### A Quantitative Examination of the Effects of Silicon Substituents on the Efficiency of Cross-Coupling Reactions

Scott E. Denmark\*, Luc Neuville, Matthew E. L. Christy and Steven A. Tymonko

Roger Adams Laboratory, Department of Chemistry University of Illinois, Urbana, Illinois 61801

### SUPPORTING INFORMATION

| Table of Contents                       | Page        |
|-----------------------------------------|-------------|
| General Experimental                    | S1          |
| Literature Preparations                 | S2          |
| Experimental Procedures                 | S3          |
| Preparation of Alkenylsilane Precursors | S3          |
| Preparation of Reference Compounds      | <i>S14</i>  |
| Preparation of 24                       | <i>S17</i>  |
| Determination of Response Factors       | S23         |
| Competition Experiments, GC Data        | <i>S</i> 28 |
| NMR Spectra                             | S82         |

### **General Experimental**

All reactions were performed in oven-dried (140 °C) or flame-dried glassware under an inert atmosphere of dry N<sub>2</sub>. The following reaction solvents were distilled from the indicated drying agents: diethyl ether (sodium, benzophenone), toluene (Na), methanol (Mg(OMe)<sub>2</sub>), triethylamine (CaH<sub>2</sub>), *tert*-butyl alcohol was distilled over Na. *n*-Butyllithium solutions were titrated following the method of Gilman.<sup>1</sup> Brine refers to a sat. aq. solution of NaCl.

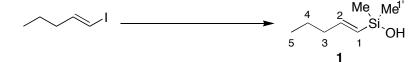
<sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>19</sup>F NMR were recorded on 500 MHz, <sup>1</sup>H; 470 MHz, <sup>19</sup>F; 126 MHz, <sup>13</sup>C spectrometers. Spectra were referenced to residual chloroform (7.26 ppm, <sup>1</sup>H; 77.00 ppm, <sup>13</sup>C). Chemical shifts are reported in ppm (δ); multiplicities are indicated by s (singlet), d

(doublet), t (triplet), q (quartet), qn (quintet), sept (septet), m (multiplet) and br (broad). Coupling constants, *J*, are reported in Hertz. <sup>1</sup>H and <sup>13</sup>C NMR assignments are corroborated by 2D experiments (HETCOR and COSY). Spectra are available on request from <u>denmark@scs.uiuc.edu</u>. Mass spectroscopy data (EI, CI, FAB) are reported in the form of (m/z). Infrared spectra (IR) were recorded in NaCl cells and peaks are reported in cm<sup>-1</sup> with indicated relative intensities: s (strong, 67-100%); m (medium, 34-66%); w (weak, 0-33%).

Analytical thin-layer chromatography was performed on silica or aluminum oxide, basic gel plates with QF-254 indicator. Visualization was accomplished with KMnO<sub>4</sub>, UV light and/or iodine. Diethyl ether was of reagent grade and used as received; other solvents for chromatography and filtration were technical grade and distilled from the indicated drying agents: hexane and pentane (CaCl<sub>2</sub>); ethyl acetate (K<sub>2</sub>CO<sub>3</sub>); dichloromethane (CaCl<sub>2</sub>). Column chromatography was performed using 230-400-mesh silica.

Analytical capillary gas chromatography (GC) was performed using a gas chromatograph fitted with a flame ionization detector (H<sub>2</sub> carrier gas, 1 mL/min): The following column was used: HP-5 50-m cross-linked 5%-phenyl methyl silicone gum phase. The detector temperature was 300 °C. Retention times ( $t_R$ ) and integrated ratios were obtained from a reporting integrator. Retention times (HP 5, 250 °C, 15 psi):  $t_R$  naphthalene, 4.84 min;  $t_R$  12, 6.43 min;  $t_R$  13, 8.30 min;  $t_R$  14, 4.94 min;  $t_R$  15, 5.60 min;  $t_R$  16, 5.52 min;  $t_R$  17, 6.65 min. Retention times (HP 5, 200 °C, 15 psi):  $t_R$  naphthalene, 5.48 min;  $t_R$  14, 6.06 min;  $t_R$  15, 8.47 min.

Bulb-to-bulb distillations were performed on a Kugelrohr, boiling points (bp) corresponding to uncorrected air-bath temperatures (ABT). Commercial reagents were purified by distillation or recrystallization prior to use. A 1.0 M solution of tetrabutylammonium fluoride in THF was prepared from solid tetrabutylammonium fluoride trihydrate (TBAF•3H<sub>2</sub>O, Fluka) and distilled THF in a volumetric flask and was stored in a Schlenk bottle. A solution of THF containing TBAF (1.0 M) and naphthalene (0.25 M) was prepared from solid tetrabutylammonium fluoride trihydrate from solid tetrabutylammonium fluoride trihydrate (TBAF•3H<sub>2</sub>O, Fluka) or naphthalene and distilled THF in a volumetric flask and was stored in a Schlenk bottle. Palladium bis(dibenzylideneacetone) (Pd(dba)<sub>2</sub>) and allylpalladium chloride dimer were used without purification. The *t*-Bu<sub>3</sub>P-Pt(0)-DVDS complex was prepared by the literature procedure<sup>2</sup>: t-Bu<sub>3</sub>P (32 mg, 0.158 mmol) was dissolved in platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex in xylene (1.5 mL


xylene solution). The mixture was stirred at 65 °C (oil bath) for 5 min and then was slowly cooled to room temperature. This solution could be stored under nitrogen in the freezer (-20 °C) indefinitely.

The following compounds were prepared by literature methods. (*E*)-1-iodo-1-heptene,<sup>3</sup> (*E*)-1-iodo-1-pentene,<sup>4</sup> (*E*)-dimethyl-(1-heptenyl)silanol<sup>3</sup> (**2**), (*E*)-diisopropyl-(1-heptenyl)silanol<sup>3</sup> (**4**), (*E*)-1-[4-(1-heptenyl)phenyl]ethanone<sup>3</sup> (**13**), (*E*)-4-methoxy-2-(1-pentenyl)benzene<sup>5</sup> (**14**), (*E*)-1-(1-heptenyl)-4-methoxybenzene<sup>3</sup> (**15**), (*E*)-1-(1-heptenyl)-2-methylbenzene<sup>3</sup> (**17**), 4-(trimethylsilyl)ethynylbenzaldehyde<sup>6</sup> (**18**) and (*i*-Pr<sub>3</sub>P)<sub>2</sub>RuHCl(CO)<sup>7</sup>.

#### **Experimental Procedures**

**Preparation of Alkenylsilane Precursors.** 

(*E*)-Dimethyl-(1-pentenyl)silanol (1)



To a solution of (*E*)-1-iodo-1-pentene (4.90 g, 25.0 mmol) in diethyl ether (50 mL) under dry N<sub>2</sub> at -78 °C, was added *n*-butyllithium (16.0 mL, 25.0 mmol, 1.55 M, 1.0 equiv) over 10 min and the reaction mixture was stirred at -78 °C for 30 min. A solution of hexamethylcyclotrisiloxane (1.854 g, 8.33 mmol, 0.33 equiv) in diethyl ether (30 mL) was then added over 5 min at -78 °C. The mixture was warmed to room temperature and was stirred for 24 h. The solution was then cooled to 0 °C and was quenched with water (15 mL). The aqueous phase was extracted with diethyl ether (3 × 20 mL) and the combined organic extracts were washed with water (1 × 20 mL) and brine (3 × 25 mL). The organic layer was dried (MgSO<sub>4</sub>) and filtered. The solvent was then evaporated in vacuo to give an yellow oil which was purified by distillation to afford 3.06 g (85%) of **1** as a colorless oil. Repeated distillation provided analytically pure material.

