction was washed with sat. brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}(0-40 \%$ EtOAc / pet. ether) provided SI-1 ($0.528 \mathrm{~g}, 88 \%$) as a viscous oil. Spectral data were in agreement with reported literature values. ${ }^{1}$

Alkynyl \boldsymbol{C}-glycoside SI-2: Zinc chloride (520 mg 3.8 mmol), was added to a flame-dried 80 mL -microwave flask under an inert atmosphere (glove box). The flask was removed from the glove box and placed under argon. Dichloroethane (10 mL) was added, followed by N, N - diethyl-1,1,1trimethylsilylamine ($0.570 \mathrm{~mL}, 2.9 \mathrm{mmol}$) and p-methoxyphenylacetylene $(0.250 \mathrm{~mL}, 1.9 \mathrm{mmol})$. The flask was sealed and heated using microwave irradiation $\left(150^{\circ} \mathrm{C}\right.$, 150-300 W, Powermax enabled) for 15 min . The reaction was again placed under argon and transferred to a $-25^{\circ} \mathrm{C}$ cold bath. Tri-O-acetyl-D-glucal ($260 \mathrm{mg}, 0.96 \mathrm{mmol}$) and scandium triflate

[^0]$(20 \mathrm{mg}, 0.05 \mathrm{mmol})$ were added. After 1.5 h the reaction was diluted with sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic fraction was washed with sat. brine, dried, and concentrated. Chromatography over SiO_{2} ($0-40 \%$ EtOAc / pet. ether) provided SI-2 ($292 \mathrm{mg}, 88 \%$) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38(\mathrm{~d}, 2 \mathrm{H}, J=13.2), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=11.2), 5.97(\mathrm{~d}, 1 \mathrm{H}, J=10.0), 5.97$ (d, $1 \mathrm{H}, J=9.6), 5.34(\mathrm{~d}, 1 \mathrm{H}, J=8.8), 5.18(\mathrm{brs}, 1 \mathrm{H}), 4.26(\mathrm{~d}, 2 \mathrm{H}, J=3.2), 4.17(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $2.09(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.9,170.3,159.9,133.3,130.2$, $129.4,125.2,113.9,86.6,83.2,69.8,64.8,64.5,63.0,55.3,21.0,20.8 \mathrm{ppm}$; IR (neat): 3743,2955 , $2831,2217,1740,1654,1608,1507,1231,1041 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-80^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

Alkynyl C-glycoside SI-3: Zinc chloride (800 mg 5.9 mmol), was added to a flame-dried 80 mL -microwave flask under an inert atmosphere (glove box). The flask was removed from the glove box and placed under argon. Dichloroethane (10 mL) was added, followed by N, N-diethyl-1,1,1-trimethylsilylamine $(0.800 \mathrm{~mL}$, 4.0 mmol) and 3-cyclohexyl-1-propyne ($0.530 \mathrm{~mL}, 3.7 \mathrm{mmol}$). The flask was sealed and heated using microwave irradiation $\left(150^{\circ} \mathrm{C}, 150-300 \mathrm{~W}\right.$, Powermax enabled) for 15 min . The reaction was again placed under argon and transferred to a $-25^{\circ} \mathrm{C}$ cold bath. Tri-O-acetyl-D-glucal ($500 \mathrm{mg}, 1.8$ mmol) and scandium triflate ($20 \mathrm{mg}, 0.4 \mathrm{mmol}$) were added. After 1.5 h , the reaction was diluted with sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic fraction was washed with sat. brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}(0-40 \% \mathrm{EtOAc} /$ pet. ether) provided SI-3 (451 $\mathrm{mg}, 73 \%$) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.90$ (ddd, $1 \mathrm{H}, J=1.6,2.8,10.3$), 5.75 (dd, 1H, $J=2.0,10.4), 5.28(\mathrm{dd}, 1 \mathrm{H}, J=2.0,10.0), 4.97(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}$ $8 \mathrm{H}), 1.73(\mathrm{~m}, 5 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 0.97-1.23(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.8$, $170.2,129.6,125.0,119.8,88.5,81.8,69.7,64.8,64.4,63.0,28.9,25.6,22.1,21.3,21.0,20.8 \mathrm{ppm}$; IR (neat): 3382, 2939, 2862, 1732, 1650, 1375, $1242 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=-52^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Alkynyl C-glycoside SI-4: Zinc chloride (800 mg 5.9 mmol), was added to a flame-dried 80 mL -microwave flask under an inert atmosphere (glove box). The flask was removed from the glove box and placed under argon. Dichloroethane (10 mL) was added, followed by N, N - diethyl-1,1,1trimethylsilylamine ($0.800 \mathrm{~mL}, 4.0 \mathrm{mmol}$) and 3,3-dimethyl-1-butyne ($300 \mathrm{mg}, 3.7 \mathrm{mmol}$). The flask was sealed and heated using microwave irradiation $\left(150^{\circ} \mathrm{C}, 150-300 \mathrm{~W}\right.$, Powermax enabled) for 15 min . The reaction was again placed under argon and transferred to a $-25^{\circ} \mathrm{C}$ cold bath. Tri-O-acetyl-D-glucal ($500 \mathrm{mg}, 1.8 \mathrm{mmol}$) and scandium triflate $(140 \mathrm{mg}, 0.2 \mathrm{mmol})$ were added. After 1.5 h , the reaction was diluted with sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic fraction was washed with sat. brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}(0-40 \%$ EtOAc / pet. ether) provided SI-4 ($0.305 \mathrm{~g}, 60 \%$) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.84$ (ddd, $1 \mathrm{H}, J=1.8,3.6,10.2), 5.67(\mathrm{dt}, 1 \mathrm{H}, J=2.0,10.0), 5.23(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 2.06$ $(\mathrm{s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.7,170.2,130.0,124.6$, $95.6,74.1,69.5,64.9,64.1,63.1,30.7,20.9,20.7 \mathrm{ppm}$; IR (neat): $3436,2971,2357,2225,1739,1444$, 1375, 1227, $1037 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}$ 393.1678, found 393.1686.

$$
[\alpha]_{\mathrm{D}}^{23}=+2.0^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .
$$

Alkynyl C-glycoside SI-5: Zinc chloride (800 mg 5.9 mmol), was added to a flame-dried 80 mL -microwave flask under an inert atmosphere (glove box). The flask was removed from the glove box and placed under argon. Dichloroethane (10 mL) was added, followed by N, N - diethyl-1,1,1trimethylsilylamine ($0.800 \mathrm{~mL}, 4.0 \mathrm{mmol}$) and 4-bromophenylacetylene ($660 \mathrm{mg}, 3.7 \mathrm{mmol}$). The flask was sealed and heated using microwave irradiation $\left(150^{\circ} \mathrm{C}, 150-300 \mathrm{~W}\right.$, Powermax enabled) for 15 min . The reaction was again placed under argon and transferred to a $-25^{\circ} \mathrm{C}$ cold bath. Tri-O-acetyl-D-glucal ($500 \mathrm{mg}, 1.8 \mathrm{mmol}$) and scandium triflate ($140 \mathrm{mg}, 0.2 \mathrm{mmol}$) were added. After 1.5 h , the reaction was diluted with sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic fraction was washed with sat. brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}(0-40 \%$ EtOAc / pet. ether) provided SI-5 (472 mg, 60\%) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46$ (d, 2H, J=8.4), 7.31 (d, 2H, $J=8.8$), 5.96 (ddd, $1 \mathrm{H}, J=1.6,3.6,10.0$), 5.83 (dt, $1 \mathrm{H}, J=2.0,10.0$), 5.34 $(\mathrm{dq}, 1 \mathrm{H}, J=2.0,8,8), 5.18(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{appd}, 2 \mathrm{H}, J=4.4), 4.16(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 170.9,170.2,133.2,131.6,128.9,125.7,123.1,121.0,85.8,85.5,70.1,64.7$, $64.3,62.9,21.0,20.8 \mathrm{ppm}$; IR (neat): 1746, 1487, 1371, 1229, 1044, $825 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-111^{\circ}(\mathrm{c}=1.0$ CHCl_{3}).

Alkynyl C-glycoside SI-6: Zinc chloride (225 mg 1.7 mmol), was added to a flame-dried 80 mL -microwave flask under an inert atmosphere (glove box). The flask was removed from the glove box and placed under argon. Dichloroethane (10 mL) was added, followed by N, N - diethyl-1,1,1trimethylsilylamine ($0.330 \mathrm{~mL}, 1.6 \mathrm{mmol}$) and 5-phenyl-1-propyne $(0.220 \mathrm{~mL}, 1.4 \mathrm{mmol})$. The flask was sealed and heated using microwave irradiation $\left(150^{\circ} \mathrm{C}, 150-300 \mathrm{~W}\right.$, Powermax enabled) for 15 min. The reaction was again placed under argon and transferred to a $-25^{\circ} \mathrm{C}$ cold bath. Tri-O-acetyl-D-glucal ($250 \mathrm{mg}, 0.92 \mathrm{mmol}$) and scandium triflate ($68 \mathrm{mg}, 0.14 \mathrm{mmol}$) were added. After 1.5 h , the reaction was diluted with sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic fraction was washed with sat. brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}(0-40 \%$ EtOAc / pet. ether) provided SI-6 (237 mg, 72\%) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36$ $(\mathrm{m}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 3 \mathrm{H}), 5.96(\mathrm{ddd}, 1 \mathrm{H}, J=2.0,3.2,10.2), 5.82(\mathrm{dt}, 1 \mathrm{H}, J=1.6,10.4), 3.56(\mathrm{dq}, 1 \mathrm{H}$, $J=2.0,8.8), 5.04(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 3 \mathrm{H}), 2.79(\mathrm{t}, 1 \mathrm{H}, J=6.8), 2.31(\mathrm{td}, 1 \mathrm{H}, J=2.0,7.2), 2.16(\mathrm{~s}, 3 \mathrm{H})$, $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.9,170.3,141.4,130.0,128.5$, $128.4,126.0,124.8,87.3,76.4,69.7,64.9,64.2,63.2,34.7,30.0,21.0,20.8,18.2 \mathrm{ppm}$; IR (neat): 3429, $2936,2236,1740,1499,1363,1235,1052 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=+13^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

Alkynyl C-glycoside SI-7: Zinc chloride (800 mg 5.9 mmol), was added to a flame-dried 80 mL -microwave flask under an inert atmosphere (glove box). The flask was removed from the glove box and placed under argon. Dichloroethane (10 mL) was added, followed by
N, N-diethyl-1,1,1-trimethylsilylamine ($0.800 \mathrm{~mL}, 4.0 \mathrm{mmol}$) and 1-octyne ($0.540 \mathrm{~mL}, 3.7 \mathrm{mmol}$). The flask was sealed and heated using microwave irradiation $\left(150^{\circ} \mathrm{C}, 150-300 \mathrm{~W}\right.$, Powermax enabled) for 15 min . The reaction was again placed under argon and transferred to a $-25^{\circ} \mathrm{C}$ cold bath. Tri-O-acetyl-D-glucal ($500 \mathrm{mg}, 1.8 \mathrm{mmol}$) and scandium triflate $(90 \mathrm{mg}, 0.2 \mathrm{mmol})$ were added. After 1.5 h , the reaction was diluted with sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic fraction was washed with sat. brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}(0-40 \%$ EtOAc / pet. ether) provided SI-7 ($458 \mathrm{mg}, 77 \%$) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 5.89 (ddd, $1 \mathrm{H}, J=1.4,3.4,10.2$), 5.75 (appd, $1 \mathrm{H}, J=10.4$), 5.29 (dt, $1 \mathrm{H}, J=2.0,8.8$), $4.96(\mathrm{~m}, 1 \mathrm{H}), 4.22$ (m, 2H), $4.11(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{td}, 2 \mathrm{H}, J=2.0,7.0), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.30(\mathrm{~m}$, $6 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.4) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.1,170.0,129.9,124.5,87.6,76.7$, $75.6,69.4,64.7,64.0,62.9,31.1,28.2,28.2,22.3,20.8,20.6,18.5,13.8 \mathrm{ppm}$; IR (neat): 2924, 2858, $1744,1635,1371,1235,1049 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=+5^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

Alkynyl C-glycoside SI-8: Zinc chloride (1.05 g 7.7 mmol), was added to a flame-dried 80 mL -microwave flask under an inert atmosphere (glove box). The flask was removed from the glove box and placed under argon. Dichloroethane (10 mL) was added, followed by $N, N-$ diethyl-1,1,1trimethylsilylamine ($1.20 \mathrm{~mL}, 6.1 \mathrm{mmol}$) and 1-chloro-2-ethynyl-benzene ($0.490 \mathrm{~mL}, 4.0 \mathrm{mmol}$). The flask was sealed and heated using microwave irradiation $\left(150^{\circ} \mathrm{C}, 150-300 \mathrm{~W}\right.$, Powermax enabled) for 15 min . The reaction was again placed under argon and transferred to a $-25^{\circ} \mathrm{C}$ cold bath. Tri-O-acetyl-D-glucal ($550 \mathrm{mg}, 2.0 \mathrm{mmol}$) and scandium triflate ($100 \mathrm{mg}, 0.2 \mathrm{mmol}$) were added. After 1.5 h the reaction was diluted with sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic fraction was washed with sat. brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}(0-40 \%$ EtOAc / pet. ether) provided SI-8 (244 mg, 35\%) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.44 (ddd, $1 \mathrm{H}, J=1.6,7.2,26$), 7.26 (m, 3H), 6.01 (ddd, $1 \mathrm{H}, J=2.0,3.6,10.4$), 5.83 (dt, $1 \mathrm{H}, J=2.0$, $10.0), 5.34(\mathrm{~d}, 1 \mathrm{H}, J=5.2), 5.24(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~m}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.7,170.2,136.0,133.1,129.6,129.2,128.7,126.3,125.7,122.0,89.9,83.3,70.1$, $64.6,64.4,63.0,20.9,20.7 \mathrm{ppm}$; IR (neat): 2354, 2336, 1743, 1473, 1364, 14229, $1051 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=$ $-101^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Alkynyl \boldsymbol{C}-glycoside SI-9: Zinc chloride (800 mg 5.9 mmol), was added to a flame-dried 80 mL -microwave flask under an inert atmosphere (glove box). The flask was removed from the glove box and placed under argon. Dichloroethane $(10 \mathrm{~mL})$ was added, followed by N, N -diethyl-1,1,1-trimethylsilylamine $(0.800 \mathrm{~mL}, 4.0 \mathrm{mmol})$ and 1-ethynylcyclohexane $(0.430 \mathrm{~mL}, 3.7$ $\mathrm{mmol})$. The flask was sealed and heated using microwave irradiation $\left(150^{\circ} \mathrm{C}, 150-300 \mathrm{~W}\right.$, Powermax enabled) for 15 min . The reaction was again placed under argon and transferred to a $-25^{\circ} \mathrm{C}$ cold bath. Tri-O-acetyl-D-glucal ($500 \mathrm{mg}, 1.8 \mathrm{mmol}$) and scandium triflate ($100 \mathrm{mg}, 0.2 \mathrm{mmol}$) were added. After 1.5 h , the reaction was diluted with sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic fraction was washed with sat. brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}(0-40 \%$

EtOAc / pet. ether) provided SI-9 ($372 \mathrm{mg}, 60 \%$) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.12$ (m, 1H), 5.88 (ddd, $1 \mathrm{H}, J=2.0,3.4,10.1$), $5.74(\mathrm{dt}, 1 \mathrm{H}, J=2.0,10.0), 5.28(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{bs}, 1 \mathrm{H}), 4.21$ $(\mathrm{m}, 2 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~m}, 10 \mathrm{H}), 1.61(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $170.8,170.2,136.0,130.4,129.5,125.0,119.8,88.5,81.8,74.4,69.7,65.7,64.8,64.4,63.4,63.0,28.9$, $29.8,25.5,22.1,21.3,21.0,20.8 \mathrm{ppm}$; IR (neat): $3449,2940,2858,1744,1441,1375,1231,1049,917$ $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-86^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

Alkynyl C-glycoside SI-10: Zinc chloride (800 mg , 5.9 mmol), was added to a flame-dried 80 mL -microwave flask under an inert atmosphere (glove box). The flask was removed from the glove box and placed under argon. Dichloroethane (10 mL) was added, followed by $N, N-$ diethyl-1,1,1- trimethylsilylamine $(0.520 \mathrm{~mL}, ~ 4.0 \mathrm{mmol})$ and 2-ethynyl-1,4-dimethylbenzene $(0.520 \mathrm{~mL}, 3.7 \mathrm{mmol})$. The flask was sealed and heated using microwave irradiation $\left(150^{\circ} \mathrm{C}, 150-300 \mathrm{~W}\right.$, Powermax enabled) for 15 min . The reaction was again placed under argon and transferred to a $-25^{\circ} \mathrm{C}$ cold bath. Tri-O-acetyl-D-glucal ($500 \mathrm{mg}, 1.80 \mathrm{mmol}$) and scandium triflate ($90 \mathrm{mg}, 0.20 \mathrm{mmol}$) were added. After 5.0 h the reaction was diluted with sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic fraction was washed with sat. brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}(0-40 \% \mathrm{EtOAc} /$ pet. ether) provided SI-10 ($554 \mathrm{mg}, 88 \%$) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~m}, 2 \mathrm{H}), 5.99(\mathrm{dq}, 1 \mathrm{H}, J=1.6,3.6$, $10.4), 5.81(\mathrm{dt}, 1 \mathrm{H}, J=2.0,10.0), 5.33(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.8), 5.23(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$, $2.28(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.9,170.3,137.2$, 135.0, 132.4, 129.6, 129.4, 129.3, 125.4, 121.7, 88.1, 85.9, 70.0, 64.9, 64.6, 63.2, 21.0, 20.8, 20.7, 20.1 ppm; IR (neat): 3390, 2916, 1736, 1449, 1375, 1227, $1041 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=-15^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

Alkynyl C-glycoside SI-11: Zinc chloride ($800 \mathrm{mg}, 5.9 \mathrm{mmol}$), was added to a flame-dried 80 mL -microwave flask under an inert atmosphere (glove box). The flask was removed from the glove box and placed under argon. Dichloroethane (10 mL) was added, followed by N, N - diethyl-1,1,1trimethylsilylamine $\quad(0.800 \mathrm{~mL}$, 4.0 mmol$)$ and 1-ethynyl-2,4-difluorobenzene ($510 \mathrm{mg}, 3.7 \mathrm{mmol}$). The flask was sealed and heated using microwave irradiation $\left(150^{\circ} \mathrm{C}, 150-300 \mathrm{~W}\right.$, Powermax enabled) for 15 min . The reaction was again placed under argon and transferred to a $-25^{\circ} \mathrm{C}$ cold bath. Tri-O-acetyl-D-glucal ($500 \mathrm{mg}, 1.80 \mathrm{mmol}$) and scandium triflate $(90 \mathrm{mg}, 0.20 \mathrm{mmol})$ were added. After 5.0 h the reaction was diluted with sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic fraction was washed with sat. brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}(0-40 \% \mathrm{EtOAc} /$ pet. ether) provided SI-11 (316 mg, 49\%) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{dq}, 1 \mathrm{H}, J=1.6,3.6$, $10.4), 5.84(\mathrm{dt}, 1 \mathrm{H}, J=2.0,10.4), 5.34(\mathrm{dq}, 1 \mathrm{H}, J=2.0,4.0,8.8), 5.21(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~m}$, $1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.9,170.3,164.4(\mathrm{dd}, 1 \mathrm{C}$, $J=46.8,134.8$), 161.9 (dd, 1C, $J=47.2,122.8$), 134.5 (t, 1C, $J=12$), 128.7, 125.9, 111.6 (dd, 1C, $J=14.8,84.8$), 107.1 (d, 1C, $J=46.8$), 99.6 (t, 1C, $J=99.6$), 89.7, 79.1, 70.2, 64.7,64.4, 63.0, 21.0, 20.8 ppm; IR (neat): $1743,1623,1510,1425,1375,1239,1052 \mathrm{~cm}^{-1} ;$ HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}:$calcd. for
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{NaF}_{2}$ 373.0864, found 373.0799. $[\alpha]_{\mathrm{D}}^{23}=-88^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

