Supporting Information

The lowest-energy structures of water clusters (H₂O)₁₁ and (H₂O)₁₃

Satya Bulusu¹, Soohaeng Yoo¹, Edo Aprà², Sotiris Xantheas^{2*} and Xiao Cheng Zeng^{1*}

¹Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588 ²Chemical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352

Reference 42.

Reference 45.

Table S1: Electronic energies (in a.u.), zero-point energies (ZPE in a.u.) and relative energies (in kcal/mol) of the lowest-lying clusters within each family of $(H_2O)_{11}$ and $(H_2O)_{13}$ based on B3LYP/6-311+G(d,p) level of theory. The bold-faced values correspond to the lowest-energy isomers at the B3LYP level of theory.

Table S2: The xyz-coordinates for 515-a, 43'4 [(H₂O)₁₁] and 4414 [(H₂O)₁₃] isomers are tabulated.

Reference 42

Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

Reference 45

Kendall, R.A.; Aprà, E.; Bernholdt, D.E.; Bylaska, E.J.; Dupuis, M.; Fann, G.I.; Harrison, R.J.; Ju, J.; Nichols, J.A.; Nieplocha, J.; Straatsma, T.P.; Windus, T.L.; Wong, A.T. *Comput. Phys. Commun.* **2000**, *128*, 260.

Table S1

	B3LYP/6-		
Clusters	311+G(d,p)	ZPE	$\Delta E(B3LYP+ZPE)$
	(a.u.)	(a.u.)	(kcal/mol)
$(H_2 0)_{11}$			
515-a	-841.219538	0.280154	0.002
43'4	-841.217078	0.280595	1.822
55'1	-841.219726	0.280340	0.000
44'3'	-841.216466	0.280820	2.347
44'12	-841.217247	0.279899	1.279
bow-tie	-841.215211	0.279642	2.396
41141	-841.213258	0.278821	3.106
41114	-841.217148	0.278872	0.696
515-ь	-841.218042	0.280126	0.922
$(H_2 0)_{13}$			
4414	-994.174479	0.333315	0.531
454-a	-994.174829	0.333473	0.411
445	-994.174635	0.333343	0.451
454-ь	-994.173737	0.333856	1.336
515+2	-994.174573	0.332763	0.126
43'4+2	-994.172981	0.332261	0.810
41141+2	-994.173152	0.331643	0.315
616-a	-994.173793	0.331782	0.000
616-b	-994.173508	0.331815	0.199

Table S2

33 **515-**a

515-a			
0	2.23761292	-2.07665757	-0.572662171
Н	2.71942882	-2.87852864	-0.79653341 1
Н	1.28281871	-2.33270292	-0.45284883 1
0	-2.02595184	-1.03364042	-1.794285262
Н	-1.44184833	-0.24379693	-2.008465102
Н	-2.33006353	-1.38061245	-2.63897873 2
0	-0.38064147	2.67183180	0.14580603 3
Н	-0.93691860	2.11867398	0.77413245 3
Н	-0.74224792	3.56321268	0.17719103 3
0	-1.81187587	1.13879669	1.729063064
Н	-2.57188799	0.74866165	1.25061134 4
Н	-1.29633552	0.38087898	2.06455073 4
0	-0.34392055	-2.54071388	-0.06448563 5
Н	-0.48060913	-2.12980081	0.80817408 5
Н	-0.95907736	-2.09492682	-0.67769148 5
0	-0.46745219	1.03053309	-2.24912986 6
Н	0.48559022	0.78653736	-2.28264900 6
Н	-0.52747912	1.68797415	-1.53429061 6
0	-0.21258104	-1.09523671	2.421756917
Н	-0.25693970	-1.50104341	3.29316062 7
Н	0.74048307	-0.84613751	2.271758507
0	2.29764409	-0.47133614	1.76708018 8
Н	2.48392137	-1.06469686	1.01574323 8
Н	2.36584020	0.43021246	1.40310996 8
0	2.27853290	2.04122280	0.41062119 9
Н	1.35282190	2.37610166	0.36249427 9
Н	2.83415869	2.78882747	0.65145992 9
0	-3.76155958	-0.03838221	0.13413973 10
Н	-3.26008557	-0.45469597	-0.59768121 10
Н	-4.42360163	-0.67627651	0.41435213 10
0	2.21424657	0.40136109	-2.00145678 11
Η	2.30722768	-0.49592526	-1.63386460 11
Н	2.46237234	0.99583534	-1.27531471 11