Data for 1:

<u>bp</u>: 113 °C (100 mmHg)

 $^{1}\underline{\mathrm{H}}\,\mathrm{NMR}$ : (50

6.18 (dt, J = 18.9, 6.2, 1 H, HC(2)), 5.65 (dt, J = 18.9, 1.5, 1 H, HC(1)), 2.10 (qd, J = 7.0, 1.7, 2 H, H<sub>2</sub>C(3)), 1.58 (s, OH, 1 H), 1.43 (sext, J = 7.3, 2 H, H<sub>2</sub>C(4)),

|                              | 0.90 (t, $J = 7$ .         | 3, 3 H, H <sub>3</sub> C(5) | ), 0.19 (s, 6 H, 2H <sub>3</sub> C(1'))                 |  |
|------------------------------|----------------------------|-----------------------------|---------------------------------------------------------|--|
| <sup>13</sup> <u>C NMR</u> : | (101 MHz, C                | DCl <sub>3</sub> )          |                                                         |  |
|                              | 149.2 (C(1)),              | 128.4 (C(2)), 3             | 38.6 (C(3)), 21.6 (C(4)), 13.7 (C(5)), 0.0 (C(1'))      |  |
| <u>IR</u> :                  | (NaCl)                     |                             |                                                         |  |
|                              | 3271 (s), 296              | 0 (s), 2931 (s),            | 2875 (s), 1620 (s), 1252 (s), 991 (s), 866 (s), 843 (s) |  |
| <u>MS</u> :                  | (EI, 70 eV)                |                             |                                                         |  |
|                              | 144 (M <sup>+</sup> , 3.0) | ), 129 (100), 11            | 6 (5), 101 (9), 75 (20), 61 (24)                        |  |
| <u>TLC</u> :                 | $R_f 0.14$ (penta)         | ane/Et <sub>2</sub> O, 9/1) | [KMnO <sub>4</sub> ]                                    |  |
| Analysis:                    | C7H16OSi (1                | 44.29)                      |                                                         |  |
|                              | Calc.:                     | C, 58.27;                   | H, 11.18%                                               |  |
|                              | Found:                     | C, 57.92;                   | Н, 11.32%                                               |  |

#### (E)-Diethyl-(1-heptenyl)silanol (3)



To a solution of (*E*)-1-iodo-1-heptene (6.72 g, 30.0 mmol) in diethyl ether (60 mL) under dry N<sub>2</sub> at -78 °C, was added *n*-butyllithium (19.4 mL, 30.0 mmol, 1.55 M, 1.0 equiv) over 10 min and the reaction mixture was stirred at -78 °C for 30 min. A solution of hexaethylcyclotrisiloxane (3.07 g, 10 mmol, 0.33 equiv) in diethyl ether (15 mL) was then added over 5 min at -78 °C. The mixture was warmed to room temperature and was stirred for 24 h. The solution was then cooled to 0 °C and quenched with water (30 mL). The aqueous phase was extracted with diethyl ether (3 × 25 mL) and the combined organic extracts were washed with water (1 × 25 mL) and brine (2 × 30 mL). The organic layer was dried (MgSO<sub>4</sub>) and filtered. The solvent was then evaporated in vacuo to give an yellow oil which was purified by distillation to afford 4.97 g (83%) of **3** as a colorless oil.

Data for 3:

<u>bp</u>: 93 °C (0.8 mmHg)

<sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>)

6.20 (dt, J = 18.8, 6.3, 1 H, HC(2)), 5.59 (dt, J = 18.8, 1.5, 1 H, HC(1)), 2.13 (qd,

|                              | J = 7.1, 1.5, 2 H, HC(3)), 1.52 (brs, OH, 1 H), 1.40 (qn, $J = 7.3, 2$ H, H <sub>2</sub> C(4)), |                                                                                                                              |                         |                                          |  |  |
|------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------|--|--|
|                              | 1.29 (m, 4 H                                                                                    | 1.29 (m, 4 H, H <sub>2</sub> C(5) and H <sub>2</sub> C(6)), 0.97 (t, $J = 7.8$ , 6 H, 2H <sub>3</sub> C(2')), 0.88 (t, $J =$ |                         |                                          |  |  |
|                              | 7.1, 3 H, H <sub>3</sub> C                                                                      | C(7)), 0.63 (q, J                                                                                                            | <i>I</i> = 8.1, 4 H, 2H | $(_{2}C(1'))$                            |  |  |
| <sup>13</sup> <u>C NMR</u> : | (126 MHz, C                                                                                     | CDCl <sub>3</sub> )                                                                                                          |                         |                                          |  |  |
|                              | 150.3 (C1), 2                                                                                   | 125.6 (C(2)), 3                                                                                                              | 6.7 (C(3)), 31.4        | 4 (C(4)), 28.2 (C(5)), 22.5 (C(6)), 14.0 |  |  |
|                              | (C(7)), 6.5 (C                                                                                  | C(2')), 6.4 (C( 2                                                                                                            | !'))                    |                                          |  |  |
| <u>IR</u> :                  | (NaCl)                                                                                          |                                                                                                                              |                         |                                          |  |  |
|                              | 3294 (s, br), 2927 (s), 2956 (s), 2875 (s), 1618 (s), 1618 (s), 1460 (s), 1238 (m),             |                                                                                                                              |                         |                                          |  |  |
|                              | 995 (s), 837 (                                                                                  | (s)                                                                                                                          |                         |                                          |  |  |
| <u>MS</u> :                  | (EI, 70 eV)                                                                                     |                                                                                                                              |                         |                                          |  |  |
|                              | 200 (M <sup>+</sup> , 0.6), 171 (100), 143 (6), 115 (3), 95 (7), 75 (50), 61 (5)                |                                                                                                                              |                         |                                          |  |  |
| <u>TLC</u> :                 | $R_f 0.16$ (pentane/Et <sub>2</sub> O, 9/1) [KMnO <sub>4</sub> ]                                |                                                                                                                              |                         |                                          |  |  |
| Analysis:                    | C <sub>11</sub> H <sub>24</sub> OSi (                                                           | 200.39)                                                                                                                      |                         |                                          |  |  |
|                              | Calc.:                                                                                          | C, 65.93;                                                                                                                    | H, 12.07;               | Si, 14.02%                               |  |  |
|                              | Found:                                                                                          | C, 65.63;                                                                                                                    | H, 12.26;               | Si, 14.24%                               |  |  |

(*E*)-Di-*tert*-butyl-(1-heptenyl)silanol (5)



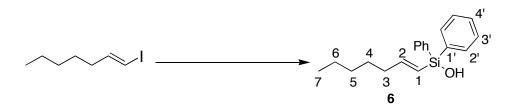
Hexachloroplatinic acid (62 mg, 132 µmol, 0.01 equiv) was dissolved in 1 mL of 2propanol and 10 mL of diethyl ether in a dry round-bottom flask equipped with a stir bar and a reflux condenser under an atmosphere of dry N2. Chloro(di-tert-butyl)silane (3.4 mL, 16.5 mmol, 1.1 equiv) was then added and the mixture was heated to reflux for 1 h. A solution of 1heptyne (1.44 g, 15 mmol) in 5 mL of dry ether was then added dropwise over 10 min. After the addition was complete, the mixture was heated in an oil bath to reflux for 24 h. After cooling to room temperature, the solvent was evaporated in vacuo and the residual oil was distilled (105 °C at 0.8 mmHg) to give 3.64 g (89%) of the chlorosilane as a colorless liquid.

The intermediate chlorosilane (3.64 g, 13.3 mmol) was dissolved in 50 mL of THF and a

sat. aq. solution of NaHCO<sub>3</sub> (30 mL) was added. The mixture was stirred at 50 °C overnight. The layers were separated and the aqueous phase was washed with diethyl ether (2 x 20 mL). Combined organic layers were washed with water (2 x 20 mL) and brine (2 x 20 mL) and dried (MgSO<sub>4</sub>), filtered, and the solvents evaporated in vacuo. The resulting oil was purified by column chromatography (SiO<sub>2</sub>, hexane/EtOAc, 9/1) and distilled to give 2.57 g (67%) of **5** as a colorless oil.