Alkynyl C-glycoside SI-12: Zinc chloride ($800 \mathrm{mg}, 5.9 \mathrm{mmol}$), was added to a flame-dried 80 mL -microwave flask under an inert atmosphere (glove box). The flask was removed from the glove box and placed under argon. Dichloroethane (10 mL) was added, followed by N, N - diethyl-1,1,1trimethylsilylamine $\quad(0.800 \mathrm{~mL}$, 4.0 mmol$)$ and 1-tert-butyl-4-ethynylbenzene ($0.660 \mathrm{~mL}, 3.7 \mathrm{mmol}$). The flask was sealed and heated using microwave irradiation $\left(150^{\circ} \mathrm{C}, 150-300 \mathrm{~W}\right.$, Powermax enabled) for 15 min . The reaction was again placed under argon and transferred to a $-25^{\circ} \mathrm{C}$ cold bath. Tri-O-acetyl-D-glucal ($500 \mathrm{mg}, 1.80 \mathrm{mmol}$) and scandium triflate ($90 \mathrm{mg}, 0.20 \mathrm{mmol}$) were added. After 5.0 h the reaction was diluted with sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic fraction was washed with sat. brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}(0-40 \% \mathrm{EtOAc} /$ pet. ether) provided SI-12 (289 mg, 42\%) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.38(\mathrm{~d}, 2 \mathrm{H}, J=8.4), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=9.2), 4.97(\mathrm{dq}, 1 \mathrm{H}$, $J=2.0,3.6,10.0), 5.81(\mathrm{dt}, 1 \mathrm{H}, J=2.0,10.0), 5.33(\mathrm{dq}, 1 \mathrm{H}, J=2.0,4.0,9.2), 5.18(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, 2 \mathrm{H}$, $J=3.6), 4.20(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $170.9,170.3,152.1,131.5,129.3,125.3,119.1,86.8,84.0,69.9,64.8,64.5,63.0,34.8,31.1,21.0,20.8$ ppm; IR (neat): 2967, 1740, 1375, 1243, 1052, $834 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-33^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

Phenol addition to allyl-C-glycoside 2a

Scheme SI-1. C-glycoside aryl ether formation. a) $\mathrm{MP}^{-\mathrm{CO}_{3}, \mathrm{MeOH},(99 \%) ; \text { b) ethyl chloroformate, }}$ pyridine, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (81\%); c) $\mathrm{Pd}_{2}(\mathrm{dba})_{3}-\mathrm{CHCl}_{3}$, Trost Ligand, p-methoxyphenol, μ wave, $100^{\circ} \mathrm{C}(78 \%)$; d) $\mathrm{MP}-\mathrm{CO}_{3}, \mathrm{MeOH}(99 \%)$, e) $p-\mathrm{BrBnCl}, \mathrm{NEt}_{3}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{X} \%)$

SI-13

Dicarbonate SI-13: Diacetate $\mathbf{2 a}^{2}$ ($708 \mathrm{mg}, 2.8 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(4.0 \mathrm{~mL})$ and shaken with MP-carbonate resin ($230 \mathrm{mg}, 0.70 \mathrm{mmol}$) for $\mathrm{sl}-1312 \mathrm{~h}$. The reaction was filtered, rinsing with MeOH , then concentrated in

[^1]vacuo. The crude residue was redissolved in methylene chloride (3.0 mL) and pyridine (0.68 mL , 8.5 mmol) was added. The reaction was cooled to $0^{\circ} \mathrm{C}$ and ethyl chloroformate ($0.81 \mathrm{~mL}, 8.5 \mathrm{mmol}$) was added. After stirring for 12 h , the reaction was diluted with methylene chloride and washed with sat. aqueous sodium bicarbonate and brine. The organic layer was dried (sodium sulfate), concentrated, and chromatographed over $\mathrm{SiO}_{2}(0-40 \%$ ethyl acetate / petroleum ether) to provide SI-13 ($715 \mathrm{mg}, 81 \%$) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.95(1 \mathrm{H}, \mathrm{dt}, J=12.0,2.0)$, $5.87(2 \mathrm{H}, \mathrm{m}), 5.14(1 \mathrm{H}$, appd, $J=1.6), 5.10(1 \mathrm{H}, \mathrm{m}), 5.02(1 \mathrm{H}, \mathrm{m}), 4.23(7 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, \mathrm{q}, J=4.4)$, $2.45(1 \mathrm{H}, \mathrm{m}), 2.33(1 \mathrm{H}, \mathrm{m}), 1.31(6 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.0,154.5,138.8$, $133.2,126.2,117.7,71.5,69.2,68.1,66.0,61.3,64.2,37.7,14.2,14.2 \mathrm{ppm}$; IR (neat): 3740,3414 , 2978, 2912, 1961, 1748, 1375, 1258, $1314 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+50^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether SI-14: Dicarbonate SI-13 (508 mg, 1.62 mmol), Tris (dibenzylideneacetone) dipalladium (0) chloroform adduct ($42 \mathrm{mg}, 0.04 \mathrm{mmol}$), and $(1 S, 2 S)$ Trost ligand ($56 \mathrm{mg}, 0.08 \mathrm{mmol}$) were added to a flame-dried 10 mL -microwave vessel and were dissolved in degassed dichloromethane (2 mL). After $30 \mathrm{~min} p$-methoxyphenol ($221 \mathrm{mg}, 1.78 \mathrm{mmol}$) was added and the mixture was heated using microwave irradiation (300W, Powermax enabled) at $100^{\circ} \mathrm{C}$ for 15 min . The reaction was concentrated and purified over $\mathrm{SiO}_{2}(0-40 \%$ ethyl acetate/ petroleum ether) to provide SI-14 (441 mg , $1.27 \mathrm{mmol}, 78 \%)$ as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 6.85(4 \mathrm{H}, \mathrm{m}), 5.96(1 \mathrm{H}, \mathrm{m}), 5.90$ $(2 \mathrm{H}, \mathrm{m}), \quad 5.13(2 \mathrm{H}, \mathrm{m}), 4.60(1 \mathrm{H}, \mathrm{dd}, J=1.6,8), 4.40(1 \mathrm{H}, \mathrm{dd}, J=2.8,11.4), 4.32(2 \mathrm{H}, \mathrm{m}), 4.17$ $(2 \mathrm{H}, \mathrm{q}), 4.15(1 \mathrm{H}, \mathrm{m}), 3.76(3 \mathrm{H}, \mathrm{s}), 2.52(1 \mathrm{H}, \mathrm{m}), 2.36(1 \mathrm{H}, \mathrm{m}), 1.28(3 \mathrm{H}, \mathrm{t}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.1,154.3,121.0,134.1,131.6,124.6,117.5,117.0,114.7,72.5,69.4,69.4,66.7$, $64.0,55.7,37.7,14.2 \mathrm{ppm}$.; IR (neat): 2907, 1747, 1506, 1226, 1038, $828 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+81.9^{\circ}$ ($\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

p-Bromobenzoate ester SI-15: Ethyl carbonate SI-14 was dissolved in MeOH and MP-carbonate was added. The reaction was stirred for 5 h and filtered to provide the unprotected alchol as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$: $\delta 6.85(4 \mathrm{H}, \mathrm{m}), 6.94(1 \mathrm{H}, \mathrm{m}), 5.86(1 \mathrm{H}, \mathrm{m}), \quad 5.18(1 \mathrm{H}, \mathrm{q}), 5.12(1 \mathrm{H}, \mathrm{dd}, J=$ $3.2,9.2), 4.63(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.6), 4.31\left(1 \mathrm{H}^{+}, \mathrm{m}\right), 3.86(1 \mathrm{H}, \mathrm{dt}, J=2.4,14), 3.76(2 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}$, s), $2.53(1 \mathrm{H}, \mathrm{m}), 2.34(1 \mathrm{H}, \mathrm{m}), 2.10(1 \mathrm{H}, \mathrm{bs}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.3,151.3,134.4$, $131.2,125.3,117.5,117.1,114.8,72.6,71.2,69.5,62.4,55.7,37.7 \mathrm{ppm}$; IR (neat): 3459, 2912, 1506, 1225, 1040, $828 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}$ 277.1416, found 277.1417. $[\alpha]_{\mathrm{D}}^{23}=+113.3^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The diol ($150 \mathrm{mg}, 0.54 \mathrm{mmol}$) was dissolved in dichloromethane. Triethylamine ($0.11 \mathrm{~mL}, 0.81 \mathrm{mmol}$) and dimethylaminopyridine ($7 \mathrm{mg}, 0.05 \mathrm{mmol}$) were added, the reaction was cooled to $0^{\circ} \mathrm{C}$ and 4 -bromo-benzoyl chloride ($179 \mathrm{mg}, 0.81 \mathrm{mmol}$) was added. After 10 min the reaction was warmed to room temp and stirred for 4 h . The solution was diluted with dichloromethane, washed with sat. aqueous sodium bicarbonate (1X) and brine (1X), filtered and purified over SiO_{2} to yield $\mathbf{S I - 1 5}(172 \mathrm{mg}, 0.37 \mathrm{mmol})$ as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz ; $\left.\mathrm{CDCl}_{3}\right): \delta 7.90(2 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}, \mathrm{m}), 6.84(4 \mathrm{H}, \mathrm{m}), 5.99(1 \mathrm{H}, \mathrm{m}), 5.89(2 \mathrm{H}, \mathrm{m}), 4.61(2 \mathrm{H}, \mathrm{m}), 4.45$
$(1 \mathrm{H}, \mathrm{q}), \quad 4.35\left(1 \mathrm{H}^{+}, \mathrm{m}\right), 4.13(1 \mathrm{H}, \mathrm{td}, J=2.8,7.2,14.4), 3.76(3 \mathrm{H}, \mathrm{s}), 2.54(1 \mathrm{H}, \mathrm{m}), 2.38(1 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.0,154.4,151.1,134.3,131.8,131.2,128.9,128.1,124.7,117.5$, $117.1,114.8,72.5,70.0,70.0,64.6,55.7,55.7,37.6 \mathrm{ppm}$; IR (neat): 2903, 1723, 1505, 1226, 1101, $827,753 \mathrm{~cm}^{-1} ; \quad[\alpha]_{\mathrm{D}}{ }^{23}=64.8^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

General procedure for synthesis of aryl C-glycosides 3b (Table S2)

Aryl C-Glycoside SI-16: Tri-O-acetyl-D-glucal ($0.400 \mathrm{~g}, 1.0 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(8.0 \mathrm{~mL})$. To the reaction was added 3,4-methylenedioxyphenylboronic acid ($500 \mathrm{mg}, 3.0 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(30 \mathrm{mg}, \quad 0.1 \mathrm{mmol})$. After stirring overnight, additional 3,4methylenedioxyphenylboronic acid ($100 \mathrm{mg}, 0.6 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{mg}, 0.09 \mathrm{mmol})$ were added. After 18 h , the reaction was concentrated onto SiO_{2} and chromatographed over SiO_{2}, eluting with $0-60 \%$ ethyl acetate / pet. ether to provide SI-16 (338 mg, 70\%) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.92(\mathrm{bs}, 1 \mathrm{H}), 6.86(\mathrm{~d}, 1 \mathrm{H}, J=7.6), 6.79(\mathrm{~d}, 1 \mathrm{H}, J=8.0), 6.11(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{~m}, 3 \mathrm{H})$, $5.30(\mathrm{~m} \mathrm{1H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{dd}, 1 \mathrm{H}, J=6.0,12.0), 4.07(\mathrm{dd}, 1 \mathrm{H}, J=3.2,12.0), 3.83(\mathrm{~m}, 1 \mathrm{H}), 2.09$ (s, 3H), 2.07 (s. 3 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.8,170.5,147.8,147.5,132.6,131.5$, $125.0,121.7,108.5,108.0,73.5,69.0,64.9,62.8,21.1,20.8 \mathrm{ppm}$; IR (neat): $2889,1740,1499,1491$, $1445,1371,1231,1033,936,792 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=+10^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl C-Glycoside SI-17: Tri-O-acetyl-D-glucal ($400 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(8.0 \mathrm{~mL})$. To the reaction was added 4-chlorophenylboronic acid ($400 \mathrm{mg}, 3.0 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(100 \mathrm{mg}, 0.4$ $\mathrm{mmol})$. After stirring overnight, additional $\mathrm{Pd}(\mathrm{OAc})_{2}(50 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added. After 24 h , the reaction was concentrated onto SiO_{2} and chromatographed over SiO_{2}, eluting with $0-50 \%$ ethyl acetate / pet. ether to provide SI-17 $(0.241 \mathrm{~g}, 50 \%)$ as a viscous oil. ${ }^{3}$

[^2]

Aryl C-Glycoside SI-18: Tri-O-acetyl-D-glucal ($400 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(8.0 \mathrm{~mL})$. To the reaction was added 4-acetylphenylboronic acid ($700 \mathrm{mg}, 4.0 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(100 \mathrm{mg}, 0.4$ mmol). After stirring overnight, additional 4-acetylphenylboronic acid (200 $\mathrm{mg}, 1.2 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(100 \mathrm{mg}, 0.4 \mathrm{mmol})$ were added. After 24 h , the reaction was concentrated onto SiO_{2} and chromatographed $\left(\mathrm{SiO}_{2}\right)$, eluting with $0-60 \%$ ethyl acetate / pet. ether to provide SI-18 (363 mg, 70\%) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, 2 \mathrm{H}, J=12.4)$, 7.49 (d, 2H, $J=8.0$), 6.18 (ddd, $1 \mathrm{H}, J=1.6,2.8,10.4$), 6.01 (dt, $1 \mathrm{H}, J=2.4,5.2$), 5.34 (m, 1H), 5.27 (m, $1 \mathrm{H}), 4.26(\mathrm{dd}, 1 \mathrm{H}, J=6.4,12), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}) 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 197.6,170.7,170.3,144.1,136.7,130.7,128.5,127.7,125.4,73.0$, $69.7,64.7,62.7,26.6,20.8 \mathrm{ppm}$; IR (neat): $2357,1748,1682,1608,1409,1367,1227,1045 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{23}=-7^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

Aryl C-Glycoside SI-19: Tri-O-acetyl-D-glucal ($2.00 \mathrm{~g}, 7.3 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(40 \mathrm{~mL})$. Into the reaction was added phenylboronic acid $(4.40 \mathrm{~g}, 36.0$ $\mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(450 \mathrm{mg}, 2.0 \mathrm{mmol})$. After 24 h , the reaction was concentrated onto SiO_{2} and chromatographed over SiO_{2}, eluting with $0-60 \%$ ethyl acetate / pet. ether to provide SI-16 (1.76 g, 82\%) as a viscous oil. ${ }^{3}$

Aryl C-Glycoside SI-20: Tri-O-acetyl-D-glucal ($750 \mathrm{mg}, 2.8 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(30.0 \mathrm{~mL})$. To the reaction was added 3,5-dimethylbenzene boronic acid ($1200 \mathrm{mg}, 8.3 \mathrm{mmol}$) and $\operatorname{Pd}(\mathrm{OAc})_{2}$ ($200 \mathrm{mg}, 0.8 \mathrm{mmol}$). After 12 h , the reaction was concentrated onto SiO_{2} and chromatographed $\left(\mathrm{SiO}_{2}\right)$, eluting with $0-60 \%$ ethyl acetate / pet. ether to provide SI-20 ($756 \mathrm{mg}, 86 \%$) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.01(\mathrm{~s}, 2 \mathrm{H})$, $6.95(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{dq}, 1 \mathrm{H}, J=1.6,3.2,10.8), 5.96(\mathrm{dt}(1 \mathrm{H}, J=2.0,10.4), 5.28(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{dd}, 1 \mathrm{H}$, $J=6.4,12.4), 4.10(\mathrm{dd}, 1 \mathrm{H}, J=3.2,12.0), 3.86(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.7,170.3,138.6,137.9,131.7,129.7,125.5,124.6,73.5,69.3$, $65.0,62.8,21.2,20.9,20.7 \mathrm{ppm}$; IR (neat): 2913, 1744, 1604, 1441, 1367, 1235, $1045 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na} 341.1365$, found 341.1329. $[\alpha]_{\mathrm{D}}{ }^{23}=19^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

General procedure for conversion of aryl-C-glycoside bis-acetates to

bis-carbonates 8b

Table SI-3:

Aryl C-Glycoside SI-21: SI-16 (253 mg, 0.76 mmol) was dissolved in anhydrous $\mathrm{MeOH}(4 \mathrm{~mL})$, and MP-carbonate resin ($2.98 \mathrm{mmol} / \mathrm{g}$ loading, $63 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added. After orbital shaking for 15 h , the reaction was filtered, rinsed with MeOH , and concentrated in vacuo to provide 15 mg of the crude diol, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Pyridine $(0.13 \mathrm{~mL}$, 1.6 mmol) and ethyl chloroformate $(0.15 \mathrm{~mL}, 1.6 \mathrm{mmol})$ were added. The reaction was warmed to room temperature, stirred for 12 h , diluted with sat. aqueous sodium bicarbonate and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}\left(0-40 \%\right.$ ethyl acetate/pet ether) provided SI-21 ($14 \mathrm{mg}, 68 \%$ yield) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.88(\mathrm{~d}, 1 \mathrm{H}, J=1.2), 6.82(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.0), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=8.0), 6.12$ (ddd, $1 \mathrm{H}, J=1.6,3.2,10.8), 6.03(\mathrm{dd}, 1 \mathrm{H}, J=2.0,10.4), 5.95(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 4.29$ (dd, $1 \mathrm{H}, J=5.2,11.6), 4.21(\mathrm{q}, 2 \mathrm{H}, J=7.2), 4.17(\mathrm{q}, 2 \mathrm{H}, 6.8), 3.86(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{t}, 3 \mathrm{H}, J=7.6), 1.28(\mathrm{t}, 3 \mathrm{H}$, $J=6.8) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,154.5,147.8,147.6,132.1,131.7,124.6,121.8$, 108.7, 107.9, 101.1, 73.6, 68.2, 68.2, 66.0, 64.4, 64.1, 14.1 ppm ; IR (neat): 2986, 2901, 1740,1487, $1445,1371,1262,1041 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-2^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl C-Glycoside SI-22: SI-17 (201 mg, 0.62 mmol) was dissolved in anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$ and MP-carbonate resin $(2.98 \mathrm{mmol} / \mathrm{g}$ loading, $100 \mathrm{mg}, 0.30 \mathrm{mmol}$) was added. After orbital shaking for 5 h , the reaction was filtered, rinsed with MeOH , and concentrated in vacuo to provide 180 mg of the crude diol, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Pyridine $(0.16 \mathrm{~mL}$, $2.0 \mathrm{mmol})$ and ethyl chloroformate $(0.19 \mathrm{~mL}, 2.0 \mathrm{mmol})$ were added. The reaction was warmed to room temperature, stirred for 12 h , diluted with sat. aqueous sodium bicarbonate and extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried, and concentrated. Chromatography over SiO_{2} (0-40\% ethyl acetate/pet ether) provided SI-22 (108 mg, 42\% yield) as viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32(\mathrm{~m}, 4 \mathrm{H}), 6.16(\mathrm{ad}, 1 \mathrm{H}, J=8.8), 6.07(\mathrm{~d}, 1 \mathrm{H}, J=10.4), 5.29(\mathrm{~d}, 1 \mathrm{H}, J=2.0)$, $5.18(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{dd}, 1 \mathrm{H}, J=5.6,12.0), 4.22(\mathrm{~m}, 5 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.0,154.5,136.9,134.2,131.3,129.4,128.6,124.9,73.0,68.7,68.0,65.9$, $64.4,64.2,14.2 \mathrm{ppm}$; IR (neat): 2983, 1748, 1495, 1374, 1262, 1099, 1013, $873 \mathrm{~cm}^{-1} ; \quad[\alpha]_{\mathrm{D}}{ }^{23}=-22^{\circ}$ ($\mathrm{c}=1.0 \mathrm{CHCl}_{3}$).