33 **43'4**

434			
0	1.92505127	-2.04798431	-1.40440686 1
Н	2.64058782	-2.51595653	-1.84488942 1
Н	1.88139718	-1.13738744	-1.79661449 1
0	-0.85464742	2.72482765	-0.47526144 2
Н	0.11475097	2.79185187	-0.56625335 2
Н	-1.10254701	1.93091033	-0.977140202
0	1.47355334	-1.62482719	1.430584313
Н	1.75566066	-1.83657621	0.52439863 3
Н	0.58767782	-2.01602054	1.51936928 3
0	1.46105425	0.41607168	-2.34430527 4
Н	0.49421658	0.47738344	-2.366681004
Н	1.74632888	1.11925523	-1.726237614
0	-0.86663989	-2.37009892	-1.44424256 5
Н	0.10220916	-2.45684350	-1.52448642 5
Н	-1.06883118	-2.64121028	-0.52899539 5
0	-1.27357921	-2.54148462	1.33654542 6
Н	-1.71714404	-3.18704184	1.89468144 6
Н	-1.80983294	-1.70756174	1.36564528 6
0	-2.56603202	-0.20862955	1.08262003 7
Н	-2.18348977	0.54051884	1.580098527
Н	-2.44185700	0.02291518	0.14936268 7
0	-1.54698736	0.17704410	-1.78371084 8
Н	-2.17315785	0.22188141	-2.514334178
Н	-1.31055791	-0.79081100	-1.68027322 8
0	-1.20616530	2.03535194	2.092787769
Н	-1.57222669	2.70824461	2.67481665 9
Н	-1.13091655	2.43624016	1.18842343 9
0	1.54980522	1.09759204	1.8918631010
Н	0.65845440	1.34353546	2.18962375 10
Н	1.54810653	0.11771843	1.79542129 10
0	1.93570795	2.34604152	-0.38985900 11
Н	2.67215369	2.96323209	-0.34789154 11
Н	1.88299010	1.87967822	0.4976141911

39 **4414**

O -0.0940 -0.0180 -1.9160 1 O -2.9760 0.2060 -1.9290 2 O 2.1830 -2.6800 -0.0780 3 O 2.6650 -0.7580 2.0210 4 O 2.6180 -0.8700 -2.0220 5 O -0.1750 1.9300 0.1240 6 O -0.5680 -2.0690 -0.1100 7 O -0.1060 -0.1970 1.8930 8 O 2.2290 3.2310 -0.1150 9 O -2.9880 0.0530 1.9570 10 O -2.9720 2.1170 -0.0480 11 O -3.3690 -1.8310 0.0650 12 O 3.6040 0.8290 0.1040 13 H-0.0130 0.7520 -1.3160 1 H 0.8130 -0.2270 -2.2090 1 H -3.2080 -0.5960 -1.4280 2 H -2.0610 0.0730 -2.2310 2 H 2.4140 -2.2070 0.7430 3 H 1.2160 -2.7830 -0.0400 3 H 3.0580 -0.1100 1.3700 4 Н 3.2990 -0.8490 2.7380 4 H 2.5160 -1.6230 -1.3800 5 Н 3.1580 -1.1950 -2.7490 5 H-1.1050 2.2250 0.0990 6 H-0.1270 1.2560 0.8400 6 H -1.5160 -2.2910 -0.0830 7 H -0.4660 -1.4140 -0.8360 7 H-0.2530-0.9380 1.26508 H 0.8080 -0.3280 2.2100 8 H 2.3320 4.0300 0.4080 9 H 1.3030 2.9310 -0.0020 9 H-3.0700 0.8820 1.4520 10 H-2.0640 0.0230 2.2570 10 H -3.5760 2.8470 -0.2110 11 H -3.0530 1.4890 -0.8150 11 H -4.1110 -2.4230 0.2200 12 H -3.3230 -1.2070 0.8360 12 H 3.3960 0.3880 -0.7380 13 H 3.2260 1.7300 0.0390 13