Data for 5:

<u>bp</u>: 117 °C (0.8 mmHg)


<sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>) 6.22 (dt, J = 18.6, 6.3, 1 H, HC(2)), 5.63 (dt, J = 18.8, 1.5, 1 H, HC(1)), 2.18 (qd, J = 7.1, 1.2, 2 H, H<sub>2</sub>C(3)), 1.44 (qn, J = 7.3, 2 H, H<sub>2</sub>C(4)), 1.40 (s, OH, 1 H), 1.32 (m, 4 H, H<sub>2</sub>C(5) and H<sub>2</sub>C(6)), 1.02 (s, 18 H, 6H<sub>3</sub>C(2')), 0.91 (t, J = 6.6, 3 H, H<sub>3</sub>C(7))

- <sup>13</sup><u>C NMR</u>: (126 MHz, CDCl<sub>3</sub>) 150.1 (C(1)), 126.7 (C(2)), 36.8 (C(3)), 31.3 (C(4)), 28.4 (C(5)), 27.6 (C(2')), 22.5 (C(6)), 19.8 (C(1')), 14.0 (C(7))
  - <u>IR</u>: (NaCl) 3469 (s, br), 2966 (s), 2856 (s), 1616 (s), 1470 (s), 1363 (s), 823 (s) <u>MS</u>: (EI, 70 eV) 256 (M<sup>+</sup>, 1.0), 199 (83), 181 (20), 157 (26), 129 (99), 115 (67), 75 (100), 61 (37)
  - <u>TLC</u>:  $R_f 0.32$  (pentane/Et<sub>2</sub>O, 9/1) [KMnO<sub>4</sub>]

<u>Analysis</u>: C<sub>15</sub>H<sub>32</sub>OSi (256.50)

| Calc.: | C, 70.24; | H, 12.58% |
|--------|-----------|-----------|
| Found: | C, 70.11; | H, 12.88% |

#### (E)-Diphenyl-(1-heptenyl)silanol (6)



To a solution of (E)-1-iodo-1-heptene (2.29 g, 10.2 mmol) in diethyl ether (25 mL) under dry N<sub>2</sub> at -78 °C, was added *n*-butyllithium (6.6 mL, 10.2 mmol, 1.55 M, 1.0 equiv) over 10 min and the reaction mixture was stirred at -78 °C for 30 min. A solution of diphenylchlorosilane (2.0 mL, 10.2 mmol, 1.0 equiv) in diethyl ether (10 mL) was then added over 5 min at -78 °C. After stirring for 30 min at -78 °C, the mixture was warmed to room temperature and was stirred for 2 h, during which time a white precipitate formed. The solution was then cooled to 0 °C and was quenched (ice/sat. aq. ammonium chloride, 1/1, 40 mL). The aqueous phase was extracted with pentane (2 × 20 mL) and the combined organic extracts were washed with brine (2 × 20 mL). The organic layer was dried (MgSO<sub>4</sub>) and filtered. The solvent was then evaporated in vacuo to give an yellow oil which was distilled (146 °C at 0.8 mmHg) to afford 2.28 g (79%) of the hydrosilane.

The intermediate silane (1.73 g, 6.16 mmol) was dissolved in 10 mL of diethyl ether and  $Bu_4N^+OH^-$  in MeOH was slowly dropwise over 5 min, with vigorous gas evolution. After being stirred for 10 min the mixture was quenched in a mixture of ether and water (75 mL, 30 mL). The phases were separated and the aqueous layer was extracted with ether (2 x 25 mL). The combined organic extracts were washed with water (2 x 15 mL) and brine (2 x 15 mL) then were dried (MgSO<sub>4</sub>), filtered, and the solvent was evaporated in vacuo. The resulting oil was purified by distillation to give 1.66 g (92%) of **6** as colorless oil.

Data for 6:


<u>bp</u>: 165 °C (0.8 mmHg)

<sup>1</sup><u>H NMR</u>:  $(500 \text{ MHz}, \text{CDCl}_3)$ 

7.65 (dd, J = 7.7, 1.3, 4 H, HC(2')), 7.39 (m, 6 H, HC(3') and HC(4')), 6.33 (dt, J = 18.7, 2.9, 1 H, HC(2)), 5.99 (d, J = 18.7, 1 H, HC(1)), 2.22 (s, OH, 1 H), 2.21 (qd, J = 7.7, 1.5, 2 H, H<sub>2</sub>C(3)), 1.44 (qn, J = 7.3, 2 H, H<sub>2</sub>C(4)), 1.31 (m, 4 H, H<sub>2</sub>C(5) and H<sub>2</sub>C(6)), 0.89 (t, J = 6.9, 3 H, H<sub>3</sub>C(7))

| <sup>13</sup> <u>C NMR</u> : | $(126 \text{ MHz}, \text{CDCl}_3)$                                                    |                                                                 |                |                                         |  |
|------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------|-----------------------------------------|--|
|                              | 153.7 (C1), 136.0 (C(1')), 134.6 (C(2')), 129.9 (C(4')), 127.8 (C(3')), 124.0 (C(2)), |                                                                 |                |                                         |  |
|                              | 36.7 (C(3)), 3                                                                        | 36.7 (C(3)), 31.4 (C(4)), 28.0 (C(5)), 22.5 (C(6)), 14.0 (C(7)) |                |                                         |  |
| <u>IR</u> :                  | (NaCl)                                                                                |                                                                 |                |                                         |  |
|                              | 3278 (s, br),                                                                         | 3068 (s), 3049                                                  | (s), 2956 (s), | 2927 (s), 2856 (s), 1616 (s), 1429 (s), |  |
|                              | 1118 (s), 997                                                                         | (s), 849 (s), 87                                                | 8 (s)          |                                         |  |
| <u>MS</u> :                  | (EI, 70 eV)                                                                           |                                                                 |                |                                         |  |
|                              | 296 (M <sup>+</sup> , 16), 239 (17), 225 (65), 199 (100), 123 (59), 77 (17), 58 (9)   |                                                                 |                |                                         |  |
| <u>TLC</u> :                 | $R_f 0.21$ (pentane/Et <sub>2</sub> O, 9/1) [KMnO <sub>4</sub> + UV]                  |                                                                 |                |                                         |  |
| <u>CG</u> :                  | <i>t</i> <sub>R</sub> 4.93 min (>99%) (HP5, injector 225 °C, column 200 °C, 15 psi)   |                                                                 |                |                                         |  |
| Analysis:                    | C <sub>19</sub> H <sub>20</sub> O <sub>1</sub> Si (172.34)                            |                                                                 |                |                                         |  |
|                              | Calc.:                                                                                | C, 76.97;                                                       | H, 8.16;       | Si, 9.47%                               |  |
|                              | Found                                                                                 | C, 76.75;                                                       | H, 8.16;       | Si, 9.67%                               |  |

#### (*E*)-(1-Heptenyl)triethoxysilane (11)



Triethoxysilane (970  $\mu$ L 5.3 mmol, 1.05 equiv) was combined with a solution of platinum(0)-DVDS-*t*-Bu<sub>3</sub>P (50  $\mu$ L) in xylene. The solution was cooled to 0 °C and 1-heptyne (655  $\mu$ L, 5.0 mmol) was added. The ice bath was then removed and the reaction was stirred for 4 h. All volatile materials were then removed by evaporation under high vacuum and the residual oil was Kugelrohr distilled at 150 °C (3 mmHg). The distillate was purified by radial chromatography (SiO<sub>2</sub>, pentane/Et<sub>2</sub>O, 19/1) and then was distilled on a Kugelrohr to give 690 mg (52%) of **11** as a colorless oil.