Aryl C-Glycoside SI-23: SI-18 (108 mg, 0.54 mmol) was dissolved in anhydrous MeOH (3 mL) and MP-carbonate resin $(2.98 \mathrm{mmol} / \mathrm{g}$ loading, 90 $\mathrm{mg}, 0.30 \mathrm{mmol}$) was added. After orbital shaking for 5 h , the reaction was filtered, rinsed with MeOH , and concentrated in vacuo to provide 12 mg of the crude diol, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Pyridine $(0.12 \mathrm{~mL}$, $1.4 \mathrm{mmol})$ and ethyl chloroformate $(0.14 \mathrm{~mL}, 1.4 \mathrm{mmol})$ were added. The reaction was warmed to room temperature, stirred for 12 h , diluted with sodium bicarbonate, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried, and concentrated. Chromatography over SiO_{2} ($0-40 \%$ ethyl acetate/pet ether) provided SI-23 ($136 \mathrm{mg}, 72 \%$ yield) as viscous oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.96(\mathrm{~d}, 2 \mathrm{H}, J=8.0), 7.50(\mathrm{~d}, 2 \mathrm{H}, J=8.8), 6.12(\mathrm{dt}, 1 \mathrm{H}, J=1.6,10.8), 6.09(\mathrm{dd}, 1 \mathrm{H}$, $J=1.6,10.4), 5.34(\mathrm{~m}, 1 \mathrm{H}), 5.19$ (appd, $1 \mathrm{H}, J=5.2$), 4.33 (dd, $1 \mathrm{H}, J=5.6,11.6$), 4.19 (m, 6H), 3.79 (m, $1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 197.7, 155.0, $154.4,143.7,136.8,131.1,128.6,127.9,124.9,73.1,69.1,67.9,65.9,64.5,64.2,26.7,14.2,14.1$ ppm ; IR (neat): 3440, 2971, 2920, 1732, 1717, 1612, 1390, 1270, $1072 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-9^{\circ}(\mathrm{c}=1.0$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Aryl C-Glycoside SI-24: SI-19 (363 mg, 1.1 mmol) was dissolved in anhydrous $\mathrm{MeOH}(3 \mathrm{~mL}$) and MP-carbonate resin ($2.98 \mathrm{mmol} / \mathrm{g}$ loading, 200 $\mathrm{mg}, 0.50 \mathrm{mmol}$) was added. After orbital shaking for 5 h , the reaction was filtered, rinsed with MeOH and concentrated in vacuo to provide 265 mg of the crude diol, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Pyridine ($0.35 \mathrm{~mL}, 4.4 \mathrm{mmol}$) and ethyl chloroformate $(0.42 \mathrm{~mL}, 4.4 \mathrm{mmol})$ were added. The reaction was warmed to room temperature, stirred for 12 h , diluted with sat. aqueous sodium bicarbonate, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}\left(0-40 \%\right.$ ethyl acetate/pet ether) provided SI-24 ($136 \mathrm{mg}, 46 \%$ yield) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.31-7.40 (m, 5H), 6.19 (ddd, $1 \mathrm{H}, J=1.6,3.2,10.4$), 6.06 (dt, $1 \mathrm{H}, J=2.0,10.0$), $5.32(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~m}, 1 \mathrm{H}), 5.6(\mathrm{dd}, 1 \mathrm{H}, J=5.6,11.6), 4.19(\mathrm{~m}, 5 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{t}, 1 \mathrm{H}, J=7.2)$, 1.28 ($\mathrm{s}, 1 \mathrm{H}, J=7.2$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,154.5,138.3,131.8,128.4,128.2$, $128.0,124.4,73.7,68.6,68.2,66.0,64.3,64.1,14.1 \mathrm{ppm}$; IR (neat): 2986, 1744, 1456, 1378, 1251, $1107,1014,877 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-22^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

Aryl C-Glycoside SI-25: SI-20 ($253 \mathrm{mg}, 0.8 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(22 \mathrm{mg}, 0.16 \mathrm{mmol})$ was added. After stirring for 2 h , the reaction was filtered, rinsed with MeOH and concentrated in vacuo to provide 186 mg of the crude diol, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Pyridine ($0.26 \mathrm{~mL}, 3.2$ $\mathrm{mmol})$ and ethyl chloroformate $(0.30 \mathrm{~mL}, 3.2 \mathrm{mmol})$ were added. The reaction was warmed to room temperature, stirred for 2 h , diluted with sat. aqueous sodium bicarbonate, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried, and concentrated. Chromatography over SiO_{2} ($0-40 \%$ ethyl acetate/pet ether) provided $\mathbf{S I}-25$ ($218 \mathrm{mg}, 73 \%$ yield) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.00(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{dq}, 1 \mathrm{H}, J=1.6,3.2,10.8), 5.04(\mathrm{dt}, 1 \mathrm{H}, J=2.4$, $10.8), 5.20(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{dd}, 1 \mathrm{H}, J=5.6,11.6), 4.22(\mathrm{~m}, 5 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,154.5,138.1,137.9,131.9,129.8,125.8,124.3,73.8$, $68.5,68.3,66.0,64.3,64.1,21.2,14.1 \mathrm{ppm}$; IR (neat): $2979,1744,1612,1452,1379,1270,1014$, $881 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=5^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

General procedure for conversion of alkynyl-C-glycoside bis-acetates to bis-carbonates, Table SI-4:

Alkynyl C-Glycoside SI-26: SI-1 ($1.60 \mathrm{~g}, 5.1 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{MeOH}(20 \mathrm{~mL})$ and potassium carbonate ($400 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added. After stirring for 2 h , the reaction was concentrated onto SiO_{2} and chromatographed $\left(\mathrm{SiO}_{2}\right)(5-90 \%$ ethyl acetate/ hexanes) to provide 1.17 g of the diol, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Pyridine ($1.50 \mathrm{~mL}, 19.0 \mathrm{mmol}$) and ethyl chloroformate ($1.40 \mathrm{~mL}, 15.0 \mathrm{mmol}$) were added consecutively. The reaction was
warmed to room temperature, stirred for 3 h , diluted ethyl acetate, washed with sodium bicarbonate and brine, dried, and concentrated. Chromatography over SiO_{2} ($0-40 \%$ ethyl acetate/pet ether) provided SI-26 (1.44 g, 99\% yield) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(\mathrm{~m}, 2 \mathrm{H})$, 7.32 (m, 3H), 5.99 (ddd, $1 \mathrm{H}, J=1.6,3.6,10.4$), 5.89 (dt, $1 \mathrm{H}, J=2.0,10.0$), 5.22 (dq, $1 \mathrm{H}, J=2.0,8.8$), $5.18(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{dd}, 1 \mathrm{H}, J=2.8,11.6), 4.34(\mathrm{dd}, 1 \mathrm{H}, J=4.8,11.6), 4.21(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{t}, 1 \mathrm{H}$, $J=7.6$), 1.28 (t, $1 \mathrm{H}, J=7.2$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,154.3,131.8,129.6,128.6$, 128.2, 124.7, 122.0, 86.7, 84.3, 69.4, 68.0, 66.0, 64.4, 64.3, 64.1, 14.1 ppm ; IR (neat): 2967, 1740, 1456, 1371, 1254, $1017 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{Na}$ 397.1263, found 397.1233. $[\alpha]_{\mathrm{D}}^{23}=-56^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

Alkynyl C-Glycoside SI-27: Diacetate SI-5 ($38 \mathrm{mg}, 0.97 \mathrm{mmol}$) was dissolved in anhydrous MeOH (3 mL) and MP-carbonate resin (2.98 $\mathrm{mmol} / \mathrm{g}$ loading, $200 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added. After orbital shaking for 15 h , the reaction was filtered, rinsed with MeOH , and concentrated to provide 304 mg of the diol, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Pyridine $(0.320 \mathrm{~mL}, 3.9 \mathrm{mmol})$ and ethyl chloroformate $(0.32 \mathrm{~mL}, 3.9 \mathrm{mmol})$ were added. The reaction was warmed to room temperature, stirred for 15 h , diluted methylene chloride, washed with sat. aqeous sodium bicarbonate and brine, dried, and concentrated. Chromatography over SiO_{2} ($0-45 \%$ ethyl acetate/pet ether) provided SI-27 ($175 \mathrm{mg}, 39 \%$ yield) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.45$ (d, $2 \mathrm{H}, J=8.4$), 7.29 (d, $2 \mathrm{H}, J=8.8$), 5.98 (ddd, $1 \mathrm{H}, J=1.6,3.2,10.0$), $5.90(\mathrm{dt}, 1 \mathrm{H}$, $J=2.0,10.4), 5.21(\mathrm{dq}, 1 \mathrm{H}, J=2.0,24.4), 5.17(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{dd}, 1 \mathrm{H}, J=3.2,12.0), 4.33$ (dd, 1 H , $J=4.4,11.6), 4.21(\mathrm{q}, 2 \mathrm{H}, J=7.2), 4.20(\mathrm{q}, 2 \mathrm{H}, J=7.2), 1.32(\mathrm{t}, 3 \mathrm{H}, J=7.2), 1.29(\mathrm{t}, 3 \mathrm{H}, J=7.6) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 155.0,154.4,133.3,131.6,129.3,125.0,123.1,121.0,85.7,85.5$, $69.6,67.9,66.1,64.5,64.3,64.3,14.2 \mathrm{ppm}$; IR (neat): $3398,2974,1748,1378,1247,1013,889 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{7} \mathrm{NaBr} 475.0368$, found 475.0371. $[\alpha]_{\mathrm{D}}{ }^{23}=-75^{\circ}(\mathrm{c}=1.0$ CHCl_{3}).

Alkynyl C-Glycoside SI-28: Diacetate SI-7 ($357 \mathrm{mg}, 1.11 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{MeOH}(5 \mathrm{~mL})$ and MP-carbonate resin(2.98 $\mathrm{mmol} / \mathrm{g}$ loading, $200 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added. After orbital shaking for 15 h , the reaction filtered, rinsed with MeOH , and concentrated to provide 241 mg diol, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Pyridine $(0.327$ $\mathrm{mL}, 4.0 \mathrm{mmol})$ and ethyl chloroformate $(0.387 \mathrm{~mL}, 4.0 \mathrm{mmol})$ were added. The reaction was warmed to room temperature, stirred for 15 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with sat. aqueous sodium bicarbonate and brine, dried, and concentrated. Chromatography over SiO_{2} ($0-40 \%$ ethyl acetate/pet ether) provided SI-28 (324 mg, 39\% yield) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.82$ (ddd, $1 \mathrm{H}, J=2.0,3.4,10.3$), $5.73(\mathrm{dt}, 1 \mathrm{H}, J=1.6,10.4), 5.08(\mathrm{dq}, 1 \mathrm{H}, J=2.0,9.0), 4.86$ $(\mathrm{m}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 7 \mathrm{H}), 2.12(\mathrm{td}, 2 \mathrm{H}, J=2.0,7.2), 1.40(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~m}$, $12 \mathrm{H}), 0.81(\mathrm{t}, 3 \mathrm{H}, 6 \mathrm{~J}=6.8) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.8,152.2,130.3,123.8,87.8$, $75.3,68.9,67.9,66.0,64.2,64.0,63.9,31.1,28.2,28.2,22.3,18.5,14.0,13.8 \mathrm{ppm}$; IR (neat): 3452,

2963, 2939, 2854, 2361, 2341, 1740, 1464, 1371, 1266, 1018, $878 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=-29^{\circ}(\mathrm{c}=1.0$ CHCl_{3}).

Alkynyl C-Glycoside SI-29: Diacetate SI-4 ($150 \mathrm{mg}, 0.51 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$ and MP-carbonate $\operatorname{resin}(2.98 \mathrm{mmol} / \mathrm{g}$ loading, $80 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added. After orbital shaking for 15 h , the reaction was filtered, rinsed with MeOH , and concentrated to provide 113 mg of the diol, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Pyridine ($0.170 \mathrm{~mL}, 2.1 \mathrm{mmol}$) and ethyl chloroformate $(0.200 \mathrm{~mL}, 2.1 \mathrm{mmol})$ were added. The reaction was warmed to room temperature, stirred for 4 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with sat. aqeous sodium bicarbonate and brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}(0-40 \%$ ethyl acetate/pet ether) provided SI-29 (324 mg , 41% yield) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~m}, 1 \mathrm{H})$, $4.93(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.37(\mathrm{~m}, 7 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 155.0, 154.4, 130.5, 124.0, 95.9, 73.9, 69.0, 68.2, 66.1, 64.4, 64.2, 64.1, 30.7 27.4, 14.2 ppm ; IR (neat): $3425,2974,1744,1378,1231,1049 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+23.0^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Alkynyl C-Glycoside SI-30: Diacetate SI-10 (540 mg, 1.60 mmol) was dissolved in anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$ and MP-carbonate resin $(2.98 \mathrm{mmol} / \mathrm{g}$ loading, $100 \mathrm{mg}, 0.32 \mathrm{mmol}$) was added. After orbital shaking for 2 h , the reaction was filtered, rinsed with MeOH , and concentrated to provide 355 mg of the diol, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Pyridine ($0.445 \mathrm{~mL}, 5.5$ $\mathrm{mmol})$ and ethyl chloroformate $(0.526 \mathrm{~mL}, 5.5 \mathrm{mmol})$ were added. The reaction was warmed to room temperature, stirred for 4 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with sat. aqeous sodium bicarbonate and brine, dried, and concentrated. Chromatography over SiO_{2} ($0-40 \%$ ethyl acetate/pet ether) provided SI-30 ($458 \mathrm{mg}, 83 \%$ yield) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21(\mathrm{~s}, 1 \mathrm{H})$, $7.03(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{dt}, 1 \mathrm{H}, J=1.6,10.0), 5.89(\mathrm{~m}, 1 \mathrm{H}), 5.22,(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 5 \mathrm{H}), 2.35$ $(\mathrm{s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.0,154.4,137.3$, 134.9, $132.5,129.7,129.5,129.2,124.7,121.6,87.8,86.0,69.5,68.1,66.1,64.5,64.4,64.1,20.6,20.0,14.1$ ppm; IR (neat): 2994, 1748, 1456, 1371, 1258, $1314 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-56^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Alkynyl C-Glycoside SI-31: Diacetate SI-11 (298 mg, 0.85 mmol) was dissolved in anhydrous MeOH (2 mL) and MP-carbonate resin ($2.98 \mathrm{mmol} / \mathrm{g}$ loading, $43 \mathrm{mg}, 0.13 \mathrm{mmol}$) was added. After orbital shaking for 3 h , the reaction was filtered, rinsed with MeOH , and concentrated to provide 238 mg of the diol, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Pyridine $(0.274 \mathrm{~mL}, 3.4$ $\mathrm{mmol})$ and ethyl chloroformate $(0.324 \mathrm{~mL}, 3.4 \mathrm{mmol})$ were added. The reaction was warmed to room temperature, stirred for 2 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with sat. aqeous sodium bicarbonate and brine, dried, and concentrated. Chromatography over SiO_{2} ($0-40 \%$ ethyl acetate/pet ether) provided SI-31 ($275 \mathrm{mg}, 79 \%$ yield) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{~m}, 1 \mathrm{H})$, 6.83 (m, 2H), 5.99 (dq, 1H, $J=1.6,3.2,10.4$), 5.92 (dt, $1 \mathrm{H}, J=1.6,3.6), 5.21$ (m, 2H), 4.39 (dd, 1H,
$J=3.2,12.0), 4.34(\mathrm{dd}, 1 \mathrm{H}, J=4.8,7.6), 4.22(\mathrm{~m}, 5 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.3$ (dd, 1C, $J=46.8,131.6$), 161.8 (dd, $1 \mathrm{C}, J=46.8,122.8$), $155.0,154.4,134.4$ (dd, $1 \mathrm{C}, J=8.8$, 38.4), 129.1, 125.2, 111.5 (dd, 1C, $J=14.8,85.2$), 104.3 (dd, 1C, $J=96.8,102.8$), 89.4, 69.6, 67.9, 66.1, $64.5,64.3,64.2,14.2,14.1 \mathrm{ppm}$; IR (neat): 2986, 1744, 1619, 1495, 1254, 1153, 1091, $1014 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{7} \mathrm{NaF}_{2}$ 433.1075, found 433.1023. $[\alpha]_{\mathrm{D}}{ }^{23}=-67^{\circ}(\mathrm{c}=1.0$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Alkynyl C-Glycoside SI-32: Diacetate SI-12 ($265 \mathrm{mg}, 0.71 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{MeOH}(2 \mathrm{~mL}$) and MP-carbonate resin (2.98 $\mathrm{mmol} / \mathrm{g}$ loading, $36 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added. After orbital shaking for 3 h , the reaction was filtered, rinsed with MeOH , and concentrated to provide 177 mg of the diol, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Pyridine $(0.188 \mathrm{~mL}, 2.3 \mathrm{mmol})$ and ethyl chloroformate $(0.222 \mathrm{~mL}, 2.3 \mathrm{mmol})$ were added. The reaction was warmed to room temperature, stirred for 15 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with sat. aqeous sodium bicarbonate and brine, dried, and concentrated. Chromatography over $\mathrm{SiO}_{2}(0-40 \%$ ethyl acetate/pet ether) provided SI-32 ($222.4 \mathrm{mg}, 89 \%$ yield) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36(\mathrm{~d}$, $1 \mathrm{H}, J=8.4), 7.33(\mathrm{~d}, 1 \mathrm{H}, J=6.4), 5.99(\mathrm{dq}, 1 \mathrm{H}, J=2.0,3.6,10.0), 5.89(\mathrm{dt}, 1 \mathrm{H}, 2.0,3.6), 5.23(\mathrm{dq}, 1 \mathrm{H}$, $J=2.0,4.0,9.2), 5.18(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{dd}, 1 \mathrm{H}, J=2.8,12.0), 4.34(\mathrm{dd}, 1 \mathrm{H}, J=5.2,12.0), 4.23(\mathrm{~m}, 5 \mathrm{H})$, $1.31(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.0,154.4,152.0,131.6,129.8,131.7,129.8$, $125.2,124.6,119.0,86.9,83.7,69.4,68.1,66.1,64.5,64.2,34.7,31.1,14.2 \mathrm{ppm}$; IR (neat): 2967, $1748,1371,1266,1009,784 \mathrm{~cm}^{-1} ; \quad[\alpha]_{\mathrm{D}}{ }^{23}=-48^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Phenol addition to C-glycosides-preliminary rehearsal screen

Table SI- 5: Evaluation of different phenols for allylic addition.

SI-3
a) $\mathrm{Pd}_{2}(\mathrm{dba})_{3}-\mathrm{CHCl}_{3},(\mathrm{~S}, \mathrm{~S})$-Trost Ligand, phenol, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, μ wave $\left(100^{\circ} \mathrm{C}, 300 \mathrm{~W}\right), 15 \mathrm{~min}$. b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$

General Procedure for phenol addition. (Aryl ethers SI-36-SI-44). Dicarbonate SI-24 (540 $\mathrm{mg}, 1.5 \mathrm{mmol}$), ($1 S, 2 S$)- (-)- 1,2- Diaminocyclohexane- $\mathrm{N}, \mathrm{N}^{\prime}$-bis(2'-diphenylphosphinobenzoyl)
($110 \mathrm{mg}, 0.15 \mathrm{mmol}$), and Tris(dibenzylideneacetone) dipalladium(0)- chloroform adduct (80 mg , $0.08 \mathrm{mmol})$ were dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.5 \mathrm{~mL})$ and stirred for 15 min . The color of the solution changed from maroon to yellowish-orange. The solution $(0.500 \mathrm{~mL}, 0.09 \mathrm{mmol})$ was then transferred to separate 10 mL microwave vials containing the appropriate phenol (0.14 mmol). Each reaction was irradiated for $15 \mathrm{~min}\left(150-300 \mathrm{~W}\right.$, Powermax enabled) at $100^{\circ} \mathrm{C}$. The solutions were then transferred to 20 mL scintillation vials and concentrated in vacuo. Compounds SI-33-SI-35 were purified by SiO_{2} chromatography ($0-40 \%$ ethyl acetate / hexanes) to provide the carbonate- protected aryl ether. For (SI-36-SI-44) the crude reaction mixtures were resuspended in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ and $\mathrm{MP}-\mathrm{CO}_{3}$ or $\mathrm{K}_{2} \mathrm{CO}_{3}(0.25 \mathrm{eq})$ was added. After shaking for 12 h , the reactions were filtered and concentrated. Purification by SiO_{2} chromatography ($0-80 \%$ ethyl acetate / hexanes) provided the desired aryl ethers SI-36-SI-44 in the yields described below.