Data for 11:

<u>bp</u>: 125 °C (0.4 mmHg, ABT)

<sup>1</sup><u>H NMR</u>:  $(500 \text{ MHz}, \text{CDCl}_3)$ 

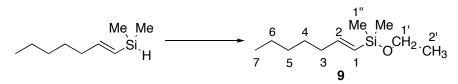
6.42 (dt, *J* = 17.9, 6.3, 1 H, HC(2)), 5.40 (dt, *J* = 18.2, 1.6, 1 H, HC(1)), 3.81 (q, *J* = 7.1, 6 H, HC(1'), 2.13 (qd, *J* = 7.4, 1.5, 2 H, H<sub>2</sub>C(3)), 1.41 (qn, *J* = 7.3, 2 H,

 $H_2C(4)$ , 1.29 (m, 4 H,  $H_2C(5)$  and  $H_2C(6)$ ), 1.22 (t, J = 7.1, 9 H,  $3H_3C(2')$ ), 0.88  $(t, J = 6.6, 3 H, H_3C(7))$ <sup>13</sup>C NMR:  $(126 \text{ MHz}, \text{CDCl}_3)$ 154.3 (C(1)), 118.9 (C(2)), 58.6 (C(1'), 36.7 (C(3)), 31.5 (C(4)), 28.1 (C(5)), 22.6 (C(6)), 18.4 (C(2')), 14.2 (C(7)) IR: (NaCl) 2973 (s), 2927 (s), 1619 (m), 1442 (w), 1390 (m), 1166 (s), 1105 (s), 958 (s) <u>MS</u>: (EI, 70 eV) 260 (M<sup>+</sup>, 2), 245 (5), 215 (16), 189 (9), 163 (100), 135 (10), 119 (25) TLC:  $R_f 0.23$  (pentane/Et<sub>2</sub>O, 19/1) [KMnO<sub>4</sub>] *t*<sub>R</sub> 7.74 min (>99%) (HP5, injector 225 °C, column 180 °C, 15 psi) <u>CG</u>: Analysis: C<sub>13</sub>H<sub>28</sub>O<sub>3</sub>Si (260.18) Calc.: C. 59.96: H, 10.85% C, 59.87; Found H, 11.13%

### (E)-Diethoxy-(1-heptenyl)methylsilane (10)



Diethoxymethylsilane (850  $\mu$ L. 5.3 mmol, 1.05 equiv) was combined with a solution of platinum(0)-DVDS-*t*-Bu<sub>3</sub>P (50  $\mu$ L) in xylene. The reaction was cooled to 0 °C and 1-heptyne (655  $\mu$ L, 5.0 mmol) was added. The ice bath was then removed and the reaction was stirred for 4 h. All volatile materials were then removed by evaporation under high vacuo and the residual oil was distilled. The resulting oil was purified by radial chromatography (SiO<sub>2</sub>, pentane/Et<sub>2</sub>O, 19/1) and then was distilled to give 563 mg (49%) of **10** as a colorless oil.


### Data for 10:

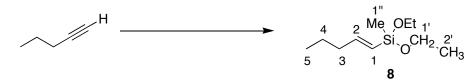
<u>bp</u>: 115 °C (0.4 mmHg, ABT)

<sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>) 6.29 (dt, J = 18.5, 6.2, 1 H, HC(2)), 5.52 (dt, J = 18.5, 1.7, 1 H, HC(1)), 3.76 (q, J = 7.1, 4 H, 2H<sub>2</sub>C(1'), 2.12 (qd, J = 7.5, 1.5, 2 H, H<sub>2</sub>C(3)), 1.39 (qn, J = 7.2, 2 H,

| H <sub>2</sub> C(4)), 1.2        | 7 (m, 4 H, H <sub>2</sub> C                                                                                                                                                                                                                                       | C(5) and H <sub>2</sub> C(6)), 1.19 (t, $J = 7.1, 6 \text{ H}, 3\text{H}_2\text{C}(2')$ ), 0.87                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (t, J = 7.0, 3)                  | $H, H_3C(7)), 0.1$                                                                                                                                                                                                                                                | 16 (s, 3 H, H <sub>3</sub> C(1"))                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (126 MHz, C                      | CDCl <sub>3</sub> )                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 152.3 (C(1))                     | , 123.5 (C(2)),                                                                                                                                                                                                                                                   | 58.3 (C(1'), 36.7 (C(3)), 31.5 (C(4)), 28.2 (C(5)), 22.7                                                                                                                                                                                                                                                                                                                                                                                           |
| (C(6)), 18.5 (                   | (C(2')), 14.2 (C                                                                                                                                                                                                                                                  | C(7)), -4.2 (C(1"))                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (NaCl)                           |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2970 (s), 292                    | 27 (s), 2875 (s                                                                                                                                                                                                                                                   | ), 1620 (m), 1458 (w), 1390 (m), 1255 (m), 1105 (s),                                                                                                                                                                                                                                                                                                                                                                                               |
| 1079 (s), 952                    | 2 (s), 823 (s)                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (EI, 70 eV)                      |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 230 (M+, 1),                     | 215 (100), 185                                                                                                                                                                                                                                                    | 5 (9), 171 (19), 133 (54), 89 (12), 77 (13)                                                                                                                                                                                                                                                                                                                                                                                                        |
| $R_f 0.22$ (pent                 | ane/Et <sub>2</sub> O, 19/1                                                                                                                                                                                                                                       | ) [KMnO <sub>4</sub> ]                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <i>t</i> <sub>R</sub> 5.35 min ( | >99%) (HP5, i                                                                                                                                                                                                                                                     | njector 225 °C, column 180 °C, 15 psi)                                                                                                                                                                                                                                                                                                                                                                                                             |
| $C_{12}H_{26}O_2Si$              | (230.17)                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Calc.:                           | C, 62.56;                                                                                                                                                                                                                                                         | H, 11.38%                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Found:                           | C, 62.37;                                                                                                                                                                                                                                                         | Н, 11.33%                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                  | (t, $J = 7.0, 3$<br>(126 MHz, C<br>152.3 (C(1)),<br>(C(6)), 18.5 (<br>(NaCl)<br>2970 (s), 292<br>1079 (s), 952<br>(EI, 70 eV)<br>230 (M <sup>+</sup> , 1),<br>$R_f 0.22$ (pent<br>$t_R$ 5.35 min (<br>C <sub>12</sub> H <sub>26</sub> O <sub>2</sub> Si<br>Calc.: | (t, $J = 7.0, 3$ H, H <sub>3</sub> C(7)), 0.<br>(126 MHz, CDCl <sub>3</sub> )<br>152.3 (C(1)), 123.5 (C(2)),<br>(C(6)), 18.5 (C(2')), 14.2 (C<br>(NaCl)<br>2970 (s), 2927 (s), 2875 (s<br>1079 (s), 952 (s), 823 (s)<br>(EI, 70 eV)<br>230 (M <sup>+</sup> , 1), 215 (100), 185<br>$R_f$ 0.22 (pentane/Et <sub>2</sub> O, 19/1<br>$t_R$ 5.35 min (>99%) (HP5, if<br>C <sub>12</sub> H <sub>26</sub> O <sub>2</sub> Si (230.17)<br>Calc.: C, 62.56; |

### (*E*)-Dimethylethoxy-(1-heptenyl)silane (9)




Sodium (16 mg, 0.7 mmol, 0.01 equiv) was added to 10 mL of dry ethanol and the resulting solution was stirred for 30 min. The solution was cooled to -4 °C (internal temperature) and the silane (1.09 g, 7.0 mmol) was slowly added whereupon gas evolution was observed. After being stirred for 1 h at room temperature, the mixture was diluted with ether (50 mL) and then was filtered through a plug of Celite. The solvent was evaporated in vacuo and the resulting oil was distilled to give 952 mg (68%) of **9** as colorless oil.

#### Data for 9:

<u>bp</u>: 120 °C (0.6 mmHg, ABT) <sup>1</sup><u>H NMR</u>: (400 MHz, CDCl<sub>3</sub>) 6.17 (dt, *J* = 18.5, 6.1, 1 H, HC(2)), 5.61 (dt, *J* = 18.5, 1.7, 1 H, HC(1)), 3.65 (q, *J* 

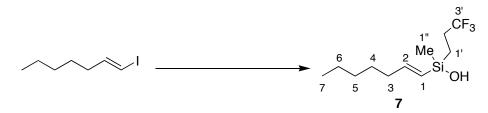
|                              | = 7.1, 2 H, H <sub>2</sub> C(1'), 2.12 (qd, $J$ = 7.5, 1.5, 2 H, H <sub>2</sub> C(3)), 1.40 (qn, $J$ = 7.5, 2 H,             |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|                              | HC(4)), 1.29 (m, 4 H, H <sub>2</sub> C(5) and H <sub>2</sub> C(6)), 1.18 (t, $J = 7.1, 3$ H, H <sub>3</sub> C(2')), 0.88 (t, |
|                              | <i>J</i> = 7.0, 3 H, H <sub>3</sub> C(7)), 0.16 (s, 3 H, H <sub>3</sub> C(1"))                                               |
| <sup>13</sup> <u>C NMR</u> : | (101 MHz, CDCl <sub>3</sub> )                                                                                                |
|                              | 150.1 (C(1)), 127.2 (C(2)), 58.5 (C(1'), 36.8 (C(3)), 31.6 (C(4)), 28.4 (C(5)), 22.7                                         |
|                              | (C(6)), 18.7 (C(2')), 14.2 (C(7)), -1.5 (C(1"))                                                                              |
| <u>IR</u> :                  | (NaCl)                                                                                                                       |
|                              | 2969 (s), 2927 (s), 2873 (s), 1618 (m), 1460 (w), 1390 (w), 1250 (s),1109 (s),                                               |
|                              | 1080 (s), 993 (s), 837 (s)                                                                                                   |
| <u>MS</u> :                  | (EI, 70 eV)                                                                                                                  |
|                              | 200 (M+, >1%), 185 (100), 141 (10), 103 (26)                                                                                 |
| <u>TLC</u> :                 | $R_f 0.30$ (hexane/EtOAc, 20/1) [KMnO <sub>4</sub> ]                                                                         |
| <u>CG</u> :                  | <i>t</i> <sub>R</sub> 5.04 min (>99%) (HP5, injector 225 °C, column 170 °C, 15 psi)                                          |
| HRMS:                        | calcd for C <sub>11</sub> H <sub>24</sub> O <sub>1</sub> Si: 200.1596; found: 200.1601                                       |

### (E)-Diethoxy-(1-pentenyl)methylsilane (8)



Diethoxymethylsilane (850  $\mu$ L. 5.3 mmol, 1.05 equiv) was combined with a solution of platinum(0)-DVDS-*t*-Bu<sub>3</sub>P (50  $\mu$ L) in xylene. The solution was cooled to 0 °C and 1-pentyne (492  $\mu$ L. 5.0 mmol) was added. The ice bath was then removed and the reaction was stirred for 4 h. All volatile materials were then removed by evaporation under high vacuo and the residual oil was distilled. The resulting oil was purified by radial chromatography (SiO<sub>2</sub>, pentane/Et<sub>2</sub>O, 19/1) and distilled to give 450 mg (43%) of **8** as colorless oil.

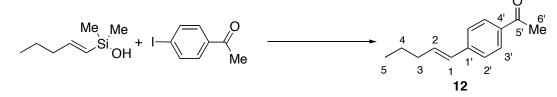
Data for 8:


<u>bp</u>: 95 °C (0.8 mmHg, ABT)

<sup>1</sup><u>H NMR</u>:  $(400 \text{ MHz}, \text{CDCl}_3)$ 

6.28 (dt, *J* = 18.7, 6.4, 1 H, HC(2)), 5.52 (dt, *J* = 19.0, 1.4, 1 H, HC(1)), 3.76 (q, *J* = 7.0, 4 H, 2H<sub>2</sub>C(1'), 2.11 (qd, *J* = 7.6, 1.5, 2 H, H<sub>2</sub>C(3)), 1.43 (sext, *J* = 7.3, 2 H,

|                              | $H_2C(4)), 1.2$                                   | 1 (t, $J = 7.0, 6$          | H, 2H <sub>3</sub> C(2')), 0.89 (t, <i>J</i> = 7.3, 3 H, H <sub>3</sub> C(5)), 0.16 (s, 3 |
|------------------------------|---------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------|
|                              | H, H <sub>3</sub> C(1"))                          |                             |                                                                                           |
| <sup>13</sup> <u>C NMR</u> : | (100 MHz, C                                       | DCl <sub>3</sub> )          |                                                                                           |
|                              | 151.9 (C(1)),                                     | 123.8 (C(2)),               | 58.4 (C(1'), 38.8 (C(3)), 21.7 (C(4)), 18.5 (C(2')), 13.8                                 |
|                              | (C(5)), -4.2 (                                    | C(1"))                      |                                                                                           |
| <u>IR</u> :                  | (NaCl)                                            |                             |                                                                                           |
|                              | 2969 (m), 29                                      | 27 (m), 2875 (i             | m), 1620 (w), 1390 (w), 1390 (m), 1255 (w), 1166 (s),                                     |
|                              | 1105 (s), 107                                     | 8 (s), 951 (s), 8           | 306 (s)                                                                                   |
| <u>MS</u> :                  | (EI, 70 eV)                                       |                             |                                                                                           |
|                              | 202 (M+, 2.9                                      | ), 187 (100), 14            | 43 (29.3), 133 (37.0), 89 (11.2), 77 (14.0)                                               |
| <u>TLC</u> :                 | $R_f 0.22$ (penta)                                | ane/Et <sub>2</sub> O, 19/1 | ) [KMnO4]                                                                                 |
| Analysis:                    | C <sub>10</sub> H <sub>22</sub> O <sub>2</sub> Si | (202.14)                    |                                                                                           |
|                              | Calc.:                                            | C, 59.34;                   | H, 10.97%                                                                                 |
|                              | Found                                             | C, 59.10;                   | H, 11.33%                                                                                 |
|                              |                                                   |                             |                                                                                           |


#### (E)-Trifluoropropylmethyl-(1-heptenyl)silanol (7)



To a solution of (*E*)-1-iodo-1-heptene (2.0 g, 8.9 mmol) in dry ether (15 mL) under dry N<sub>2</sub> at -78 °C was added a solution of *n*-butyllithium (5.76 mL, 8.9 mmol, 1.55 M in hexane, 1.0 equiv) dropwise over 10 min. The reaction mixture was stirred at -78 °C for 1 h. Then a solution of methyl(1,1,1-trifluoropropyl)cyclotrisiloxane (1.39 g, 2.9 mmol, 0.33 equiv) in dry ether (5 mL) was added over 5 min at -78 °C. The mixture was warmed to room temperature and was stirred for 12 h. The solution was then cooled to 0 °C and was quenched with water (20 mL). The aqueous phase was extracted with ether (3 × 25 mL) and the combined organic extracts were washed with water (1 × 25 mL) and brine (2 × 30 mL). The organic layer was dried with MgSO<sub>4</sub> (anhydrous) and was filtered. The solvent was then evaporated in vacuo to give a yellow residue, which was purified by distillation to afford 1.695 g (75%) of 7 as colorless oil.