Aryl ether SI-33: Yield: 14.7 ($0.04 \mathrm{mmol}, 50 \%$) as a film. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.53(\mathrm{~m}, 6 \mathrm{H}), 6.95$ (appd, $\left.1 \mathrm{H}, J=2.4\right), 6.87(\mathrm{~m}, 2 \mathrm{H})$, 6.23 (ddd, 1H, 2.0, 3.2, 10.8), 6.17 (appd, 2H, $J=4.8$), 5.41 (d, 1H, $J=2.4$), 4.98 (dd, 1H, $J=2.0,8.0$), 4.32 (d, 2H, $J=4.4$), 4.15 (q, 2H, $J=6.8$), 3.95 (m, $1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, 1 \mathrm{H}, J=9.6) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $214.0,160.1,155.0,152.5,138.5,131.6,128.6,128.3,127.9,125.9,124.3,114.2,113.1,112.3,103.4$, 102.7, 74.3, 68.8, 68.7, 66.2, 64.3, 18.7, 14.2 ppm ; IR (neat): 3378, 1957, 1739, 1608, 1440, 1386, $1266,1141,1068,1014 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+75^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether SI-34: Yield: $23 \mathrm{mg}(0.07 \mathrm{mmol}, 78 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.45(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{~m}, 3 \mathrm{H}), 6.19(\mathrm{dd}, 1 \mathrm{H}, J=1.2,2.8)$, $6.15(\mathrm{dd}, 1 \mathrm{H}, J=1.6,3.6), 5.39(\mathrm{~d}, 1 \mathrm{H}, J=1.6), 4.81(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.8), 4.33$ (d, 2H, $J=3.6$), 4.15 (q, 2H, $J=7.2$), 3.94 (m, 1H), 2.17 (s, 3H), 1.27 (t, 3H, $J=7.2$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.0,155.0,151.1,138.9,130.6$, $129.8,129.7,128.5,128.1,127.8,117.8,113.7,112.6,74.2,69.3,69.1,66.6,64.1,16.5,14.2 \mathrm{ppm} ;$ IR (neat): $3441,2963,2920,1748,1495,1456,1386,1262,1204,1060 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+43^{\circ}(\mathrm{c}=1.0$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Aryl ether SI-35: Yield: $27 \mathrm{mg}(0.12 \mathrm{mmol}, 88 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{t}, 1 \mathrm{H}, J=8), 6.39(\mathrm{dd}, 1 \mathrm{H}, J=2.0$, 8.4), 6.31 (m, 2H), $6.23(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{bs}, 1 \mathrm{H}), 4.91$ (dd, $1 \mathrm{H}, J=2.0,8.4)$, $4.33(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{q}, 2 \mathrm{H}, J=7.2), 3.92(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 6 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}$, $J=7.2) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 214.0,158.2,155.0,139.0$, $130.1,129.9,128.5,128.1,127.9,126.1106 .3,103.0,100.7,74.3,69.1,68.1,66.6,64.0,40.5,14.2$ ppm; IR (neat): 2912, 1744, 1647, 1612, 1569, 1499, 1449, 1262, $1149 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+44^{\circ}(\mathrm{c}=1.0$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Aryl ether SI-36: Yield: $22 \mathrm{mg}(0.12 \mathrm{mmol}, 83 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, 2 \mathrm{H}, J=8.0), 7.88(\mathrm{~d}, 2 \mathrm{H}$, $J=8.8), 5.37(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 3 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}$, $2 \mathrm{H}), 1.67(\mathrm{~m}, 7 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.5,139.4,139.0$, 129.7, 128.5, 128.2, 128.1, 128.0, 126,7, 115.6, 74.4, 70.8, 68.6, 62.3, 45.1, 34.7, 25.4 ppm ; IR (neat): $3421,2951,2854,1693,1511,1449,1383,1223$, $1068 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+92^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether SI-37 Yield: $15 \mathrm{mg}(0.10 \mathrm{mmol}, 68 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.35-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~d}$, $1 \mathrm{H}, J=2.0), 4.91$ (appd, $1 \mathrm{H}, J=6.4$), $3.80(\mathrm{~m}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.4,139.1,131.1,129.8,128.5,128.2,128.0,127.6$, $126.8,126.6,121.0,112.5,74.4,71.0,68.5,62.4,16.4 \mathrm{ppm}$; IR (neat): 3433, $2920,1604,1491,1456,1386,1235,1192,1083 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+45^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether SI-38 Yield: $15 \mathrm{mg}(0.10 \mathrm{mmol}, 68 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, 2 \mathrm{H}, J=8.4), 7.42(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~d}, 2 \mathrm{H}$, $J=8.4), 6.24$ (m, 1H), 6.16 (d, 1H, $J=10.4$), 5.39 (d, 1H, $J=1.6$), 5.10 (dd, 1H, $J=1.2,7.6$), $3.76(\mathrm{~m}, 3 \mathrm{H}), 1.95(\mathrm{bs}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.7,162.5,138.6,132.1,130.3,128.6,128.4,128.1,125.4,115.7,74.5$, 70.4, 68.1, 61.8 ppm ; IR (neat): 3421, 2916, 2361, 1957, 1682, 1600, 1510, 1386, 1239, $1165 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+98^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether SI-39: Yield: 27 mg ($0.05 \mathrm{mmol}, 38 \%$) as a film. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38(\mathrm{~m}, 5 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{bs}, 2 \mathrm{H}), 6.17(\mathrm{~m}, 2 \mathrm{H}), 5.37$ (bs, 1H), $5.02(\mathrm{~d}, 1 \mathrm{H}, J=6.8), 3.80(\mathrm{~m}, 6 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.3,153.9,150.5,138.6,130.7,129.9,128.6,128.4$, 128.0, 125.5, 120.4, 115.7, 114.0, 74.4, 70.8, 69.3, 62.1, 55.8, 32.2 ppm ; IR (neat): $3421,2912,1662,1491,1414,1285,1219,1048 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+52^{\circ}$ $\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether SI-40: Yield: $15 \mathrm{mg}(0.07 \mathrm{mmol}, 53 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.44(\mathrm{~m}, 5 \mathrm{H}), 6.91$ (dd, $2 \mathrm{H}, J=2.8,12.4$), 6.70 (dd, 1 H , $J=2.8,8.8), 6.14(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{bs}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=6.4), 3.78(\mathrm{~m}, 6 \mathrm{H}, 1.33(\mathrm{~s}$, 3H) ppm; ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.4,149.1,140.3,138.9,129.8$, $128.5,128.3,128.1,126.0,114.9,112.9,109.8,74.5,71.0,67.0,62.5,55.6$, 34.9, 29.8 ppm; IR (neat): $3425,2955,2924,1957,1728,1576,1484,1456,1383,1266,1208,1095$, $1052 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+77^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether SI-41: Yield: $24 \mathrm{mg}(0.10 \mathrm{mmol}, 68 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40(\mathrm{~m}, 5 \mathrm{H}), 4.22(\mathrm{~d}, 1 \mathrm{H}, J=8.0), 4.77(\mathrm{dd}, 1 \mathrm{H}, J=2.8,8.4)$, 6.71 (d, $1 \mathrm{H}, J=2.8), 6.20(\mathrm{dt}, 1 \mathrm{H}, J=2.0,10.4), 6.14$ (dq, $1 \mathrm{H}, J=1.6,2.8$, $10.4), 5.36(\mathrm{~d}, 1 \mathrm{H}, J=2.0), 4.88(\mathrm{dt}, 1 \mathrm{H}, J=2.0,6.4), 3.73(\mathrm{~m}, 3 \mathrm{H}), 2.89(\mathrm{~m}$, $2 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~m}, 6 \mathrm{H})$, $0.92(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.4,138.9,138.1,132.8$, 129.8, 128.5, 128.2, 128.1, 126.7, 126.6, 115.9, 113.3, 74.5, 70.7, 68.4, 62.3, $50.4,48.0,44.0,38.3,35.9,31.6,29.6,26.5,21.6,13.8 \mathrm{ppm}$; IR (neat): $3724,3421,2916,1732,1608$, 1495, 1390, 1247, $1068 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+150^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

SI-42

Aryl ether SI-42: Yield: $72 \mathrm{mg}(0.04 \mathrm{mmol}, 30 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40(\mathrm{~m}, 5 \mathrm{H}), 6.99(1 \mathrm{H}, \mathrm{t}, J=1.6), 6.86(\operatorname{appd}, 2 \mathrm{H}, J=1.6)$, 6.21 (ddd, $1 \mathrm{H}, J=10.4,2.8,1.6), 6.13(\mathrm{dt}, 1 \mathrm{H}, J=1.6,10.4), 5.37(1 \mathrm{H}, \mathrm{q}$, $J=2.4), 4.93(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 3 \mathrm{H}), 1.92(\mathrm{t}, 1 \mathrm{H}, J=7.2) \quad \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.5,138.6,135.6,130.9,128.6,128.3,128.1,125.3,121.7$, 114.7, 74.5, 70.4, $68.7,61.8 \mathrm{ppm}$; IR (neat): $3425,3079,2951,2920,1953$, 1584, 1573, 1456, 1386, 1254, $1095 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=+82^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether SI-43 (Compound 33): Yield: $34 \mathrm{mg}(0.11 \mathrm{mmol}, 80 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.46(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=9.2)$, 6.85 (d, 1H, $J=9.2$), 6.85 (d, 1H, $J=9.2$), 6.20 (dt, $1 \mathrm{H}, J=1.6,10.4), 6.15$ (ddd, 1H, $J=1.2,2.8,10.4$), 5.36 (appd, $1 \mathrm{H}, J=2.0$), 4.81 (dd, $1 \mathrm{H}, J=1.6$, 8.0), $3.75(\mathrm{~m}, 6 \mathrm{H}), 1.86(\mathrm{bs}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $154.3,151.4,138.9,129.7,128.5,128.1,128.1,126.6,117.2,114.8,74.4,70.9,69.5,62.2,55.7 \mathrm{ppm}$; IR (neat): 4352, 2908, 1511, 1449, 1382, 1223, 1037, 816, $746 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4}$ 331.1440, found 313.1495. $[\alpha]_{\mathrm{D}}{ }^{23}=+95^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether SI-44: Yield: XXmg ($0.12 \mathrm{mmol}, \mathrm{XX} \%$) as a film. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34-7.46(\mathrm{~m}, 5 \mathrm{H}), 6.61(\mathrm{~d}, 3 \mathrm{H}, J=19.6), 6.21(\mathrm{ad}, 2 \mathrm{H}$, $J=12.0$), 6.15 (as, $2 \mathrm{H}, J=10.4$), 5.37 , (d, 1H, $J=2.0$), 4.89 (dt, $1 \mathrm{H}, 1.6,6.4$), $3.73(\mathrm{~m}, 3 \mathrm{H}), 2.29(\mathrm{bs}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.4$, 139.5, 139.0, 129.7, 128.5, 128.2, 128.1, 126.7, 123.1, 113.5, 74.5, 70.8, 68.3, $62.3,21.4 \mathrm{ppm}$; IR (neat): $3398,2920,2957,1592,1460,1390,1289,1157$ $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+101^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Table SI-6. C-glycosides prepared via the Pd-mediated aryl-etherification.

Aryl ether 9: Bis-carbonate SI-13 (59 mg. 0.19 mmol), ($1 S, 2 S$)-(-)-1,2-Diaminocyclohexane- N, N '-bis(2'-diphenylphosphinobenzoyl) ($13 \mathrm{mg}, 0.019 \mathrm{mmol}$), and Tris(dibenzylideneacetone) dipalladium(0) chloroform adduct ($10 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ were dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and stirred for 15 min . The solution changed from maroon to yellowish- orange. 4-Fluoro- 2-methylphenol (26 $\mathrm{mg}, 0.21 \mathrm{mmol}$) was added and the reaction was irradiated for $15 \mathrm{~min}(150-300 \mathrm{~W}$, Powermax enabled) at $100^{\circ} \mathrm{C}$. The crude reaction mixture was transferred to a 20 mL scintillation vial and concentrated in vacuo. The reaction was resuspended in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(300$ $\mathrm{mg}, 2.0 \mathrm{mmol}$) was added. After stirring for 5 h , the reaction was concentrated and purified by SiO_{2} chromatography ($0-40 \%$ ethyl acetate / hexanes) to provide $13(26 \mathrm{mg}, 49 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.86(\mathrm{~m}, 3 \mathrm{H}), 5.91(\mathrm{~m}, 3 \mathrm{H}), 5.14(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{dd}, 1 \mathrm{H}, J=1.6,7.0), 4.33(\mathrm{~m}, 1 \mathrm{H})$, $3.84(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 158.3,155.9,151.3,134.5,131.4,129.5,125.2,117.6,113.5,112.5,72.6,71.2$, 69., $62.4,37.6,16.5 \mathrm{ppm}$; IR (neat): $3440,2917,1499,1262,1204,1087,1045,796 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=$ $+93^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether 10: Bis-carbonate SI-26 (100 mg. 0.27 mmol), ($1 \mathrm{~S}, 2 \mathrm{~S}$)- (-)- 1,2-Diaminocyclohexane- N, N '-bis(2 '-diphenylphosphinobenzoyl) ($9 \mathrm{mg}, 0.01$ mmol), and Tris(dibenzylideneacetone) dipalladium(0) chloroform adduct $(7 \mathrm{mg}, 0.01 \mathrm{mmol})$ were dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and stirred for 15 min . The color of the solution changed from maroon to yellowish-orange. 3-dimethylamino phenol ($40 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added and the reaction was irradiated for $15 \mathrm{~min}\left(150-300 \mathrm{~W}\right.$, Powermax enabled) at $100^{\circ} \mathrm{C}$. The crude reaction mixture was
transferred to a 20 mL scintillation vial and concentrated in vacuo. The reaction was resuspended in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ and MP-carbonate resin $(20 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added. After stirring for 6 h , the reaction was concentrated and purified by SiO_{2} chromatography ($0-70 \%$ ethyl acetate / hexanes) to provide $10(59 \mathrm{mg}, 65 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H})$, $7.15(\mathrm{t}, 1 \mathrm{H}, J=6.8), 6.38(\mathrm{~m}, 3 \mathrm{H}), 6.06(\mathrm{~d}, 1 \mathrm{H}, J=2.0,10.0), 5.95$ (ddd, 1H, $J=1.6,3.2,10.4), 5.24(\mathrm{~m}$, $1 \mathrm{H}), 4.90(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.8), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}, J=2.8,12.0), 3.82(\mathrm{dd}, 1 \mathrm{H}, J=5.2,12.0)$, 2.91 (bs, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.4,152.1,131.9,129.9,128.6,128.3,128.2$, 126.4, 122.3, 106.3, 103.0, 100.7, 86.4, 85.2, 72.8, 68.0, 64.6, 62.3, 40.5 ppm ; IR (neat): 3409,2924 , $2361,1607,1581,1503,1449,1390,1235,1153,1079,757 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+12^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether 11: Bis-carbonate SI-28 (0.081 g . 0.21 mmol), ($1 S, 2 S$)- (-)- 1,2-Diaminocyclohexane- N, N '-bis(2'-diphenylphosphinobenzoyl) ($15 \mathrm{mg}, 0.021$ mmol), and Tris(dibenzylideneacetone) dipalladium(0) chloroform adduct (10 mg , $0.01 \mathrm{mmol})$ were dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and stirred for 15 min . The color of the solution changed from maroon to yellowish-orange. 4-Hydroxybenzaldehyde ($28 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added and the reaction was irradiated for $15 \mathrm{~min}\left(150-300 \mathrm{~W}\right.$, Powermax enabled) at $100^{\circ} \mathrm{C}$. The crude reaction mixture was transferred to a 20 mL scintillation vial and concentrated in vacuo. The reaction was resuspended in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(71 \mathrm{mg}(0.21 \mathrm{mmol})$ was added. After stirring for 15 h , the reaction was concentrated and purified by SiO_{2} chromatography ($0-70 \%$ ethyl acetate / hexanes) to provide 11 ($49 \mathrm{mg}, 68 \%$) as a film. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, 2 \mathrm{H}, J=9.2), 7.03(\mathrm{~d}, 2 \mathrm{H}$, $J=8.8), 5.91(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{dd}, 1 \mathrm{H}, J=2.0,12.0), 3.75(\mathrm{dd}, 1 \mathrm{H}, J=4.4$, 12.0), $2.24(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.8) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 190.6,162.4,132.1,130.3,130.2,124.1,115.6,87.9,75.8,71.8,67.9,64.4,61.8,31.2$, $28.5,28.4,22.5,18.7,14.0 \mathrm{ppm}$; IR (neat): $3440,2932,2858,1697,1603,1577,1511,1239,1161$, $1080 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=+85^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether 12: Bis-carbonate SI-29 (70 mg. 0.20 mmol), ($1 S, 2 S$)- (-)- 1,2-Diaminocyclohexane- N, N '-bis(2'-diphenylphosphinobenzoyl) ($14 \mathrm{mg}, 0.021$ mmol), and Tris(dibenzylideneacetone)dipalladium(0) chloroform adduct (10 mg , 0.01 mmol) were dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and stirred for 15 min . The solution changed from maroon to yellowish-orange. 7- Hydroxy -4-methylcoumarin ($39 \mathrm{mg}, 0.22 \mathrm{mmol}$) was added and the reaction was irradiated for $15 \mathrm{~min}\left(150-300 \mathrm{~W}\right.$, Powermax enabled) at $100^{\circ} \mathrm{C}$. The crude reaction mixture was transferred to a 20 mL scintillation vial and concentrated in vacuo. The reaction was resuspended in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(370 \mathrm{mg}, 2.7 \mathrm{mmol})$ was added. After stirring for 15 h , the reaction was concentrated and purified by SiO_{2} chromatography ($0-60 \%$ ethyl acetate / hexanes) to provide $\mathbf{1 2}$ ($31 \mathrm{mg}, 42 \%$) as a film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51(\mathrm{~d}, 1 \mathrm{H}, J=8.4), 6.88(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{bs}$, $1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{dd}, 1 \mathrm{H}, 1.6,8.4), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.1,160.3,155.2,152.4,130.4$, $125.8,123.9,114.1,112.9,112.3,102.8,95.9,74.1,71.7,68.3,64.4,61.9,30.8,27.5,18.7 \mathrm{ppm}$; IR
(neat): 3441, 2967, 2920, 2233, 1724, 1611, 1386, 1262, 1153, $1072 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na} 391.1521$, found 391.1508. $[\alpha]_{\mathrm{D}}{ }^{23}=+82^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