| Data for 7:                  |                                |                              |                                                                                     |  |
|------------------------------|--------------------------------|------------------------------|-------------------------------------------------------------------------------------|--|
| <u>bp</u> :                  | 105 °C (0.4                    | mmHg, ABT)                   |                                                                                     |  |
| <sup>1</sup> <u>H NMR</u> :  | (500 MHz, CDCl <sub>3</sub> )  |                              |                                                                                     |  |
|                              | 6.22 (dt, <i>J</i> =           | 18.6, 6.2, 1 H,              | , HC(2)), 5.58 (dt, J = 18.6, 1.5, 1 H, HC(1)), 2.13 (qd,                           |  |
|                              | J = 7.3, 1.5,                  | 2 H, H <sub>2</sub> C(3)),   | 2.06 (m, 2 H, H <sub>2</sub> C(2')) 1.40 (qn, $J = 7.3, 2$ H, H <sub>2</sub> C(4)), |  |
|                              | 1.29 (m, 4 H                   | H, $H_2C(5)$ and             | $H_2C(6)$ ), 0.89 (t, $J = 7.1$ , 3 H, $H_3C(7)$ ), 0.85 (m, 2 H,                   |  |
|                              | H <sub>2</sub> C(1')), 0.2     | 21 (s, 3 H, H <sub>3</sub> C | 5(1"))                                                                              |  |
| <sup>13</sup> <u>C NMR</u> : | (126 MHz, 0                    | CDCl <sub>3</sub> )          |                                                                                     |  |
|                              | 151.6 (C(1))                   | ), 128.0 (q, <i>J</i> =      | = 277, (C(3')), 125.8 (C(2)), 36.8 (C(3)), 31.5 (C(4)),                             |  |
|                              | 28.2 (q, J =                   | 30 Hz, (C(2'))               | ), 28.2 (C(5)), 22.6 (C(6)), 14.1 (C(7)), 8.7 (d, $J = 1.8$                         |  |
|                              | Hz. (C1')), -                  | 1.8 (C(1"))                  |                                                                                     |  |
| <u>IR</u> :                  | (NaCl)                         |                              |                                                                                     |  |
|                              | 3269 (s), 29                   | 60 (s), 2931 (s              | s), 2859 (s), 1618 (s), 1446 (m), 1365 (m), 1315 (m),                               |  |
|                              | 1265 (s), 120                  | 09 (s), 1126 (s)             | , 995 (m), 899 (s), 854 (s)                                                         |  |
| <u>MS</u> :                  | (EI, 70 eV)                    |                              |                                                                                     |  |
|                              | 157 (M-97,                     | $CH_2CH_2CF_3, 1$            | 100), 95 (12), 79 (24), 61 (41)                                                     |  |
| <u>TLC</u> :                 | $R_f 0.34$ (hex                | ane/EtOAc, 8/1               | ) $[KMnO_4]$                                                                        |  |
| <u>CG</u> :                  | <i>t</i> <sub>R</sub> 4.93 min | (>99%) (HP5, 1               | injector 225 °C, column 200 °C, 15 psi)                                             |  |
| <u>Analysis</u> :            | $C_{11}H_{21}O_1F_2$           | 3 Si (230.17)                |                                                                                     |  |
|                              | Calc.:                         | C, 51.94;                    | Н, 8.33%                                                                            |  |
|                              | Found                          | C, 52.02;                    | H, 8.67%                                                                            |  |
|                              |                                |                              |                                                                                     |  |

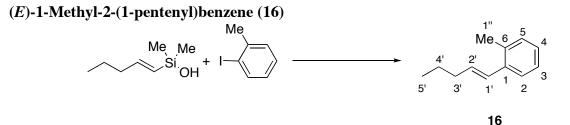
(E)-1-[4-(1-Pentenyl)phenyl]ethanone (12)



(*E*)-Dimethyl-(1-pentenyl)silanol ((*E*)-**1** (317 mg, 2.2 mmol, 1.1 equiv) was added to a solution of TBAF (4.0 mL, 1.0 M in THF, 2 equiv) and Pd(dba)<sub>2</sub> (58 mg. 0.1 mmol, 0.05 equiv). 4-Iodoacetophenone (493 mg, 2.0 mmol) was added and the mixture was stirred for 10 min at room temperature. The reaction mixture was then filtered through a short silica gel column (20 g). The plug was washed with hexane/EtOAc, 4/1 (200 mL) and the solvent was evaporated in vacuo. The residue was purified by column chromatography (Reverse Phase C18, MeOH/H<sub>2</sub>O, 9/1) and distillation to afford 331 mg (88%) of **12** as colorless oil.

### Data for 12:

<u>bp</u>: 130 °C (0.8 mmHg, ABT)


- <sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>) 7.89 (d, J = 8.5, 2 H, HC(3')), 7.41 (d, J = 8.3, 2 H, HC(2')), 6.39 (m, 2 H HC(1) and HC(2)), 2.58 (s, 3 H, H<sub>3</sub>C(6')), 2.26 (q, J = 5.9, 2 H, H<sub>2</sub>C(3)), 1.53 (sept, J =7.3, 2 H, H<sub>2</sub>C(4)), 0.97 (t, J = 7.3, 3 H, H<sub>3</sub>C(5))
- <sup>13</sup><u>C NMR</u>: (101 MHz, CDCl<sub>3</sub>) 197.6 (C(5')), 142.6 (C(4')), 135.4 (C(1')), 134.3 (C(2)), 129.1 (C(1)), 128.7 (C(3')), 125.9 (C(2')), 35.2 (C(3)), 26.5 (C(6')), 22.3 (C(4)), 13.7 (C(5))
  - <u>IR</u>: (NaCl) 2960 (s), 2931 (s), 2872 (s), 1680 (s), 1603 (s), 1412 (s), 1358 (s), 1269 (s), 1180 (s), 966 (s), 850 (s)

<u>MS</u>: (EI, 70 eV) 188 (M<sup>+</sup>, 75), 173 (100), 159 (6), 145 (16), 131 (60), 115 (73), 103 (18), 91 (18), 77 (22), 63 (19)

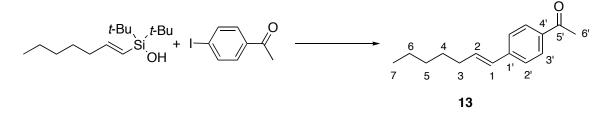
<u>TLC</u>:  $R_f 0.45$  (hexane/EtOAc, 4/1) [UV + KMnO<sub>4</sub>]

<u>Analysis</u>:  $C_{13}H_{16}O(188.27)$ 

| Calc.: | C, 82.94; | H, 8.57% |
|--------|-----------|----------|
| Found  | C, 82.65; | H, 8.57% |



(*E*)-Dimethyl(1-pentenyl)silanol ((*E*)-**1** (158 mg, 1.1 mmol, 1.1 equiv) was added to a solution of TBAF (2.0 mL, 1 M in THF, 2.0 mmol, 2 equiv) and Pd(dba)<sub>2</sub> (58 mg. 0.1 mmol, 0.05 equiv). 2-Iodotoluene (127  $\mu$ L, 1.0 mmol) was added and the mixture was stirred for 30 min at room temperature. The reaction mixture was then filtered through a short silica gel column (20 g). The plug was washed with hexane/EtOAc, 4/1 (200 mL) and the solvent was evaporated in vacuo. The residue was purified by column chromatography (Reverse Phase C18, MeOH/H<sub>2</sub>O 9/1) and distillation to afford 128 mg (80%) of **16** as colorless oil.