yellowish-orange. 3,5-Dimethyl phenol ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added and the reaction was irradiated for $15 \mathrm{~min}\left(150-300 \mathrm{~W}\right.$, Powermax enabled) at $100^{\circ} \mathrm{C}$. The crude reaction mixture was concentrated onto SiO_{2} and chromatographed ($0-40 \%$ ethyl acetate/hexanes) to provide 121 mg of ethyl carbonate-protected 9. The intermediate was resuspended in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ and MP-CO3 ($11 \mathrm{mg}, 2.98 \mathrm{mmol} / \mathrm{g}$) was added. After stirring for 3 h , the reaction was concentrated and purified by SiO_{2} chromatography ($0-70 \%$ ethyl acetate / hexanes) to provide $9(33 \mathrm{mg}, 56 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.95(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6), 6.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0), 6.63(\mathrm{~s}, 1 \mathrm{H})$, $6.58(\mathrm{~s}, 2 \mathrm{H}), 6.2(\mathrm{~m} \mathrm{1H}), 6.09(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.6,8.0), 3.71(\mathrm{~m}$, $3 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.3,147.8,147.6,139.4,132.8,129.7$, $126.8,123.1,121.9,113.5,108.9,108.1,101.1,74.2,70.5,68.3,62.3,21.4 \mathrm{ppm}$; IR (neat): 3433 , $2909,1713,1596,1487,1441,1285,1223,1161,1072,928 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=+68^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether SI-46: Bis-carbonate SI-22 (111 mg. 0.29 mmol), ($1 S, 2 S$)- (-)-1,2- Diaminocyclohexane- N,N'-bis(2'-diphenylphosphinobenzoyl) (10 mg , $0.014 \mathrm{mmol})$, and $\operatorname{Tris}($ dibenzylideneacetone) dipalladium(0) chloroform adduct ($8 \mathrm{mg}, 0.007 \mathrm{mmol}$) were dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and stirred for 15 min . The solution changed from maroon to yellowishorange. 4'-hydroxyacetophenone ($41 \mathrm{mg}, 0.30 \mathrm{mmol}$) was added and the reaction was irradiated for $15 \mathrm{~min}\left(150-300 \mathrm{~W}\right.$, Powermax enabled) at $100^{\circ} \mathrm{C}$. The reaction mixture concentrated onto SiO_{2} and chromatographed over $\mathrm{SiO}_{2}(0-50 \%$ ethyl acetate / pet. ether) to provide the crude carbonate (104 mg , approx 84\%) as a viscous oil. The mixture was resuspended in $\mathrm{MeOH}(3.0 \mathrm{~mL}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(8 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added. After stirring for 6 h , the reaction was concentrated and purified by SiO_{2} chromatography ($0-40 \%$ ethyl acetate / hexanes) to provide SI-46 ($59 \mathrm{mg}, 73 \%$) as a film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{~d}, 2 \mathrm{H}, J=8.8), 7.37(\mathrm{~s}, 4 \mathrm{H}), 6.98(\mathrm{~d}, 2 \mathrm{H}, J=9.2), 6.17(2$, $2 \mathrm{H}), 5.34(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{dd}, 1 \mathrm{H}, J=2.0,7.6), 3.73(\mathrm{~m}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{t},-\mathrm{OH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.7,161.3,137.2,134.3,130.7,130.2,129.4,128.8,126.0,115.1,73.7$, $70.6,68.0,61.8,26.3 \mathrm{ppm}$; IR (neat): $3425,1674,1592,1506,1250,1173,1087 \mathrm{~cm}^{-1} ; \quad$ HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{NaCl} 381.0870$, found 381.0887. $\quad[\alpha]_{\mathrm{D}}{ }^{23}=+120^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether SI-47: Bis-carbonate SI-25 (108 mg. 0.29 mmol$)$, ($1 S, 2 S$)- (-)-1,2- Diaminocyclohexane- N,N'-bis(2'-diphenylphosphinobenzoyl) (10 mg , 0.014 mmol), and Tris(dibenzylideneacetone) dipalladium(0) chloroform adduct ($8 \mathrm{mg}, 0.007 \mathrm{mmol}$) were dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$
and stirred for 15 min . The solution changed from maroon to yellowish- orange. 4-cyclopentylphenol ($47 \mathrm{mg}, 0.29 \mathrm{mmol}$) was added and the reaction was irradiated for 15 min (150-300 W, Powermax enabled) at $100^{\circ} \mathrm{C}$. The reaction mixture concentrated onto SiO_{2} and chromatographed over $\mathrm{SiO}_{2}(0-50 \%$ ethyl acetate / pet. ether) to provide the crude carbonate $(120 \mathrm{mg}$, approx 80%) as a viscous oil. The mixture was resuspended in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.3 \mathrm{mg}$, 0.05 mmol) was added. After stirring for 5 h , the reaction was concentrated and purified by SiO_{2} chromatography ($0-40 \%$ ethyl acetate / hexanes) to provide SI-47 ($64 \mathrm{mg}, 74 \%$) as a film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18(\mathrm{~d}, 2 \mathrm{H}, J=2.0), 7.05(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}, J=6.4), 6.19(\mathrm{dt}$, $1 \mathrm{H}, J=2.0,12), 6.11(\mathrm{dq}, 1 \mathrm{H}, J=1.6,2.8,10.4), 5.29(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{dq}, 1 \mathrm{H}, J=1.6,3.6,5.6), 3.77(\mathrm{~m}$, $3 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.5,139.4,138.8,138.0,129.9,129.8,128.1,126.4,126.0,115.6,74.6$, $70.8,68.7,62.2,45.1,34.7,25.4,21.3 \mathrm{ppm}$; IR (neat): 3452, 2931, 2874, 1608, 1518, 1239, 1177, $1049,831 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+78^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether SI-48: Bis-carbonate SI-26 (200 mg. 0.53 mmol), ($1 \mathrm{~S}, 2 \mathrm{~S}$)- (-)-1,2- Diaminocyclohexane- N,N'-bis(2'-diphenylphosphinobenzoyl) (18 mg , 0.027 mmol), and Tris(dibenzylideneacetone) dipalladium(0) chloroform adduct $14 \mathrm{mg}, 0.013 \mathrm{mmol}$) were dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and stirred for 15 min . The solution changed from maroon to yellowishorange. p-tert-Butyl-phenol ($84 \mathrm{mg}, 0.56 \mathrm{mmol}$) was added and the reaction was irradiated for 15 $\min \left(150-300 \mathrm{~W}\right.$, Powermax enabled) at $100^{\circ} \mathrm{C}$. The reaction mixture concentrated onto SiO_{2} and chromatographed over $\mathrm{SiO}_{2}(0-50 \%$ ethyl acetate / pet. ether) to provide the crude carbonate (221 mg , approx 95%) as viscous oil. The mixture was resuspended in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(34 \mathrm{mg}$, 0.1 mmol) was added. After stirring for 15 h , the reaction was concentrated and purified by SiO_{2} chromatography ($0-40 \%$ ethyl acetate / hexanes) to provide SI-48 (117 mg, 64%) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{~d}, 2 \mathrm{H}, J=8.8), 6.04(\mathrm{~d}, 1 \mathrm{H}, J=10.4)$, 5.95 (dq, 1H, $J=2.0,3.2,10.4), 5.24(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{dd}, 1 \mathrm{H}, J=1.6,8.8), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.98$ (dd, 1H, $J=2.8,9.2$), $3.81(\mathrm{dd}, 1 \mathrm{H}, J=4.8,11.6), 1.31(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.0$, $144.3,131.9,128.7,128.3,126.5,126.4,121.1,115.2,86.5,85.3,72.7,68.2,64.6,62.3,34.1,31.5$ ppm; IR (neat): 2955, 1654, 1608, 1507, 1227, $1075 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na} 385.1780$, found 385.1769. $[\alpha]_{\mathrm{D}}{ }^{23}=+19^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether SI-49: Bis-carbonate SI-13 (138 mg. 0.34 mmol), ($1 S, 2 S$)- (-)-1,2- Diaminocyclohexane- N,N'-bis(2'-diphenylphosphinobenzoyl) (12 $\mathrm{mg}, \quad 0.017 \mathrm{mmol}$), and Tris(dibenzylideneacetone) dipalladium(0) chloroform adduct ($9 \mathrm{mg}, 0.008 \mathrm{mmol}$) were dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and stirred for 15 min . The solution changed from maroon to yellowish- orange. p-Methoxyphenol ($44 \mathrm{mg}, 0.35 \mathrm{mmol}$) was added and the reaction was irradiated for $15 \mathrm{~min}\left(150-300 \mathrm{~W}\right.$, Powermax enabled) at $100^{\circ} \mathrm{C}$. The reaction mixture concentrated onto SiO_{2} and chromatographed over $\mathrm{SiO}_{2}(0-50 \%$ ethyl acetate / pet. ether) to provide the crude carbonate (115 mg , approx 77%) as a viscous oil. The mixture was resuspended in MeOH
$(2.0 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(7.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added. After stirring for 4 h , the reaction was concentrated and purified by SiO_{2} chromatography ($0-40 \%$ ethyl acetate / hexanes) to provide SI-49 ($67 \mathrm{mg}, 69 \%$) as a film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~m}, 6 \mathrm{H}), 6.03(\mathrm{dt}, 1 \mathrm{H}$, $J=1.6,9.6), 5.94(\mathrm{dq}, 1 \mathrm{H}, J=1.2,2.8,10.0), 5.24(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{dq}, 1 \mathrm{H}, J=2.0,3.6,8.8), \quad 4.10(\mathrm{~m}$, 1 H), 3.98 (dd, $1 \mathrm{H}, J=2.4,12.0$), 3.82 (dd, $1 \mathrm{H}, J=4.4,11.6$), 3.77 (s, 3 H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 163.4$ (dd, 1C, $J=46.8,143.6$), 161.8 (dd, $1 \mathrm{C}, J=46.8,134.8$), $154.5,151.2,134.6$ (dd, 1 C , $8.8,38.4), 127.7,126.5,117.2,114.8,111.5$ (dd, 1C, $J=17.6,88$), 107.1, 104.3 (t, 1C, $J=96.8$), 90.2 , $78.9,72.9,69.2,64.5,62.2,55.7 \mathrm{ppm}$; IR (neat): $3465,2908,1619,1499,1437,1223,1145,1079$, 1036, $827 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~F}$ 373.1251, found 373.1253. $[\alpha]_{\mathrm{D}}{ }^{23}=$ $+15^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether SI-50: Bis-carbonate SI-32 (148 mg. 0.34 mmol), ($1 \mathrm{~S}, 2 \mathrm{~S}$)-(-)- 1,2- Diaminocyclohexane- N,N'-bis(2'-diphenylphosphinobenzoyl) ($10 \mathrm{mg}, 0.014 \mathrm{mmol}$), and Tris(dibenzylideneacetone) dipalladium(0) chloroform adduct ($8 \mathrm{mg}, 0.007 \mathrm{mmol}$) were dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and stirred for 15 min . The solution changed from maroon to yellowish- orange. 4-Methylphenol ($38 \mathrm{mg}, 0.29 \mathrm{mmol}$) was added and the reaction was irradiated for $15 \mathrm{~min}\left(150-300 \mathrm{~W}\right.$, Powermax enabled) at $100^{\circ} \mathrm{C}$. The reaction mixture concentrated onto SiO_{2} and chromatographed over $\mathrm{SiO}_{2}(0-50 \%$ ethyl acetate / pet. ether) to provide the crude carbonate (124 mg , approx 81%) as a viscous oil. The mixture was resuspended in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(4 \mathrm{mg}, 0.03 \mathrm{mmol})$ was added. After stirring for 3 h , the reaction was concentrated and purified by SiO_{2} chromatography ($0-40 \%$ ethyl acetate / hexanes) to provide $\mathbf{S I - 5 0}(75 \mathrm{mg}, 72 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41$ (d, $2 \mathrm{H}, J=6.8$), 7.34 (d, $2 \mathrm{H}, J=8.8$), 7.10 (d, $1 \mathrm{H}, J=8.0$), $6.86(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{dt}, 1 \mathrm{H}, J=1.6,10.4), 5.95(\mathrm{dq}, 1 \mathrm{H}, J=1.6,3.2,10), 5.23(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{dq}, 1 \mathrm{H}$, $J=1.6,3.2,8.8), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{dd}, 1 \mathrm{H}, J=2.8,11.6), 3.80(\mathrm{dd}, 1 \mathrm{H}, J=4.8,12.4), 2.30(\mathrm{~s}, 3 \mathrm{H})$, 1.32 (s, 9H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.1,152.0,131.6,130.8,130.1,128.4,126.0$, $125.3,119.2,115.7,86.6,84.4,72.6,68.4,64.7,62.2,34.8,311,20.5 \mathrm{ppm}$; IR (neat): 3441, 3037, $2951,2870,1708,1612,1507,1386,1235,1173,1084,1025,835 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+2^{\circ}(\mathrm{c}=1.0$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Phenol 15: Aryl ether $14^{2}(110 \mathrm{mg}, 0.28 \mathrm{mmol})$ was dissolved in chlorobenzene $(0.60 \mathrm{~mL})$ in a 10 mL microwave tube. $\mathrm{Eu}(\mathrm{fod})_{3}(30 \mathrm{mg}$, 0.03 mmol) was added and the reaction was heated with microwave irradiation $\left(300 \mathrm{~W}, 200^{\circ} \mathrm{C}\right)$ for 30 min . Concentration in vacuo, followed by purification over $\mathrm{SiO}_{2}(0-40 \% \mathrm{EtOAc} /$ hexanes $)$ provided $17(36 \mathrm{mg}, 60 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.39(\mathrm{bs}, 1 \mathrm{H}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=8.8), 6.74(\mathrm{dd}, 1 \mathrm{H}, J=3.2,8.8), 6.56(\mathrm{~d}, 1 \mathrm{H}$, $J=3.2$), 5.92 (ddd, 1H, $J=2.0,6.0,10.8$), 5.85 (ddd, 1H, $J=1.2,2.8,10.0$), $5.80(\mathrm{~m}, 1 \mathrm{H}), 5.01$ (m, 1H), $4.47(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{ddd}, 2 \mathrm{H}, J=6.0,11.2,31.2), 3.72(\mathrm{t}, 1 \mathrm{H}, J=4.4), 2.17(\mathrm{~m}, 2 \mathrm{H}), 0,91$
($\mathrm{s}, 9 \mathrm{H}$), $0.09(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.8,149.3,134.0,128.1,125.2,124.1$, $118.0,117.6,117.4,113.6,75.2,72.3,63.8,55.7,37.3,25.8,18.3,-5.4 \mathrm{ppm}$; IR (neat): 3387,2920 , $1654,1390,1083 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-210^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether 16: Bis-carbonate SI-23 (200 mg, 0.50 mmol), ($1 S, 2 S$)- (-)-1,2- Diaminocyclohexane- N,N'-bis(2'-diphenylphosphinobenzoyl) (18 $\mathrm{mg}, 0.013 \mathrm{mmol}$), and $\operatorname{Tris}($ dibenzylideneacetone) dipalladium(0) chloroform adduct ($13 \mathrm{mg}, 0.025 \mathrm{mmol}$) were dissolved in degassed methylene chloride $(2.0 \mathrm{~mL})$ and stirred for 15 min . The color of the solution changed from maroon to yellowish-orange. p-hydroxybiphenyl ($91 \mathrm{mg}, 0.54 \mathrm{mmol}$) was added and the reaction was irradiated in a microwave oven for 15 min (150-300 W, Powermax enabled) at $100^{\circ} \mathrm{C}$. The reaction mixture concentrated onto SiO_{2} and chromatographed over SiO_{2} ($0-50 \%$ ethyl acetate / pet. ether) to provide $16(170 \mathrm{mg}, 85 \%)$ as a viscous oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.98(\mathrm{~d}, 2 \mathrm{H}, J=8.4), 7.56(\mathrm{~m}, 6 \mathrm{H}), 7.43(\mathrm{t}, 2 \mathrm{H}, J=7.2), 7.33(\mathrm{t}, 1 \mathrm{H}, J=8.4), 7.00(\mathrm{~d}, 2 \mathrm{H}$, $J=8.4), 6.24(\mathrm{bs}, 2 \mathrm{H}), 5.43(\mathrm{bs}, 1 \mathrm{H}), 4.94(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.4), 4.38(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{q}, 2 \mathrm{H}, J=7.2$, 14.4), $3.93(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H}, J=6.8) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.6$, $156.4,155.0,144.2,140.5,136.7,134.7,129.9,128.7,128.6,128.4,127.7,126.7,125.9,115.9$, 104.7, 73.6, 69.6, 68.2, 66.4, 64.2, 26.6, 14.2 ppm ; IR (neat): 3037, 2982, 2900, 1743, 1677, 1607, 1487, 1258, $1009 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{229} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na} 495.1784$, found 495.1798 . $[\alpha]_{\mathrm{D}}{ }^{23}=+60^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Phenol 17: Aryl ether 16 ($20 \mathrm{mg}, 0.04 \mathrm{mmol}$) was dissolved in chlorobenzene $(0.50 \mathrm{~mL})$ in a 10 mL microwave tube. $\mathrm{Eu}(\mathrm{fod})_{3}(44 \mathrm{mg}$, 0.04 mmol) was added and the reaction was heated with microwave irradiation $\left(300 \mathrm{~W}, 200^{\circ} \mathrm{C}\right)$ for 60 min . Concentration in vacuo, followed by purification over $\mathrm{SiO}_{2}(0-80 \% \mathrm{EtOAc} /$ hexanes $)$ provided $17(14 \mathrm{mg}, 70 \%)$ as a film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77(\mathrm{~d}, 2 \mathrm{H}$, $J=7.2$), 7.39 (m, 6H), 7.27 (m, 4H), 6.77 (d, 1H, $J=8.0$), $6.20(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{dq}, 1 \mathrm{H}, J=1.6,3.2,10)$, $5.45(\mathrm{~d}, 1 \mathrm{H}, J=3.6), 4.98(\mathrm{~m}, 1 \mathrm{H}), 4.64$ (appq, $1 \mathrm{H}, J=8.0,12.0), 4.22(\mathrm{dd}, 1 \mathrm{H}, J=3.6,12.4), 4.14$ (q, $3 \mathrm{H}, J=7.2,14.4), 3.93(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, 1 \mathrm{H}, J=7.6) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.9,155.0,154.0,144.0,140.6,135.9,133.0,130.4,130.3,128.6,128.0,127.4,126.6,125.7$, $123.4,123.1,117.2,73.3,73.2,66.0,64.4,26.5,14.1 \mathrm{ppm}$; IR (neat): $3348,2920,1744,1678,1604$, 1487, 1405, 1277, 1107, $998 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na} 495.1784$, found 495.1787. $[\alpha]_{\mathrm{D}}{ }^{23}=-228^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether 18: Bis-carbonate SI-21 (569 mg. 1.52 mmol), ($1 S, 2 S$)- (-)-1,2- Diaminocyclohexane- N,N'-bis(2'-diphenylphosphinobenzoyl) (50 mg , 0.08 mmol), and Tris(dibenzylideneacetone)dipalladium(0) chloroform adduct ($39 \mathrm{mg}, 0.04 \mathrm{mmol}$) were dissolved in degassed methylene chloride $(4.0 \mathrm{~mL})$ and stirred for 15 min . The color of the solution changed from
maroon to yellowish-orange. \quad-Methoxyphenol ($198 \mathrm{mg}, 1.60 \mathrm{mmol}$) was added and the reaction was irradiated for 15 min (150-300 W, Powermax enabled) at $100^{\circ} \mathrm{C}$. Purification by SiO_{2} chromatography ($0-40 \%$ ethyl acetate / petroleum ether) provided 18 ($583 \mathrm{mg}, 94 \%$) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~m}, 4 \mathrm{H}), 6.01(\mathrm{dt}, 1 \mathrm{H}, J=1.2,10.4), 5.95(\mathrm{ddd}, 1 \mathrm{H}$, $J=1.6,3.2,10.4), 5.23(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{dd}, 1 \mathrm{H}, J=2.4,11.6), 4.39(\mathrm{dd}, 1 \mathrm{H}, J=4.8,11.6)$, $4.29(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{q}, 2 \mathrm{H}, J=7.2), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.2) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 155.0,154.5,150.9,131.8,128.6,128.5,128.3,125.6,122.2,117.1,114.8,86.6,84.9$, $70.6,69.1,66.5,64.7,64.1,55.7,14.2 \mathrm{ppm}$; IR (neat): 2959, 1743, 1503, 1444, 1382, 1266, 1227, 1041, $827 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd. for $\mathrm{C}_{224} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{~N}$ 409.1651, found 409.1654. $[\alpha]_{\mathrm{D}}{ }^{23}=$ $-27^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether 20: Ethyl ester 18 ($337 \mathrm{mg}, 0.83 \mathrm{mmol}$) was dissolved in MeOH $(5.0 \mathrm{~mL}) . \mathrm{K}_{2} \mathrm{CO}_{3}(28 \mathrm{mg}, 0.21 \mathrm{mmol})$ was added and the reaction was stirred for 2 h . Purification over $\mathrm{SiO}_{2}(0-60 \%$ ethyl acetate / petroleum ether) provided 20 ($278 \mathrm{mg}, 100 \%$) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 6.91$ (appd, $2 \mathrm{H}, J=9.2$), 6.83 (appd, $2 \mathrm{H}, J=9.2$), 6.02 (dt, $1 \mathrm{H}, J=1.6,10.4$), 5.95 (ddd, $1 \mathrm{H}, J=2.0,3.6,10.0$), $5.23(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{dq}, 1 \mathrm{H}$, $J=1.6,8.8), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{bs}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.4,151.3,131.9,128.7,128.3,128.2,126.2,122.2,117.2,114.8,86.4,85.1$, $72.7,69.2,64.6,62.2,55.7 \mathrm{ppm}$; IR (neat): 3464, 2935, 1507, 1219, 1087, 1037, 827, 761, $691 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{4}$ 337.1440, found 337.1453. $[\alpha]_{\mathrm{D}}{ }^{23}=+6^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Gold(III)- catalyzed ring contraction of \boldsymbol{C}-glycosides

Procedure: $20(7 \mathrm{mg}, 0.02 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ under argon. $\mathrm{AuCl}_{3}(0.6 \mathrm{mg}$, 0.002 mmol) was added. After 12 hours the reaction was concentrated onto SiO_{2} and chromatographed over SiO_{2} ($0-80 \%$ ethyl acetate /pet. ether) to provide diastereomers $\mathbf{2 1}$ (major), $\mathbf{2 2}$ (minor).

Ene-yne 21: $3.7 \mathrm{mg}(53 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.312(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{~d}, 2 \mathrm{H}, J=8.8), 6.86(\mathrm{~d}, 2 \mathrm{H}), J=6.8), 6.23$ (dd, $1 \mathrm{H}, J=6.0$, 15.6), 6.05 (dd, $1 \mathrm{H}, J=1.6,15.6$), 4.57 (td, $1 \mathrm{H}, J=1.6,6.0$), 4.51 (q, 1H, $J=5.2$), 4.34 (t, 1H, $J=5.6$), 4.23 (dd, 1H, $J=5.2,9.6$), 3.92 (dd, $1 \mathrm{H}, J=4.4,9.2$), 3.78 (s, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.1,151.1,139.7,131.5,128.4,128.3$, $123.0,117.4,114.9,112.1,90.9,87.0,83.0,80.5,72.9,70.2,55.7 \mathrm{ppm}$; IR (neat):

3441, 2948, 1499, 1445, 1227, $1037 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}$ 337.1440, found 337.1410. $[\alpha]_{\mathrm{D}}^{23}=-118^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Ene-yne 22: $0.5 \mathrm{mg}(7 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.31$ (m, 3H), 6.95 (d, 2H, J=9.2), 6.84 (d, 2H, $J=9.2$), 6.35 (dd, 1H, $J=6.4,16.0$), 5.99 (dd, 1H, J=1.2, 15.6), $4.67(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{dd}, 1 \mathrm{H}, J=5.2,9.2), 3.99$ (dd, $1 \mathrm{H}, J=4.4,10.0$), 3.78 ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9$, $152.0,138.5,131.5,128.3,128.2,123.2,117.4,114.8,112.7,90.6,87.3,81.0,79.8$, 72.6, 71.7, 55.7 ppm .

Procedure: 23 ($86 \mathrm{mg}, 0.3 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ under argon. $\mathrm{AuCl}_{3}(20 \mathrm{mg}$, 0.08 mmol) was added. After 8 hours the reaction was concentrated onto SiO_{2} and chromatographed over SiO_{2} ($0-80 \%$ ethyl acetate /pet. ether) to provide diastereomers $\mathbf{2 4}$ (major), $\mathbf{2 5}$ (minor).

Tetrahydrofuran 24: $39 \mathrm{mg}(45 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32$ (m, 5 H), 6.93 (d, 2H, $J=9.6$), 6.83 (d, 2H, $J=9.2$), 6.71 (d, 1H, $J=16.0$), $6.219 \mathrm{dd}, 1 \mathrm{H}$, $J=7.2,16.0), 4.64(\mathrm{t}, 1 \mathrm{H}, J=6.0), 4.53$ (appd, $1 \mathrm{H}, J=4.89), 4.38(\mathrm{t}, 1 \mathrm{H}, J=5.2)$, 4.27 (dd, 1H, $J=5.6,10.0$), 3.93 (dd, 1H, $J=4.4,9.6$), 3.77 (s, 3H), 2.59 (s, -OH) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.0,151.3,132.7,128.6,127.9,126.6$, $126.5,117.4,114.8,83.2,81.2,72.8,70.3,55.7 \mathrm{ppm}$; IR (neat): 3351, 2959, 1643, 1499, 1262, 1219, $1033 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na} 335.1259$, found 335.1243. $[\alpha]_{D}^{23}=+60^{\circ}\left(c=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Tetrahydrofuran 25: $4 \mathrm{mg}(5 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.28(\mathrm{~m}, 5 \mathrm{H})$, 6.92 (d, 2H, $J=9.2$), 6.79 (d, 2H, $J=9.2$), 6.64 (d, 1H, $J=15.6$), 6.35 (dd, 1H, $J=7.2$, 16.4), $4.69(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{dd}, 1 \mathrm{H}, J=6.0,9.2), 3.99(\mathrm{dd}, 1 \mathrm{H}, J=4.8$, 9.2), 3.76 (s, 3H), 2.63 (d, 1H, $J=7.2(-\mathrm{OH})) 155.0,151.3,136.3,132.7,128.6$, $127.9,126.6,126.5,117.5,114.8,83.2,81.2,72.8,70.3,55.7 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 135.6,132.7,126.0,122.7,115.9,93.8,92.5,67.0,66.1,61.4$, 60.9, 54.1, 49.3, 25.7 24.3, 18.0, $-4.6,-4.8 \mathrm{ppm}$; IR (neat): $3436,1506,1234,1041,753 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na} 335.1259$, found 335.1229. $[\alpha]_{\mathrm{D}}{ }^{23}=-78^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Procedure: SI-45 ($25 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ under argon. $\mathrm{AuCl}_{3}(6 \mathrm{mg}$, 0.02 mmol) was added. After 6 hours the reaction was concentrated onto SiO_{2} and chromatographed over SiO_{2} ($0-80 \%$ ethyl acetate /pet. ether) to provide diastereomers $\mathbf{2 6}$ (major), $\mathbf{2 6}$ (minor) and the epimer of SI-45.

Tetrahydrofuran 26 (major): $15.9 \mathrm{mg}(64 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.95(\mathrm{~d}, 2 \mathrm{H}, J=9.2), 7.3(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{~d}, 2 \mathrm{H}, J=9.2), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=15.6)$, 6.20 (dd, $1 \mathrm{H}, J=6.8,16.0$), 4.62 (m, 2H), 4.33 (dd, $1 \mathrm{H}, J=5.2,9.6$), 3.93 (dd, 1 H , $J=4.4,9.2$), $2.56(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.5,160.9$, $134.5,133.8,131.9,131.6,130.8,128.8,127.8,126.6,115.4,81.6,81.2,77.9$, $72.8,70.3,26.4 \mathrm{ppm}$; IR (neat): $3748,3580,2920,1736,1647,1565,1409 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Cl} 359.1050$, found 359.1052. $[\alpha]_{\mathrm{D}}{ }^{23}=+52^{\circ}(\mathrm{c}=1.0$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Tetrahydrofuran 26 (minor): $2 \mathrm{mg}(8 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.91 (d, 2H, $J=8.4$), 7.3 (m, 4H), 7.01 (d, 2H, $J=8.0$), 6.56 (d, 1H, $J=16.0$), 6.23 (dd, 1H, $J=7.2,16.0), 4.92(\mathrm{t}, 1 \mathrm{H}, J=4.8), 4.76(\mathrm{t}, 1 \mathrm{H}, J=7.2), 4.6(\mathrm{t}, 1 \mathrm{H}, J=4.4)$, 4.12 (dd, $1 \mathrm{H}, J=6.0,10.0$), 4.02 (dd, 1H, $J=4.8,10.0$), 2.56 (s, 3H), 2.38 (d, 1H, $J=6.8(-\mathrm{OH})) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 186.7,174.2,152.7,151.6$, $140.3,134.9,132.8,130.9,128.9,128.0,152.5,115.7,104.2,80.7,79.5,77.9$, $77.6,72.3,72.0,26.4 \mathrm{ppm}$; IR (neat): $3401,2924,1673,1603,1502,1405,1254$, $1095 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+52^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Tetrahydropyran 26 (epimer of 45): $6.5 \mathrm{mg}(26 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.97(\mathrm{~d}, 2 \mathrm{H}, J=6.8), 7.31(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~d}, 2 \mathrm{H}, J=7.2), 6.04(\mathrm{dt}, \mathrm{H}$, $J=2.4,10.0), 5.93$ (dt, 1H, $J=1.6,10.4), 5.08$ (dt, 1H, $J=1.6,8.4), 3.93$ (m, 2H), $3.79(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 196.7,161.2,138.3,134.3,132.3,130.9,130.9,130.8,128.9,128.7$, $124.9,115.1,77.6,68.1,62.2,26.4 \mathrm{ppm}$; HRMS (Tof) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Cl} 359.1050$, found 359.1000. IR (neat): 3374, 2916, 1669, 1600, 1499, 1351, 1243, 1165, $1091 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+140^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Procedure: SI-47 ($42 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ under argon. $\mathrm{AuCl}_{3}(5 \mathrm{mg}$, 0.02 mmol) was added. After 2 hours the reaction was concentrated onto SiO_{2} and chromatographed over SiO_{2} ($0-80 \%$ ethyl acetate /pet. ether) to provide diastereomers 27 (major), 27 (minor).

Tetrahydrofuran 27 (major): $\quad 14.5 \mathrm{mg}(35 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.17 (d, 2H, $J=8.0$), 7.00 (s, 2H), 6.9 (m, 3H), 6.65 (d, 1H, $J=15.6$), 6.19 (dd, $1 \mathrm{H}, J=6.4,15.6), 4.64(\mathrm{t}, 1 \mathrm{H}, J=5.6), 4.55(\mathrm{t}, 1 \mathrm{H}, J=4.8), 4.43(\mathrm{t}, 1 \mathrm{H}, J=5.2)$, 4.28 (dd, 1H, $J=5.6,9.6$), 3.92 (dd, 1H, $J=4.8,9.6$)2.94 (m, 1H), 2.30 (s, 6H), $2.05(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.3,140.4,138.0,136.2,132.9,129.7,128.3,126.0,124.5$, $115.8,82.2,81.4,72.8,70.3,45.1,34.7,25.4,21.2 \mathrm{ppm}$; IR (neat): 3413, 2955, $2850,1615,1507,144,1238,1099 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=-75^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Tetrahydrofuran 27 (minor): 5.6 mg (13\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13(\mathrm{~d}, 2 \mathrm{H}, J=8.0), 6.91(\mathrm{~m}, 5 \mathrm{H}), 6.56(\mathrm{~d}, 1 \mathrm{H}, J=15.6), 6.29(\mathrm{dd}, 1 \mathrm{H}$, $J=7.6,16.0), 4.76$ (t, 1H, $J=5.2$), 4.69 (m, 1H), $4.60(\mathrm{t}, 1 \mathrm{H}, J=4.8), 4.08$ (dd, $1 \mathrm{H}, J=6.0,9.6), 3.99(\mathrm{dd}, 1 \mathrm{H}, J=4.8,9.2), 2.92(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.02$ $(\mathrm{m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 139.9,137.9,133.6,129.5,128.1,124.8,124.6,116.0,81.3,80.3$, 77.9, 72.5, 72., 49.3, 45.1, 34.7, 25.4, 21.22 ppm ; IR (neat3371, 2959, 2862, $1720,1603,1507,1238,1102,1037 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=+21^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Procedure: SI-48 (71 mg, 0.2 mmol$)$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ under argon. $\mathrm{AuCl}_{3}(18 \mathrm{mg}$, 0.06 mmol) was added. After 5 hours the reaction was concentrated onto SiO_{2} and chromatographed over SiO_{2} ($0-80 \%$ ethyl acetate /pet. ether) to provide diastereomers $\mathbf{2 8}$ (major), $\mathbf{2 8}$ (minor) and the epimer of SI-48.

Ene-yne 28 (major): $37 \mathrm{mg}(52 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43$ (m, 2H), 7.33 (m, 5H), 6.91 (dd, 2H, $J=2.4,7.2$), 6.25 (dd, 1H, $J=5.6,15.6$), 6.06 (dd, 1H, $J=1.2,16.0), 4.58(\mathrm{dt}, 1 \mathrm{H}, J=1.2,6.0), 4.54(\mathrm{q}, 1 \mathrm{H}, J=4.8)$, 4.42 (t, 1H, $J=5.6$), 4.25 (dd, 1H, $J=5.6,10.0$), 3.93 (dd, $1 \mathrm{H}, J=4.8,9.6) 1.3$ (s, 9H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.8,145.3,139.6,131.5$, $128.3,126.6,126.4,123.0,115.4,112.2,90.9,87.0,81.9,80.5,72.9,70.2$, 34.2, 31.4 ppm; IR (neat): 3440, 3045, 2963, 2866, 1600, 1511, 1363, 1227, $1071 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-100^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Ene-yne 28 (minor): $14 \mathrm{mg}(20 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42$ (m, 2H0, 7.31 (m, 5H), 6.94 (d, 2H, $J=8.4$), 6.35 (dd, 1H, $J=6.8,16.0$), 6.00 (dd, $1 \mathrm{H}, J=1.2,15.6), 4.77(\mathrm{t}, 1 \mathrm{H}, J=5.2), 4.67(\mathrm{t}, 1 \mathrm{H}, J=6.4), 4.55(\mathrm{~m}, 1 \mathrm{H})$, 4.07 (dd, 1H, $J=5.6,10.0$), 4.00 (dd, $1 \mathrm{H}, J=3.6,9.6$), 2.52 (d, 1H, $J=6.0$ $(-\mathrm{OH}), 1.30(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 155.6, 145.2, $138.4,131.5,128.7,128.4,128.3,128.2,126.5,115.6,112.7,90.6,87.4,80.1$, $79.8,72.6,71.7,34.2,31.4 \mathrm{ppm}$; IR (neat): 3440, 2963, 1685, 1600, 1503, $1359,1255,1184 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+110^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Si-47-epimer

Tetrahydropyran 28 (epimer of SI-47): 9 mg (13\%). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{~d}, 2 \mathrm{H}, J=8.8), 6.04$ (d, $1 \mathrm{H}, J=10.0), 5.95(\mathrm{dq}, 1 \mathrm{H}, J=1.6,3.2,10.0), 5.23(\mathrm{~m}, 1 \mathrm{H}), 4.88$ (dd, $1 \mathrm{H}, J=2.0,9.2), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.9(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}$, $9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,144.2,131.9,128.7$, $128.3,128.3,126.5,126.2,122.2,115.2,86.4,85.1,72.7,68.2,64.6$, $62.3,34.1,61.5 \mathrm{ppm}$; IR (neat): $3378,2959,1705,1611,1506,1371$, 1254, 1180, $1067 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+19^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Procedure: SI-49 ($46 \mathrm{mg}, 0.12 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ under argon. $\mathrm{AuCl}_{3}(6 \mathrm{mg}$, 0.02 mmol) was added. After 2 hours the reaction was concentrated onto SiO_{2} and chromatographed over SiO_{2} ($0-80 \%$ ethyl acetate /pet. ether) to provide diastereomers 29(major), 29 (minor).

Ene-yne 29 (major): 18.7 mg (42\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.39 (m, 1H), 6.87 (m, 6H), 6.27 (dd, 1H, J=6.0, 15.6), 6.06 (dd, 1H, $J=1.6,16.0), 4.58$ (t, 1H, $J=5.2$), 4.49 (m, 1H0, 4.33 (t, 1H, J=5.2), 4.23 (dd, 1H, J=4.8, 9.2), 3.92 (dd, 1H, $J=4.4,9.2$), 3.78 (s, 3H0, 2.52 (d, 1H, $J=5.6(-\mathrm{OH})) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.0(\mathrm{t}, 1 \mathrm{C}, J=38.0)$, 161.6 (t, 1C, $J=50.0$), 155.1, 151.1, 140.6, 134.2 (dd, 1C, $J=11.6,49.6$), 117.4, 114.9. 111.7 (t, 1C, $J=14.4$), 107.9, 104.3 (t, 1C, $J=102.8$), 91.8, 83.1, 82.9, 80.4, 77.9, 72.9, 70.3, 55.7 ppm; HRMS (Tof) [M+Na] : calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{NaF}_{2}$ 395.1071, found 395.1060. IR (neat): 3436, 2932, 1619, 1514, 1464, 1425, 1266, 1227, 1141, 1095, $959 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-112^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Ene-yne 29 (minor): 4.3 mg (9\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44$ (m, 1H), $6.94(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~m}, 4 \mathrm{H}), 6.38$ (dd, 1H, $J=6.0,15.6$), 6.00 (dd, $1 \mathrm{H}, J=1.2,15.6$), 4.67 (m, 2H), 4.55 (m, 1H), 4.06 (dd, 1H, J=5.2, 10.0), 3.99 (dd, 1H, $J=4.4,9.6$), 3.77 (s, 3H), 2.53 (d, 1H, $J=6.0(-\mathrm{OH})) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,151.9,139.5,134.2,117.4,114.8$, 112.1, 111.6, 111.4, 104.2, 81.0, 79.6, 77.7, 726, 71.6, 55.7 ppm ; IR (neat): 3425, 2959, 2920, 1716, 1615, 1506, 1429, 1262, 1223, 1099, $1040 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{NaF}_{2}$ 395.1071, found 395.1067. $[\alpha]_{\mathrm{D}}{ }^{23}=$ $+121.8^{\circ}$ ($\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Procedure: SI-50 ($40 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ under argon. $\mathrm{AuCl}_{3}(6 \mathrm{mg}$, 0.02 mmol) was added. After 15 minutes the reaction was concentrated onto SiO_{2} and chromatographed over SiO_{2} ($0-80 \%$ ethyl acetate /pet. ether) to provide diastereomers $\mathbf{3 0}$ (major), $\mathbf{3 0}$ (minor).

Ene-yne 30 (major): 22 mg (56\%). Procedure ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.35$ (m, 4H), 7.13 (d, 1H, $J=9.2$), 6.87 (d, 1H, $J=8.8$), 6.22 (dd, 1H, $J=6.4,15.6$), 6.05 (dd, 1H, $J=1.6,15.6$), 4.57 (dt, 1H, $J=1.2$, 6.0), $4.51(\mathrm{~m}, 1 \mathrm{H}), 4.4(\mathrm{t}, 1 \mathrm{H}, J=4.8), 4.24$ (dd, $1 \mathrm{H}, J=5.6,10.0$), 3.91 (dd, $1 \mathrm{H}, J=4.8,9.6$), 2.31 (s, 3H), 1.31 (s, 9H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,151.6,139.1,1319,131.3,130.3,125.3,119.9$, 115.9, 112.4, 91.1, 86.4, 82.0, 80.6, 72.9, 70.3, 34.8, 31.1, 20.5 ppm; IR (neat): 3347, 2951, 2916, 2854, 1662, 1409, 1266, $1095 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-6.0^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Ene-yne 30 (minor): 6 mg (14\%). Procedure ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.35(\mathrm{~m}, 4), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=8.4), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=2.4,6.8), 6.31$ (dd, 1H, $J=6.4,16.0$), 5.98 (dd, 1H, $J=1.2,16.0$), 4.74 (t, 1H, $J=5.20$, 4.67 (t, 1H, $J=5.6$), 4.55 (m, 1H), 4.06 (dd, 1H, $J=5.2,9.6$), 3.99 (dd, $1 \mathrm{H}, J=4.4,9.6), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 155.8,151.5,137.9,131.7,131.3,130.2,125.3,120.2,116.0$, $112.9,90.8,86.7,80.1,79.8,72.5,71.7,34.8,31.1,20.5 \mathrm{ppm}$; IR (neat): $3445,2955,1616,1502,1460,1359,1234,1091,955 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-102^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Aryl ether 31: Carbonate 16 was dissolved in MeOH (1.5 mL) and MP-CO ${ }_{3}(2.98 \mathrm{mmol} / \mathrm{g}$ loading, $17 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added. After shaking for 15 h , the reaction was concentrated and purified by SiO_{2} chromatography ($0-80 \%$ ethyl acetate / hexanes) to provide 31 (70 mg , 69%) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99$ (d, 2 H , $J=8.4$), 7.56 (m, 6H), 7.42 (t, 2H, $J=7.2$), 7.32 (t, 1H, $J=7.2$), 7.03 (d, 2H, $J=8.8), 6.22(\mathrm{~m}, 2 \mathrm{H}), 5.42\left(\mathrm{~s}, 1 \mathrm{H} 0,4.99(\mathrm{~d}, 1 \mathrm{H}, J=8.4), 3.75(\mathrm{~m}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\right.$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.7,156.8,144.2,104.6,136.8,134.6,129.3,128.7,128.6,128.4,127.9$, 127.0, 126.8, 126.7, 116.0, 73.8, 71.3, 68.2, 62.1, 26.7 ppm; IR (neat): 3449, 2897, 1678, 1608, 1515, 1487, 1405, 1262, $1087 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{4}$ 401.1753, found 401.1700. $[\alpha]_{\mathrm{D}}{ }^{23}=+105^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of Galactal-Derived tetrahydrofurans 40 and 41:

Alkynyl C-Galactoside SI-51: Tri-O-Acetyl-D-Galactal (36) and 1-phenyl-2-trimethylsilyl- acetylene were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was cooled to $-25^{\circ} \mathrm{C}$ and $\mathrm{Sc}(\mathrm{OTf})_{3}$ was added. After 3.5 h , the reaction was quenched with saturated sodium bicarbonate (at $-25^{\circ} \mathrm{C}$), diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then washed with sodium bicarbonate (1X) and brine (1X). The organic layer was dried, filtered, concentrated onto silica, and purified over SiO_{2} ($0-40 \%$ ethyl acetate/petroleum ether) yielding SI-51 as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 6.15(\mathrm{dd}, 1 \mathrm{H}, J=3.6,10.4), 6.05$ (ddd, $1 \mathrm{H}, J=2.0,4.8,6.8$), 5.27 (dd, 1H, $J=2.0,4.0$), $5.12(\mathrm{dd}, 1 \mathrm{H}, J=2.4,5.2), 4.45(\mathrm{td}, 1 \mathrm{H}, J=2.0,4.8$, 7.2), 4.32 (dd, $1 \mathrm{H}, J=5.6,11.6$), 4.24 (dd, $1 \mathrm{H}, J=7.2,11.2$), $2.10(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): $\delta 171.7,170.4,132.0,131.8,128.8,128.3,122.4,122.1,86.9,84.1,69.7$, 64.4, 64.4, 63.3, 62.8, 20.9, 20.8 ppm ; IR (neat): 3739, 1744, 1367, 1231, 1076, 1045, $761 \mathrm{~cm}^{-1}$; HRMS (Tof) $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}$ 337.1052, found 337.0977. $[\alpha]_{\mathrm{D}}{ }^{23}=-396.9^{\circ}$ (c=1.0 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Acetonide 38: Diacetate SI-51 (600 mg, 1.91 mmol) was dissolved in MeOH (8 $\mathrm{mL}) . \quad \mathrm{K}_{2} \mathrm{CO}_{3}(132 \mathrm{mg}, 9.54 \mathrm{mmol})$ was added, the reaction was stirred for 40 min at room temperature and was concentrated onto silica and purified over SiO_{2} ($0-100 \%$ ethyl acetate/ petroleum ether) to provide the intermediate diol 37 ($409 \mathrm{mg}, 1.78 \mathrm{mmol}$, 93%) as white flakes. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 3 \mathrm{H}), 6.09(\mathrm{~m}, 1 \mathrm{H})$, 6.04 (dd, 1H, $J=2.0,5.6$), 5.23 (dd, 1H, $J=2.0,3.6$), $4.15(\mathrm{~m} \mathrm{1H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H})$, 2.51(bs, 1H), $2.36(\mathrm{bs}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): $\delta 131.8,130.0,128.7,128.3,126.6$, 122.1, 86.6, 84.6, 73.4,, 64.5, 62.8 ppm ; IR (neat): 3305, 1604, 1317, 1115, 1080, $765 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{23}=-52.6^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
Diol 37 ($100 \mathrm{mg}, 0.43 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. 10-Camphorsulfonic acid (7 mg , 0.03 mmol) and benzaldehyde dimethyl acetal ($0.11 \mathrm{~mL}, 0.75 \mathrm{mmol}$) were added, the reaction was stirred for 12 h then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine (1X), and back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined, dried, filtered, concentrated onto SiO_{2}, and purified over SiO_{2} ($0-40 \%$ ethyl acetate/petroleum ether) to provide $38\left(68 \mathrm{mg}, 0.21 \mathrm{mmol}, 49 \%\right.$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (400MHz; CDCl_{3}): $\delta 7.55$ (m, 2H), 7.45 (m,2H), 7.34 (m, 6H), 6.17 (dd, 1H, J = 3.6, 10.4), 6.06 (ddd, 1H, $J=2.0,5.6,10.0$), $5.62(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=12.8), 4.28$ (dd, 1H, $J=$ 2.8, 17.2), 4.27 (s, 1H), 3.97 (bs, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): $\delta 137.8,131.8,128.8$, 128.7, 128.3, 128.1, 126.2, 123.2, 122.2, 100.7, $86.5,85.1,71.2,67.9,64.6 \mathrm{ppm}$; IR (neat): 3033, 2909, 1689, 1592, 1328, 750, $694 \mathrm{~cm}^{-1} ; \quad[\alpha]_{\mathrm{D}}{ }^{23}=-365.8^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Alcohol 39: Acetonide 38 ($70 \mathrm{mg}, 0.22 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL)
and cooled to $0^{\circ} \mathrm{C}$. A 1 M solution of Diisobutylaluminum hydride in hexanes ($1.76 \mathrm{~mL}, 1.76 \mathrm{mmol}$) was added and stirred for 2 hours. The reaction was quenched with saturated ammonium chloride and saturated sodium tartrate, stirred for one hour, then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sodium bicarbonate. The organic layer was dried, filtered, concentrated onto silica, and purified over SiO_{2} ($0-40 \%$ ethyl acetate/petroleum ether) to provide $39\left(35 \mathrm{mg}, 0.11 \mathrm{mmol}\right.$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (400MHz; CDCl_{3}): $\delta 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 8 \mathrm{H}), 6.14(\mathrm{~m}, 2 \mathrm{H}), \quad 5.30(\mathrm{~d}, 1 \mathrm{H}, J=1.2), 4.71(\mathrm{~d}, 1 \mathrm{H}, J$ $=11.6), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=12.0), 4.19(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{bs}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): $\delta 138.0,131.8,131.3,128.6,128.5,128.3,128.0,127.8,123.6,122.2,86.5$, 84.9, 73.5, 70.7, 68.2, 64.4, 62.7 ppm; IR (neat): 3939, 3052, 2916, 1631, 1588, 1324, 1087, 757, 699 $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-265.5^{\circ}\left(\mathrm{c}=1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Furan 40,41: Alcohol 39 ($72 \mathrm{mg}, 0.22 \mathrm{mmol}$) and gold (III) chloride ($27 \mathrm{mg}, 0.09 \mathrm{mmol}$) were added to a round bottom flask, and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After 4 h , the reaction was concentrated onto silica gel and purified over SiO_{2} ($0-40 \%$ ethyl acetate/ petroleum ether) to provide 40 (26.4 mg , 37%) as an oil and 41 ($10.6 \mathrm{mg}, 15 \%$) as a film.
 (m, 3H), 6.37 (dd, 1H, $J=6.0,15.6$), 6.08 (dd, $1 \mathrm{H}, J=1.6,15.6$), 4.33 (m, 1H), 4.21 (s, 2H), 3.87 (bs, 1 H), 3.75 (dd, $1 \mathrm{H}, J=4.4,10.0$), 3.58 (dd, $1 \mathrm{H}, J=2.0$, 10.0), 3.54 (dd, $1 \mathrm{H}, J=1.6,3.6$) ppm; ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{M} ; \mathrm{CDCl}_{3}$): $\delta 140.9,137.5,131.5,128.6$, 128.3, 128.0, 127.7, 123.1, 111.2, 90.7, 89.6, 87.1, 83.9, 76.4, 74.2, 72.2 ppm ; IR (neat): 3424, $3032,3870,1094,959,753,694 \mathrm{~cm}^{-1} ; \quad[\alpha]_{\mathrm{D}}{ }^{23}=+80.0^{\circ}(\mathrm{c}=13.4 \mathrm{mg} / \mathrm{mL})$
 8138.3, 137.7, 131.6, 128.5, 128.3, 128.2, 127.9, 127.7, 123.3, 112.7, 90.3, 87.5, 85.7, 80.7, 75.7, $73.6,72.5 \mathrm{ppm}$; IR (neat): 3408, 3032, 2925, 1091, 962, 755, $693 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-18.8^{0} \quad(\mathrm{c}=1.0$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)