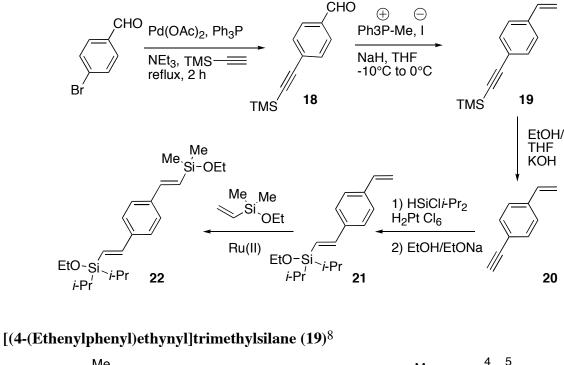

#### Data for 16:

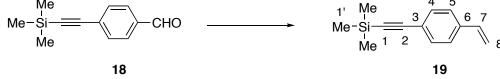
- <u>bp</u>: 100 °C (5.0 mmHg, ABT)
- <sup>1</sup><u>H NMR</u>:  $(500 \text{ MHz}, \text{CDCl}_3)$

7.42 (d, J = 7.3, 1 H, HC(6)), 7.20 (m, 3 H HC(3), HC(4) and HC(5)), 6.57 (d, J = 15.6, 1 H, HC(1')), 6.09 (dt, J = 15.6, 6.9, 1 H, HC(2')), 2.33 (s, 3 H, H<sub>3</sub>C(1'')), 2.21 (qd, J = 7.1, 1.2, 2 H, H<sub>2</sub>C(3')), 1.51 (sept, J = 7.2, 2 H, H<sub>2</sub>C(4')), 0.96 (t, J = 7.2, 3 H, H<sub>3</sub>C(5'))

- <sup>13</sup><u>C NMR</u>: (126 MHz, CDCl<sub>3</sub>)
  137.0 (C(1)), 134.8 (C(2)), 132.3 (C(1')), 130.1 (C(3')), 127.7 (C(2')), 126.6 (C(4)), 125.9 (C(6)), 125.4 (C(5)), 35.3 (C(3')), 22.5 (C(4')), 16.7 (C(1")), 13.6 (C(5'))
  - <u>IR</u>: (NaCl) 3022 (m), 2958 (s), 2927 (s), 1602 (w), 1485 (m), 1461 (m), 1379 (w), 1259 (w), 1045 (m), 964 (s)
  - <u>MS</u>: (EI, 70 eV) 160 (M<sup>+</sup>, 44), 131 (100), 115 (21), 91 (31)
  - <u>TLC</u>:  $R_f 0.87$  (SiO<sub>2</sub> hexane) [UV + KMnO<sub>4</sub>]
  - <u>CG</u>:  $t_{\rm R}$  6.32 min (96%) (HP5, injector 225 °C, column 200 °C, 15 psi)
  - <u>HRMS</u>: calcd for C<sub>12</sub>H<sub>16</sub>: 160.1252; found: 160.1254







(*E*)-Di-*tert*-butyl(1-heptenyl)silanol **5** (307 mg, 1.2 mmol, 1.2 equiv) was added to a solution of TBAF (2.0 mL, 1 M in THF, 2.0 mmol, 2.0 equiv) and  $Pd(dba)_2$  (28.7 mg. 0.05 mmol, 0.05 equiv). 4-Iodoacetophenone (246 mg, 1.0 mmol) was added to the mixture. The mixture was stirred at 50 °C for 19 h. The reaction mixture was then filtered through a short silica gel column (20 g). The plug was washed with hexane/EtOAc, 4/1 (50 mL) and the solvent was evaporated in vacuo. The residue was purified by column chromatography (SiO<sub>2</sub>, hexane/EtOAc, 9/1 then hexane/EtOAc, 4/1) to afford product **13** and 29 mg (12%) of 1,1'-[1,1'-biphenyl]-4,4'-diyl-bisethanone (homocoupling product). Further purification by Kugelrohr distillation afforded 331 mg (59%) of **13** as colorless oil.<sup>3</sup>

<u>Data for 13</u>:

- <sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>) 7.89 (d, J = 8.5, 2 H, HC(3')), 7.41 (d, J = 8.3, 2 H, HC(2')), 6.39 (m, 2 H, HC(1) and HC(2)), 2.58 (s, 3 H, H<sub>3</sub>C(6')), 2.26 (q, J = 5.9, 2 H, H<sub>2</sub>C(3)), 1.53 (sept, J =7.3, 2 H, H<sub>2</sub>C(4)), 0.97 (t, J = 7.3, 3 H, H<sub>3</sub>C(5))
- <sup>13</sup><u>C NMR</u>: (101 MHz, CDCl<sub>3</sub>) 197.6 (C(5')), 142.6 (C(4')), 135.4 (C(1')), 134.3 (C(2)), 129.1 (C(1)), 128.7 (C(3')), 125.9 (C(2')), 35.2 (C(3)), 26.5 (C(6')), 22.3 (C(4)), 13.7 (C(5))
  - <u>TLC</u>:  $R_f 0.45$  (hexane/EtOAc, 4/1) [UV + KMnO<sub>4</sub>]
  - <u>CG</u>:  $t_{\rm R}$  8.30 min (>99%) (HP5, injector 225 °C, column 250 °C, 15 psi)

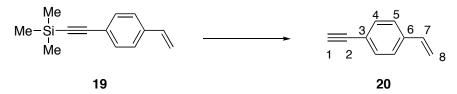
Preparation of Ethoxy(di-(1-methylethyl)) 2-[4-[(*E*)-2-(Ethoxydimethylsilyl)ethenyl]phenyl]ethenylsilane





To a suspension of triphenylphosphonium iodide (4.85 g, 12.0 mmol, 1.1 equiv) in 10 mL of THF at -20 °C, was added a solution of *n*-butyllithium (7.75 mL, 1.55 M in hexane, 12.0 mmol, 1.1 equiv). The reaction was stirred for 30 min at -10 °C, then for 1 h at room temperature. The mixture was cooled to -20 °C and a solution of aldehyde **18** (2.0 g, 10.0 mmol) in 5 mL of THF was slowly added. The reaction was allowed to warm to room temperature and was stirred for 1 h whereupon the reaction mixture was quenched with water (30 mL). The aqueous phase was extracted with ether (3 × 25 mL) and the combined organic extracts were washed with water (1 × 25 mL) and brine (2 × 30 mL). The organic layer was dried with MgSO<sub>4</sub> (anhydrous) and filtered. After evaporation of the solvent, the residue was purified by column chromatography (SiO<sub>2</sub>, hexane) and distillation to afford 1.60 g (81%) of **19**<sup>8</sup> as colorless oil.

### Data for 19:


<u>mp</u>: 90 °C (0.4 mmHg, ABT)

<sup>1</sup><u>H NMR</u>: (400 MHz, CDCl<sub>3</sub>) 7.42 (d, J = 8.3, 2 H, HC(4)), 7.36 (d, J = 8.1, 2 H, HC(5)), 6.70 (dd, J = 17.1, 11.0, 1 H, HC(7), 5.78 (d, J = 17.1, 1 H, HC(8)), 5.31 (d, J = 11.0, 1 H, HC(8)), 3.12 (s, 1 H, HC(1)) <sup>13</sup><u>C NMR</u>: (101 MHz, CDCl<sub>3</sub>) 137.8 (C(6)), 136.4 (C(7)), 132.3 (C(4), 126.2 (C(5)), 122.6 (C(3)), 115.0 (C(8)),

<u>TLC</u>:  $R_f 0.35$  (hexane) [UV + KMnO<sub>4</sub>]

105.3 (C(2)), 95.0 (C(1)), 0.2 (C(1'))

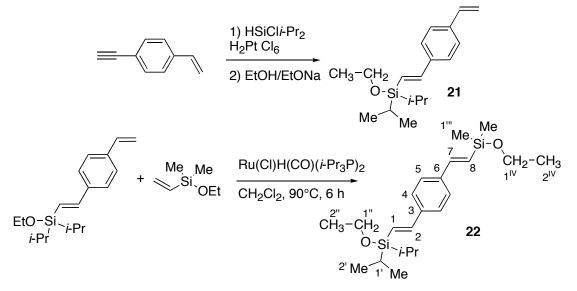
4-Ethenyl-1-ethynylbenzene (20)<sup>9</sup>