Examples of Selected Spectral Data

σ

Figure 1. Time dependent ${ }^{1} \mathrm{H}$ NMR experiments of AuCl_{3}-mediated formation of tetrahydrofurans 24 and 25. ${ }^{1} \mathrm{H}$ NMR's taken in $\mathrm{C}_{6} \mathrm{D}_{6}$ of crude SiO_{2}-filtered reaction mixtures.

Figure 2. ${ }^{1} \mathrm{H}$ NMR experiments of epimeric 23 produced during the ring contraction reaction. ${ }^{1} \mathrm{H}$ NMR taken in $\mathrm{C}_{6} \mathrm{D}_{6}$.

X-ray Crystal Structure of Compound SI-15:

Crystals of compound SI-15 suitable for x-ray analysis were obtained by slow evaporation from hexanes. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC \# 260139). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk.

Table 1. Crystal data and structure refinement for porco29.

Identification code	porco29	
Empirical formula	C23 $\mathrm{H} 23 \mathrm{Br} \mathrm{O5}$	
Formula weight	459.32	
Temperature	$173(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 2(1)$	$\alpha=90^{\circ}$.
Unit cell dimensions	$\mathrm{a}=10.0462(7) \AA$	$\beta=100.504(2)^{\circ}$.
	$\mathrm{b}=5.3870(4) \AA$	
	$\mathrm{c}=19.6191(14) \AA$	
Volume	$1043.97(13) \AA^{3}$	
Z	2	
Density (calculated)	$1.461 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$2.000 \mathrm{~mm}{ }^{-1}$	
F(000)	472	

Crystal size	$1.00 \times 0.30 \times 0.15 \mathrm{~mm}^{3}$
Theta range for data collection	2.48 to 30.51°.
Index ranges	$-14<=\mathrm{h}<=14,-6<=\mathrm{k}<=7,-24<=\mathrm{l}<=28$
Reflections collected	8041
Independent reflections	$5322[\mathrm{R}(\mathrm{int})=0.0252]$
Completeness to theta = 30.51	97.8%
Absorption correction	SADABS
Max. and min. transmission	0.7535 and 0.2396
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$5322 / 1 / 343$
Goodness-of-fit on F^{2}	0.964
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0384, \mathrm{wR2}=0.0819$
R indices (all data)	$\mathrm{R} 1=0.0539, \mathrm{wR} 2=0.0869$
Absolute structure parameter	$0.055(10)$
Largest diff. peak and hole	0.567 and -0.503 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for porco29. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Br}(1)$	$944(1)$	$2677(1)$	$4190(1)$	$41(1)$
$\mathrm{O}(1)$	$-5019(2)$	$14447(4)$	$2779(1)$	$27(1)$
$\mathrm{O}(2)$	$-8105(2)$	$11847(3)$	$1833(1)$	$30(1)$
$\mathrm{O}(3)$	$-12856(2)$	$12867(6)$	$-91(1)$	$36(1)$
$\mathrm{O}(4)$	$-4033(2)$	$9901(4)$	$2407(1)$	$30(1)$
$\mathrm{O}(5)$	$-3783(2)$	$7402(5)$	$1524(1)$	$33(1)$
$\mathrm{C}(1)$	$-5547(3)$	$15648(6)$	$3321(1)$	$29(1)$
$\mathrm{C}(2)$	$-6994(3)$	$16409(6)$	$3081(2)$	$31(1)$
$\mathrm{C}(3)$	$-7704(3)$	$15654(5)$	$2481(2)$	$29(1)$
$\mathrm{C}(4)$	$-7166(3)$	$13852(5)$	$2019(1)$	$26(1)$
$\mathrm{C}(5)$	$-5894(2)$	$12602(7)$	$2422(1)$	$25(1)$
$\mathrm{C}(6)$	$-5117(3)$	$11212(6)$	$1960(2)$	$30(1)$
$\mathrm{C}(7)$	$-5341(3)$	$14054(7)$	$3983(2)$	$34(1)$
$\mathrm{C}(8)$	$-3884(3)$	$13459(10)$	$4251(2)$	$64(2)$
$\mathrm{C}(9)$	$-3230(5)$	$13519(10)$	$4787(3)$	$89(2)$
			S 96	

C(10)	$-9526(3)$	$14298(5)$	$912(1)$	$26(1)$
C(11)	$-10738(3)$	$14430(6)$	$440(1)$	$27(1)$
C(12)	$-11707(2)$	$12573(8)$	$407(1)$	$25(1)$
C(13)	$-11482(3)$	$10585(5)$	$859(1)$	$25(1)$
C(14)	$-10262(3)$	$10435(5)$	$1333(1)$	$24(1)$
C(15)	$-9288(2)$	$12262(5)$	$1353(1)$	$23(1)$
C(16)	$-13857(3)$	$10966(8)$	$-119(2)$	$41(1)$
$C(17)$	$-3451(2)$	$8036(7)$	$2117(1)$	$27(1)$
$C(18)$	$-2340(2)$	$6859(5)$	$2619(1)$	$24(1)$
$C(19)$	$-1939(2)$	$7774(9)$	$3294(1)$	$31(1)$
$C(20)$	$-944(3)$	$6523(6)$	$3761(1)$	$32(1)$
$C(21)$	$-371(2)$	$4424(6)$	$3545(1)$	$28(1)$
$C(22)$	$-721(3)$	$3513(6)$	$2878(2)$	$31(1)$
$C(23)$	$-1715(3)$	$4776(6)$	$2413(1)$	$29(1)$

Table 3. Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for porco29.

$\operatorname{Br}(1)-\mathrm{C}(21)$	1.903(3)
$\mathrm{O}(1)-\mathrm{C}(5)$	1.423(4)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.427(3)
$\mathrm{O}(2)-\mathrm{C}(15)$	1.393(3)
$\mathrm{O}(2)-\mathrm{C}(4)$	1.437(3)
$\mathrm{O}(3)-\mathrm{C}(12)$	1.379(3)
$\mathrm{O}(3)-\mathrm{C}(16)$	1.429(4)
$\mathrm{O}(4)-\mathrm{C}(17)$	1.341(4)
$\mathrm{O}(4)-\mathrm{C}(6)$	1.451(3)
$\mathrm{O}(5)-\mathrm{C}(17)$	1.200(3)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.501(4)
$\mathrm{C}(1)-\mathrm{C}(7)$	1.540(4)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.323(4)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.495(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	1.531(3)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.501(4)
C(7)-C(8)	1.497(4)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.134(6)
C(10)-C(15)	1.391(4)
C(10)-C(11)	1.391(3)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.389(5)
C(12)-C(13)	1.382(5)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.399(3)
C(14)-C(15)	1.383(4)
C(17)-C(18)	1.489(3)
C(18)-C(23)	1.381(4)
C(18)-C(19)	$1.402(4)$
$\mathrm{C}(19)-\mathrm{C}(20)$	1.399(4)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.371(4)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.382(4)
C(22)-C(23)	1.400(4)
$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(1)$	113.72(19)
$\mathrm{C}(15)-\mathrm{O}(2)-\mathrm{C}(4)$	119.4(2)

$\mathrm{C}(12)-\mathrm{O}(3)-\mathrm{C}(16)$	116.0(3)
$\mathrm{C}(17)-\mathrm{O}(4)-\mathrm{C}(6)$	116.4(2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	111.2(2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)$	111.4(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	113.0(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	122.0(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	122.8(3)
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	110.4(2)
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	104.3(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	109.4(2)
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	107.6(2)
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	109.2(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	112.60(19)
$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(5)$	107.0(2)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(1)$	112.8(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	133.1(5)
C(15)-C(10)-C(11)	119.0(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	121.0(3)
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(13)$	124.1(3)
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(11)$	116.0(3)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	119.8(2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	119.4(3)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	120.5(2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$	120.2(2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(2)$	114.7(2)
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{O}(2)$	125.1(2)
$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{O}(4)$	124.0(3)
$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{C}(18)$	124.3(3)
$\mathrm{O}(4)-\mathrm{C}(17)-\mathrm{C}(18)$	111.7(2)
C(23)-C(18)-C(19)	119.7(3)
C(23)-C(18)-C(17)	118.5(2)
C(19)-C(18)-C(17)	121.8(3)
C(20)-C(19)-C(18)	119.8(3)
C(21)-C(20)-C(19)	119.1(3)
C(20)-C(21)-C(22)	122.5(3)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{Br}(1)$	118.8(2)

$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{Br}(1)$	$118.7(2)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$118.2(3)$
$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	$120.8(3)$

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($\AA^{2} \mathrm{x} 10^{3}$)for porco29. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\operatorname{Br}(1)$	33(1)	52(1)	36(1)	10(1)	-4(1)	4(1)
$\mathrm{O}(1)$	22(1)	31(1)	27(1)	-1(1)	5(1)	-7(1)
$\mathrm{O}(2)$	26(1)	24(1)	36(1)	7(1)	-7(1)	-2(1)
$\mathrm{O}(3)$	29(1)	42(1)	32(1)	8(1)	-7(1)	$0(1)$
$\mathrm{O}(4)$	25(1)	33(1)	29(1)	-3(1)	-2(1)	4(1)
O(5)	29(1)	46(1)	23(1)	-3(1)	2(1)	3(1)
C(1)	27(1)	30(2)	28(1)	-2(1)	1(1)	-2(1)
C(2)	32(1)	29(2)	32(1)	3(1)	6(1)	5(1)
C(3)	29(1)	24(1)	33(1)	7(1)	2(1)	2(1)
C(4)	23(1)	25(1)	27(1)	3(1)	-1(1)	-2(1)
C(5)	22(1)	25(1)	25(1)	3(2)	1(1)	-1(1)
C(6)	27(1)	35(2)	26(1)	$0(1)$	-3(1)	4(1)
C(7)	30(1)	43(2)	29(2)	6(1)	6(1)	$0(1)$
C(8)	39(2)	109(5)	43(2)	32(2)	7(1)	12(2)
C(9)	51(2)	91(4)	115(4)	38(3)	-13(3)	-15(2)
C(10)	28(1)	21(1)	27(1)	1(1)	2(1)	-2(1)
C(11)	33(1)	24(2)	23(1)	5(1)	$0(1)$	5(1)
C(12)	25(1)	28(1)	22(1)	-5(2)	1(1)	2(2)
C(13)	24(1)	27(2)	22(1)	-2(1)	3(1)	-2(1)
C(14)	26(1)	22(1)	24(1)	3(1)	3(1)	4(1)
C(15)	22(1)	23(2)	22(1)	1(1)	-1(1)	4(1)
C(16)	30(1)	51(2)	36(2)	4(2)	-5(1)	-2(1)
C(17)	20(1)	34(2)	27(1)	$0(1)$	9(1)	-6(1)
C(18)	19(1)	29(2)	24(1)	3(1)	5(1)	-4(1)
C(19)	29(1)	35(1)	28(1)	-6(2)	5(1)	-2(2)
				S50		

C(20)	$29(1)$	$41(2)$	$23(1)$	$-3(1)$	$-1(1)$	$-3(1)$
$C(21)$	$20(1)$	$38(2)$	$26(1)$	$7(1)$	$2(1)$	$-2(1)$
$C(22)$	$26(1)$	$33(2)$	$32(1)$	$0(1)$	$6(1)$	$5(1)$
$C(23)$	$24(1)$	$37(2)$	$24(1)$	$-3(1)$	$3(1)$	$-1(1)$

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for porco29.

	x	y	Z	$\mathrm{U}(\mathrm{eq})$
H(1)	-5020(30)	17010(60)	3393(14)	22(7)
H(2)	-7360(20)	17400(70)	3401(12)	15(6)
H(3)	-8530(40)	16480(80)	2332(19)	58(12)
H(4)	-6930(30)	14820(60)	1573(14)	19(7)
H(5)	-6170(30)	11490(60)	2741(15)	24(8)
H(6B)	-4790(30)	12500(90)	1638(15)	35(8)
H(6A)	-5680(30)	10180(60)	1684(14)	19(7)
H(7B)	-5840(40)	12860(110)	3869(18)	50(10)
H(7A)	-5640(30)	14890(70)	4336(16)	33(9)
H(8)	-3410	12923	3900	76
H(9B)	-3610	14031	5174	107
H(9A)	-2304	13056	4849	107
H(10)	-8930(40)	15600(80)	911(17)	46(10)
H(11)	-10890(30)	15700(70)	130(16)	33(9)
H(13)	-12030(30)	9340(60)	829(14)	16(7)
H(14)	-10090(30)	8960(60)	1596(15)	27(8)
H(16C)	-13490(30)	9490(70)	-219(16)	29(8)
H(16B)	-14200(40)	10850(80)	330(20)	57(12)
H(16A)	-14700(40)	11440(80)	-501(19)	60(12)
H(19)	-2220(30)	9390(70)	3442(16)	31(8)
H(20)	-740(30)	7230(80)	4223(15)	44(9)
H(22)	-340(30)	2130(80)	2713(17)	45(11)
$\underline{H}(23)$	-1940(40)	4140(90)	2000(20)	63(13)

X-ray Crystal Structure of Compound 22:

Crystals of compound 22 suitable for x-ray analysis were obtained by slow evaporation from methylene chloride. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC \# 287119). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk.

Table 1. Crystal data and structure refinement for porco40.

Identification code	porco40	
Empirical formula	C28 H23 Br O5	
Formula weight	519.37	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	$a=6.0107(3) \AA$	$\alpha=90^{\circ}$.
	$\mathrm{b}=15.0074(7) \AA$	$\beta=90^{\circ}$.
	$\mathrm{c}=25.3448(11) \AA$	$\gamma=90^{\circ}$.
Volume	2286.23(19) \AA^{3}	
Z	4	
Density (calculated)	$1.509 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$1.837 \mathrm{~mm}^{-1}$	
F(000)	1064	
Crystal size	$0.40 \times 0.10 \times 0.05 \mathrm{~mm}^{3}$	

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=28.81^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
1.58 to 28.81°.
$-8<=\mathrm{h}<=7,-20<=\mathrm{k}<=20,-34<=\mathrm{l}<=26$
15307
5894 [R(int) $=0.0265]$
99.4 \%

Semiempirical by SADABS
0.9138 and 0.5270

Full-matrix least-squares on F^{2}
5894 / 0 / 399
0.982
$\mathrm{R} 1=0.0333, \mathrm{wR} 2=0.0685$
$\mathrm{R} 1=0.0456, \mathrm{wR} 2=0.0727$
0.000(6)
0.760 and -0.418 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x} 10^{3}\right)$ for porco40. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Br}(1)$	$5574(1)$	$5493(1)$	$1756(1)$	$44(1)$
$\mathrm{O}(1)$	$-4883(2)$	$904(1)$	$1707(1)$	$35(1)$
$\mathrm{O}(2)$	$-2036(2)$	$2357(1)$	$1129(1)$	$24(1)$
$\mathrm{O}(3)$	$-816(3)$	$2601(1)$	$299(1)$	$34(1)$
$\mathrm{O}(4)$	$-288(2)$	$788(1)$	$809(1)$	$32(1)$
$\mathrm{O}(5)$	$3564(3)$	$-1708(1)$	$-510(1)$	$38(1)$
$\mathrm{C}(1)$	$-2764(4)$	$548(1)$	$1578(1)$	$29(1)$
$\mathrm{C}(2)$	$-2520(3)$	$771(1)$	$983(1)$	$26(1)$
$\mathrm{C}(3)$	$-3591(3)$	$1688(1)$	$946(1)$	$25(1)$
$\mathrm{C}(4)$	$-5412(4)$	$1629(1)$	$1354(1)$	$28(1)$
$\mathrm{C}(5)$	$-741(4)$	$2753(1)$	$765(1)$	$25(1)$
$\mathrm{C}(6)$	$774(4)$	$3412(1)$	$1017(1)$	$23(1)$
$\mathrm{C}(7)$	$2636(4)$	$3693(1)$	$741(1)$	$29(1)$
$\mathrm{C}(8)$	$4072(4)$	$4306(1)$	$960(1)$	$31(1)$
$\mathrm{C}(9)$	$3618(4)$	$4641(1)$	$1457(1)$	$30(1)$
$\mathrm{C}(10)$	$1783(4)$	$4373(1)$	$1736(1)$	$33(1)$
$\mathrm{C}(11)$	$367(4)$	$3745(1)$	$1520(1)$	$30(1)$

C(12)	-912(4)	927(1)	1907(1)	29(1)
C(13)	-1207(4)	1501(2)	2297(1)	32(1)
C(14)	571(5)	1937(1)	2569(1)	34(1)
C(15)	2007(4)	2367(1)	2775(1)	33(1)
C(16)	3762(4)	2882(1)	3005(1)	31(1)
C(17)	5234(4)	3347(2)	2689(1)	37(1)
C(18)	6942(5)	3840(2)	2902(1)	45(1)
C(19)	7215(5)	3871(2)	3440(1)	41(1)
C(20)	5770(5)	3426(2)	3761(1)	40(1)
C(21)	4045(5)	2929(2)	3551(1)	36(1)
C(22)	505(4)	154(1)	461(1)	23(1)
C(23)	-368(4)	-700(1)	403(1)	29(1)
C(24)	694(4)	-1296(1)	66(1)	30(1)
C(25)	2619(4)	-1056(1)	-200(1)	27(1)
C(26)	3461(4)	-208(1)	-143(1)	27(1)
C(27)	2384(3)	395(1)	187(1)	25(1)
C(28)	5415(5)	-1458(2)	-827(1)	43(1)

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for porco40.

$\mathrm{Br}(1)-\mathrm{C}(9)$	$1.895(2)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.419(3)$
$\mathrm{O}(1)-\mathrm{C}(4)$	$1.445(3)$
$\mathrm{O}(2)-\mathrm{C}(5)$	$1.346(2)$
$\mathrm{O}(2)-\mathrm{C}(3)$	$1.448(2)$
$\mathrm{O}(3)-\mathrm{C}(5)$	$1.203(2)$
$\mathrm{O}(4)-\mathrm{C}(22)$	$1.381(2)$
$\mathrm{O}(4)-\mathrm{C}(2)$	$1.414(3)$
$\mathrm{O}(5)-\mathrm{C}(25)$	$1.377(2)$
$\mathrm{O}(5)-\mathrm{C}(28)$	$1.422(3)$
$\mathrm{C}(1)-\mathrm{C}(12)$	$1.503(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.550(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.523(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.508(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.488(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.386(3)$

C(6)-C(11)	1.391(3)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.379(3)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.383(3)
C(9)-C(10)	1.370(3)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.383(3)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.321(3)
C(13)-C(14)	1.431(3)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.198(3)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.431(3)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.382(3)
$\mathrm{C}(16)-\mathrm{C}(21)$	1.398(3)
C(17)-C(18)	1.377(4)
C(18)-C(19)	1.372(4)
C(19)-C(20)	1.365(4)
C(20)-C(21)	1.384(4)
$\mathrm{C}(22)-\mathrm{C}(27)$	1.375(3)
C(22)-C(23)	1.392(3)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.391(3)
C(24)-C(25)	1.387(3)
C(25)-C(26)	1.378(3)
C(26)-C(27)	1.391(3)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(4)$	109.72(16)
$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(3)$	117.45(15)
$\mathrm{C}(22)-\mathrm{O}(4)-\mathrm{C}(2)$	121.00(15)
$\mathrm{C}(25)-\mathrm{O}(5)-\mathrm{C}(28)$	117.20(18)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(12)$	113.20(17)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	103.23(17)
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(2)$	112.87(17)
$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(3)$	111.44(17)
$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	113.48(17)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	102.38(17)
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	106.86(16)
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	109.54(16)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	102.22(17)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	107.98(18)

$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{O}(2)$	124.55(19)
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	124.76(19)
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	110.69(16)
C(7)-C(6)-C(11)	119.75(19)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	118.62(18)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(5)$	121.63(19)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	120.28(19)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	119.1(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	121.5(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{Br}(1)$	119.39(16)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{Br}(1)$	119.09(16)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	119.4(2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	120.0(2)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(1)$	124.2(2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	123.9(2)
C(15)-C(14)-C(13)	174.4(2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	178.0(2)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)$	118.0(2)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	120.6(2)
C(21)-C(16)-C(15)	121.3(2)
C(18)-C(17)-C(16)	121.4(2)
C(19)-C(18)-C(17)	119.8(3)
C(20)-C(19)-C(18)	120.0(3)
C(19)-C(20)-C(21)	120.7(2)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$	120.0(2)
$\mathrm{C}(27)-\mathrm{C}(22)-\mathrm{O}(4)$	115.14(17)
C(27)-C(22)-C(23)	119.86(18)
$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{C}(23)$	124.86(19)
C(24)-C(23)-C(22)	118.9(2)
C(25)-C(24)-C(23)	120.97(19)
$\mathrm{O}(5)-\mathrm{C}(25)-\mathrm{C}(26)$	124.4(2)
$\mathrm{O}(5)-\mathrm{C}(25)-\mathrm{C}(24)$	115.93(19)
C(26)-C(25)-C(24)	119.6(2)
C(25)-C(26)-C(27)	119.6(2)
$\mathrm{C}(22)-\mathrm{C}(27)-\mathrm{C}(26)$	121.00(18)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for porco40. The anisotropic displacement factor exponent takes the form: $\quad-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots \quad+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\operatorname{Br}(1)$	42(1)	39(1)	52(1)	-14(1)	9(1)	-18(1)
$\mathrm{O}(1)$	29(1)	38(1)	40(1)	9(1)	6(1)	-3(1)
$\mathrm{O}(2)$	26(1)	28(1)	20(1)	-1(1)	$0(1)$	-6(1)
O(3)	39(1)	45(1)	19(1)	-3(1)	-1(1)	-9(1)
O(4)	21(1)	36(1)	37(1)	-14(1)	$0(1)$	-8(1)
O(5)	41(1)	31(1)	43(1)	-5(1)	2(1)	7(1)
C(1)	26(1)	26(1)	36(1)	2(1)	$0(1)$	-2(1)
C(2)	20(1)	29(1)	28(1)	-8(1)	-4(1)	-6(1)
C(3)	23(1)	28(1)	24(1)	-2(1)	-7(1)	-6(1)
C(4)	23(1)	33(1)	28(1)	-2(1)	-4(1)	-4(1)
C(5)	24(1)	26(1)	26(1)	3(1)	-2(1)	2(1)
C(6)	24(1)	23(1)	22(1)	2(1)	-2(1)	$0(1)$
C(7)	30(1)	33(1)	23(1)	-1(1)	6(1)	$0(1)$
C(8)	28(1)	33(1)	33(1)	1(1)	13(1)	-6(1)
C(9)	31(1)	24(1)	35(1)	-4(1)	2(1)	-5(1)
C(10)	37(1)	33(1)	28(1)	-10(1)	6(1)	-7(1)
C(11)	26(1)	34(1)	29(1)	-1(1)	9(1)	-5(1)
C(12)	28(1)	28(1)	30(1)	6(1)	-2(1)	-2(1)
C(13)	35(1)	33(1)	29(1)	3(1)	-2(1)	-1(1)
C(14)	42(1)	34(1)	26(1)	1(1)	-2(1)	6(1)
C(15)	42(1)	29(1)	29(1)	-1(1)	-6(1)	4(1)
C(16)	38(1)	27(1)	29(1)	-3(1)	-7(1)	7(1)
C(17)	46(2)	39(1)	26(1)	-5(1)	-6(1)	$0(1)$
C(18)	45(2)	49(1)	40(2)	-3(1)	5(1)	-7(1)
C(19)	40(1)	41(1)	41(1)	-9(1)	-9(1)	-1(1)
C(20)	53(2)	40(1)	28(1)	-5(1)	-15(1)	4(1)
C(21)	44(2)	35(1)	29(1)	3(1)	-1(1)	1(1)
C(22)	23(1)	26(1)	20(1)	-2(1)	-6(1)	1(1)
C(23)	25(1)	32(1)	29(1)	3(1)	-1(1)	-4(1)
				S58		

C(24)	$35(1)$	$21(1)$	$33(1)$	$2(1)$	$-5(1)$	$-4(1)$
$C(25)$	$27(1)$	$29(1)$	$24(1)$	$1(1)$	$-8(1)$	$6(1)$
$C(26)$	$24(1)$	$34(1)$	$23(1)$	$4(1)$	$-2(1)$	$-2(1)$
$C(27)$	$25(1)$	$24(1)$	$27(1)$	$1(1)$	$-6(1)$	$-3(1)$
$C(28)$	$34(1)$	$50(1)$	$46(2)$	$-10(1)$	$3(1)$	$10(1)$

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x} 10^{3}\right)$ for porco40.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(1)	-2770(50)	-151(18)	1651(10)	50(7)
H(2)	-3310(30)	443(13)	785(7)	13(5)
H(3)	-4030(40)	1839(12)	594(8)	17(5)
H(4B)	-5610(40)	2162(14)	1529(8)	25(5)
H(4A)	-6770(40)	1501(13)	1178(8)	16(5)
H(7)	2970(40)	3428(14)	379(9)	31(6)
H(8)	5280(40)	4471(14)	807(9)	29(6)
H(10)	1520(40)	4611(14)	2058(9)	29(6)
H(11)	-830(40)	3568(13)	1698(8)	20(5)
H(12)	500(40)	749(14)	1822(9)	29(6)
H(13)	-2780(50)	1650(16)	2390(10)	42(7)
H(17)	4990(50)	3307(16)	2336(11)	45(7)
H(18)	7860(60)	4156(19)	2682(12)	63(9)
H(19)	8410(60)	4189(19)	3585(11)	62(9)
H(20)	5890(50)	3405(15)	4138(10)	40(7)
H(21)	3120(50)	2621(16)	3740(10)	42(8)
H(23)	-1730(40)	-831(14)	575(9)	30(6)
H(24)	90(40)	-1864(13)	42(7)	23(5)
H(26)	4720(40)	-65(14)	-314(9)	24(6)
H(27)	2900(40)	964(15)	207(8)	31(6)
H(28C)	5060(50)	-990(19)	-1067(11)	55(8)
H(28B)	6570(50)	-1314(17)	-639(11)	47(8)
H(28A)	5890(70)	-1980(20)	-1033(13)	84(11)

X-ray Crystal Structure of Compound 24:

Crystals of compound 24 suitable for x-ray analysis were obtained by slow evaporation from methylene chloride. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC \# 287120). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk.

Table 1. Crystal data and structure refinement for porco41.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
porco41
C26 H23 Br O5
495.35

173(2) K
$0.71073 \AA$
Monoclinic
P2(1)
$a=13.1894(18) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=5.1990(10) \AA$
$\beta=110.015(7)^{\circ}$.

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=23.25^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
$\mathrm{c}=17.152(3) \AA \quad \gamma=90^{\circ}$.
1105.1(3) \AA^{3}

2
$1.489 \mathrm{Mg} / \mathrm{m}^{3}$
$1.896 \mathrm{~mm}^{-1}$
508
$1.00 \times 0.10 \times 0.02 \mathrm{~mm}^{3}$
2.39 to 23.25°.
$-13<=\mathrm{h}<=14,-5<=\mathrm{k}<=5,-18<=\mathrm{l}<=19$
8090
$3034[\mathrm{R}($ int $)=0.0515]$
97.5 \%

Semiempirical by SADABS
0.9631 and 0.2529

Full-matrix least-squares on F^{2}
3034 / 1 / 370
0.979
$\mathrm{R} 1=0.0388, \mathrm{wR} 2=0.0816$
$\mathrm{R} 1=0.0514, \mathrm{wR} 2=0.0857$
0.021(11)
0.872 and -0.401 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for porco41. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y		z
		$\mathrm{U}(\mathrm{eq})$		
$\mathrm{Br}(1)$	$1976(1)$	$625(1)$	$6242(1)$	$36(1)$
$\mathrm{O}(1)$	$-1072(3)$	$11408(6)$	$9596(2)$	$32(1)$
$\mathrm{O}(2)$	$-656(3)$	$9035(6)$	$7929(2)$	$27(1)$
$\mathrm{O}(3)$	$-1476(3)$	$10027(7)$	$6580(2)$	$39(1)$
$\mathrm{O}(4)$	$-2648(3)$	$7511(6)$	$7904(2)$	$29(1)$
$\mathrm{O}(5)$	$-6583(3)$	$7718(7)$	$5321(2)$	$34(1)$
$\mathrm{C}(1)$	$-583(4)$	$12058(12)$	$9005(4)$	$34(1)$
$\mathrm{C}(2)$	$-1274(4)$	$11035(11)$	$8161(3)$	$26(1)$
$\mathrm{C}(3)$	$-2228(4)$	$9778(10)$	$8353(3)$	$25(1)$
$\mathrm{C}(4)$	$-1734(4)$	$9168(11)$	$9272(4)$	$29(1)$
			S 61	

C(5)	-838(4)	8770(10)	7119(3)	24(1)
C(6)	-166(4)	6698(9)	6940(3)	23(1)
C(7)	-326(4)	6164(10)	6122(3)	24(1)
C(8)	295(4)	4299(11)	5906(4)	30(1)
C(9)	1094(4)	3087(10)	6535(3)	26(1)
C(10)	1287(4)	3566(11)	7363(4)	29(1)
C(11)	641(3)	5411(14)	7567(3)	28(1)
C(12)	-2502(4)	8835(11)	9729(3)	28(1)
C(13)	-2597(4)	6705(12)	10117(3)	30(1)
C(14)	-3300(4)	6256(8)	10610(3)	23(1)
C(15)	-3120(4)	4139(11)	11136(4)	31(1)
C(16)	-3717(5)	3796(13)	11661(4)	38(2)
C(17)	-4507(4)	5549(16)	11653(3)	34(1)
C(18)	-4705(4)	7609(11)	11124(4)	32(1)
C(19)	-4120(4)	7982(11)	10598(3)	28(1)
C(20)	-3636(4)	7744(9)	7239(3)	25(1)
C(21)	-4409(4)	5838(14)	7188(3)	30(1)
C(22)	-5386(4)	5920(14)	6545(3)	31(1)
C(23)	-5591(4)	7839(10)	5947(3)	29(1)
C(24)	-4830(4)	9709(10)	5995(4)	32(2)
C(25)	-3833(4)	9635(10)	6652(3)	30(1)
C(26)	-6799(4)	9614(11)	4689(3)	36(2)

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for porco41.

$\mathrm{Br}(1)-\mathrm{C}(9)$	$1.909(5)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.417(7)$
$\mathrm{O}(1)-\mathrm{C}(4)$	$1.448(6)$
$\mathrm{O}(2)-\mathrm{C}(5)$	$1.334(6)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.457(6)$
$\mathrm{O}(3)-\mathrm{C}(5)$	$1.208(6)$
$\mathrm{O}(4)-\mathrm{C}(20)$	$1.412(6)$
$\mathrm{O}(4)-\mathrm{C}(3)$	$1.413(6)$
$\mathrm{O}(5)-\mathrm{C}(23)$	$1.381(6)$
$\mathrm{O}(5)-\mathrm{C}(26)$	$1.420(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.519(7)$

$\mathrm{C}(2)-\mathrm{C}(3)$	1.551(7)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.520(8)
$\mathrm{C}(4)-\mathrm{C}(12)$	1.488(7)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.492(7)
C(6)-C(7)	1.374(6)
C(6)-C(11)	1.398(7)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.398(7)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.376(7)
C(9)-C(10)	1.377(7)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.404(8)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.319(8)
C(13)-C(14)	1.472(7)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.392(7)
$\mathrm{C}(14)-\mathrm{C}(19)$	1.401(7)
C(15)-C(16)	1.395(8)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.381(9)
C(17)-C(18)	1.371(9)
C(18)-C(19)	1.386(7)
C(20)-C(25)	1.367(7)
C(20)-C(21)	1.403(8)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.381(7)
C(22)-C(23)	1.390(8)
C(23)-C(24)	1.380(7)
C(24)-C(25)	1.409(8)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(4)$	106.2(4)
$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(2)$	116.1(4)
$\mathrm{C}(20)-\mathrm{O}(4)-\mathrm{C}(3)$	116.7(4)
$\mathrm{C}(23)-\mathrm{O}(5)-\mathrm{C}(26)$	116.9(4)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	109.1(4)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	107.5(4)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	109.1(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	102.2(4)
$\mathrm{O}(4)-\mathrm{C}(3)-\mathrm{C}(4)$	109.9(4)
$\mathrm{O}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	115.5(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	102.6(4)

$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(12)$	108.7(4)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	102.6(4)
$\mathrm{C}(12)-\mathrm{C}(4)-\mathrm{C}(3)$	116.3(4)
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{O}(2)$	124.9(5)
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	122.7(5)
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	112.4(4)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	120.0(5)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	117.5(4)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(5)$	122.4(5)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120.8(5)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	118.1(5)
C(8)-C(9)-C(10)	123.2(5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{Br}(1)$	118.2(4)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{Br}(1)$	118.6(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	117.8(5)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	120.1(5)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(4)$	124.2(5)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	127.5(5)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	118.4(5)
C(15)-C(14)-C(13)	119.8(5)
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(13)$	121.7(5)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	120.8(6)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	120.0(6)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	119.6(5)
C(17)-C(18)-C(19)	121.2(5)
C(18)-C(19)-C(14)	120.0(5)
C(25)-C(20)-C(21)	120.7(5)
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{O}(4)$	123.2(5)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{O}(4)$	116.0(5)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	119.2(6)
C(21)-C(22)-C(23)	120.3(6)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{O}(5)$	123.7(5)
C(24)-C(23)-C(22)	120.5(5)
$\mathrm{O}(5)-\mathrm{C}(23)-\mathrm{C}(22)$	115.8(5)
C(23)-C(24)-C(25)	119.3(5)
$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(24)$	120.0(5)

Symmetry transformations used to generate equivalent atoms:
Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for porco41. The anisotropic displacement factor exponent takes the form: $\quad-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots \quad+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\operatorname{Br}(1)$	28(1)	40(1)	40(1)	-5(1)	10(1)	7(1)
$\mathrm{O}(1)$	24(2)	38(3)	31(2)	-9(2)	5(2)	-2(2)
$\mathrm{O}(2)$	22(2)	33(2)	26(2)	-2(2)	8(2)	6(2)
$\mathrm{O}(3)$	31(2)	52(3)	31(2)	8(2)	9(2)	13(2)
$\mathrm{O}(4)$	23(2)	26(2)	31(2)	-2(2)	2(2)	2(2)
$\mathrm{O}(5)$	15(2)	43(2)	38(2)	-6(2)	1(2)	-4(2)
C(1)	20(3)	43(4)	42(4)	-15(3)	13(3)	-2(3)
C(2)	29(3)	19(4)	32(3)	-3(3)	11(2)	3(3)
C(3)	19(3)	31(3)	25(3)	-2(2)	7(2)	7(2)
C(4)	27(3)	29(3)	27(4)	-6(3)	4(3)	5(3)
C(5)	19(3)	30(3)	23(3)	2(3)	8(3)	-1(2)
C(6)	16(2)	29(3)	24(3)	2(2)	7(2)	-3(2)
C(7)	21(2)	29(4)	22(3)	5(3)	8(2)	3(2)
C(8)	27(3)	43(3)	18(4)	-3(3)	7(3)	-5(3)
C(9)	21(3)	27(3)	33(4)	0(3)	12(3)	3(2)
C(10)	25(3)	32(3)	26(4)	-1(3)	2(3)	6(3)
C(11)	25(2)	37(3)	21(3)	0(4)	6(2)	-1(3)
C(12)	27(3)	28(4)	27(3)	-3(3)	7(3)	8(3)
C(13)	18(3)	27(3)	36(4)	-4(3)	-1(3)	8(3)
C(14)	21(2)	22(4)	18(3)	-5(2)	-2(2)	-4(2)
C(15)	26(3)	29(3)	33(4)	-1(3)	6(3)	-4(3)
$\mathrm{C}(16)$	51(4)	32(4)	25(4)	4(3)	5(3)	-5(3)
C(17)	36(3)	35(3)	30(3)	3(4)	11(2)	-5(4)
C(18)	28(3)	32(3)	35(4)	-10(3)	10(3)	-6(3)
C(19)	32(3)	23(3)	27(3)	3(3)	7(3)	-4(2)
$\mathrm{C}(20)$	19(3)	24(3)	29(3)	-8(3)	6(3)	2(2)
$\mathrm{C}(21)$	30(3)	30(3)	31(3)	2(4)	14(3)	5(3)
C(22)	25(3)	26(4)	42(3)	-4(3)	12(3)	-11(3)
C(23)	16(3)	30(3)	40(4)	-11(3)	8(3)	-2(2)

C(24)	$27(3)$	$30(3)$	$32(4)$	$3(3)$	$1(3)$	$2(2)$
$C(25)$	$23(3)$	$32(3)$	$31(3)$	$5(2)$	$6(3)$	$-5(2)$
$C(26)$	$25(3)$	$44(4)$	$33(4)$	$-5(3)$	$0(3)$	$5(2)$

Table 5. Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for porco41.

	x	y	z	U(eq)
H(26A)	-6837	11311	4926	54
H(26B)	-7489	9232	4253	54
H(26C)	-6221	9607	4451	54
H(11)	780(30)	5420(120)	8190(30)	21(11)
H(12)	-2860(40)	10580(150)	9780(30)	43(13)
H(17)	-4950(40)	5520(150)	12060(30)	54(14)
H(24)	-5010(40)	11220(100)	5590(30)	30(15)
H(2)	-1450(30)	12360(90)	7740(30)	11(12)
H(8)	180(30)	4170(80)	5320(30)	17(13)
H(22)	-5810(40)	4690(100)	6530(30)	27(16)
H(21)	-4260(40)	4710(100)	7580(30)	26(16)
H(10)	1860(40)	2870(100)	7780(30)	36(16)
H(15)	-2600(40)	2950(100)	11140(30)	28(15)
H(13)	-2200(30)	5490(100)	10130(20)	1(11)
H(7)	-990(40)	7140(100)	5600(30)	42(15)
H(3)	-2740(40)	10890(120)	8360(30)	27(14)
H(19)	-4230(40)	9330(90)	10210(30)	32(15)
H(4)	-1320(30)	7680 (90)	9330(20)	3(11)
H(25)	-3340(40)	10900(130)	6610(30)	35(14)
H(18)	-5250(40)	9010(100)	11110(30)	30(14)
H(1B)	100(40)	11230(90)	9130(30)	24(13)
H(1A)	-570(40)	14020(120)	9070(30)	53(18)
H(16)	-3540(40)	2580(110)	12020(30)	42(18)

[^0]: 1 J.S Yaday, B.V.S. Reddy, C.V. Rao, M.S. Reddy, Synthesis 2003, 2, 247-250

[^1]: ${ }^{2}$ S. Su, D.E. Acquilano, J. Arumugasamy, A.B. Beeler, E.L. Eastwood, J.R. Giguere, P. Lan, X. Lei, G.K. Min, A.R. Yeager, Y. Zhou, J.S. Panek, J.K. Snyder, S.E. Schaus, J.A. Porco Jr., Org Lett. 2005, 7, 2751-2754.

[^2]: ${ }^{3}$ (a) J. Ramnauth, O. Poulin, S. Rakhit, S.P. Maddaford, Org. Lett. 2001, 3, 2013-2015; (b) N. de la Figuera, P. Forns, J.C. Fernandez, S. Fiol, D.