To a solution of **19** (1.40 g, 7.0 mmol) in 10 mL of THF and 10 mL of ethanol, cooled to 0 °C (external ice bath) was added an aqueous solution of KOH (7.0 mL, 7.0 mmol, 1.0 M, 1.0 equiv). The reaction was warmed to room temperature and was stirred for 1 h whereupon the reaction was quenched with water (50 mL). The aqueous phase was extracted with ethyl acetate ( $3 \times 35$  mL) and the combined organic extracts were washed with water ( $1 \times 30$  mL) and brine ( $2 \times 30$  mL). The organic layer was dried with MgSO<sub>4</sub> (anhydrous) and filtered. After evaporation of the solvent, the residue was purified by column chromatography (SiO<sub>2</sub>, hexane) and distillation to afford 786 mg (88%) of **20** as colorless oil.<sup>9</sup>

Data for 20:

<u>bp</u>: 60 °C (0.4 mmHg, ABT)


<sup>1</sup><u>H NMR</u>:  $(500 \text{ MHz}, \text{CDCl}_3)$ 

7.46 (d, *J* = 8.1, 2 H, HC(4)), 7.33 (d, *J* = 8.3, 2 H, HC(5)), 6.69 (dd, *J* = 17.5, 11.0, 1 H, HC(7), 5.76 (d, *J* = 17.5, 1 H, HC(8)), 5.29 (d, *J* = 11.0, 1 H, HC(8)), 0.26 (s, 9 H, 3H<sub>3</sub>C(1'))

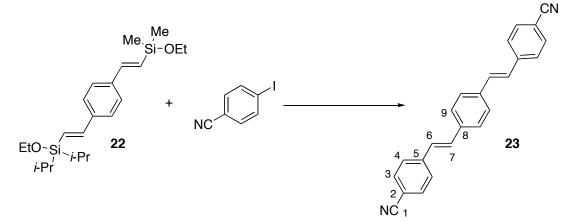
<sup>13</sup><u>C NMR</u>: (126 MHz, CDCl<sub>3</sub>)
138.2 (C(6)), 136.3 (C(7)), 132.5 (C(4), 126.3 (C(5)), 121.5 (C(3)), 115.3 (C(8)), 83.8(C(2)), 77.9 (C(1))

### <u>TLC</u>: $R_f 0.33$ (hexane) [UV + KMnO<sub>4</sub>]

# Ethoxy(di-(1-methylethyl)) 2-[4-[(*E*)-2-(Ethoxydimethylsilyl)ethenyl]phenyl]ethenylsilane (22)



A mixture of **20** (740 mg, 5.7 mmol) and diisopropylchlorosilane (1.05 mL, 6.0 mmol, 1.05 equiv) and Pt(0)-DVDS solution (25  $\mu$ L). The mixture was stirred for 2.5 h at room temperature and all volatile materials were removed under high vacuum. The residue was dissolved in 10 mL of hexane and 1.0 mL of ethanol (17 mmol, 3.0 equiv) and triethylamine (1.2 mL, 8.6 mmol, 1.5 equiv) was added. The reaction mixture was further stirred for 1 h and was filtered. The filtrate was evaporated in vacuo and the resulting oil was purified by column chromatography (SiO<sub>2</sub>, hexane/CH<sub>2</sub>Cl<sub>2</sub>, 7/1) to afford (*E*)-**21** as colorless oil.


Compound **21** was placed in a Schlenk tube with 3 mL of dichloromethane, followed by ethoxydimethylvinylsilane (1.03 ml, 6.3 mmol, 1.2 equiv). The tube was placed in a dry-box and Ruthenium catalyst (13 mg, 0.026 mmol, 0.5% mol equiv) was added. The tube was sealed, removed from the dry-box and heated at 100 °C for 12 h. After being cooled to room temperature, the solvent was evaporated. The residue was purified by column chromatography (SiO<sub>2</sub>, hexane/CH<sub>2</sub>Cl<sub>2</sub> 2/1) and distillation to afford 1.29 g (58%) of **22** as colorless oil.

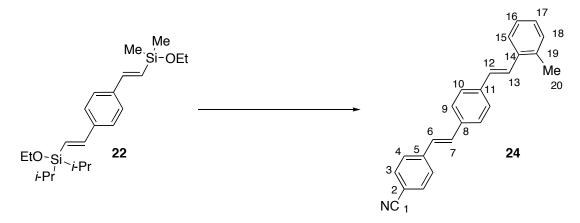
### Data for 22:

<u>bp</u>: 190 °C (0.3 mmHg, ABT)

- <sup>1</sup><u>H NMR</u>: (400 MHz, CDCl<sub>3</sub>) 7.44 (s, 4 H, HC(4) and HC(5)), 7.03 (d, J = 19.5, 1 H, HC(2)), 6.97 (d, J = 19.3, 1 H, HC(7)), 6.43 (d, J = 19.3, 1 H, HC(8)), 6.36 (d, J = 19.5, 1 H, HC(1)), 3.81 (q, J = 7.1, 2 H, H<sub>2</sub>C(1<sup>IV</sup>), 3.72 (q, J = 7.1, 2 H, H<sub>2</sub>C(1"), 1.23 (m, 6 H, H<sub>3</sub>C(2") and H<sub>3</sub>C(2<sup>IV</sup>)), 1.07 (m, 14 H, 4H<sub>3</sub>C(2') and 2HC(1')), 0.28 (s, 6 H, 2H<sub>3</sub>C(1"'))
- <sup>13</sup><u>C NMR</u>: (101 MHz, CDCl<sub>3</sub>)
  146.3 (C(2)), 145.2 (C(7)), 138.4(C(3)), 138.0 (C(6)), 127.0 (C(4)), 126.9 (C(5)),
  126.9 (C(8)), 122.9 (C(1)), 59.5 (C(1<sup>IV</sup>)), 58.7 (C(1")), 18.9 (C(2<sup>IV</sup>)), 18.7 (C(2")), 17.7/17.6 (C(2')), 12.7 (C(1)), -1.5 (C(1")))
  - <u>IR</u>: (NaCl) 2960 (s), 2865 (s), 1605 (m), 1556 (w), 1506 (w), 1463 (m), 1390 (m), 1251 (s), 1081 (s), 989 (s), 843 (s)
    - <u>MS</u>: (EI, 70 eV) 390 (M<sup>+</sup>, 6), 375 (2), 347 (100), 103 (32), 75 (10)
  - <u>TLC</u>:  $R_f 0.26$  (hexane/CH<sub>2</sub>Cl<sub>2</sub>, 2/1) [UV + KMnO<sub>4</sub>]
  - <u>CG</u>:  $t_{\rm R}$  16.3 min (>99%) (HP5, injector 225 °C, column 250 °C, 15 psi)
  - <u>HRMS</u>: calc for C<sub>22</sub>H<sub>38</sub>O<sub>2</sub>Si<sub>2</sub>: 390.2410; found: 390.2410

### (*E*,*E*)-4,4'-(1,4-Phenylenediethendiyl)bisbenzonitrile (23)<sup>10</sup>




Bis-silane **22** (390 mg, 1.0 mmol), 4-iodobenzonitrile (458 mg, 2.0 mmol, 2.0 equiv), and (allylPdCl)<sub>2</sub> (9.3 mg. 0.025 mmol, 0.025 equiv) were dissolved in a solution of TBAF (4.0 mL, 1.0 mmol, 1 M in THF, 4 equiv). The reaction mixture was stirred for 6 h at room temperature.

The solution was quenched with water (20 mL) and was extracted with EtOAc (5  $\times$  20 mL) and the combined organic phases were washed with brine (20 mL). The organic layer was dried with MgSO<sub>4</sub> (anhydrous) and was filtered. The solvent was then evaporated in vacuo to give a solid which was purified by column chromatography (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>/hexane, 2/1) to afford 262 mg (79%) of **23** as vellow solid.<sup>10</sup>

#### Data for 23:

| <u>mp</u> :                  | 288 °C                                                                                            |
|------------------------------|---------------------------------------------------------------------------------------------------|
| <sup>1</sup> <u>H NMR</u> :  | (500 MHz, CDCl <sub>3</sub> )                                                                     |
|                              | 7.65 (d, <i>J</i> = 8.4, 4 H, HC(4)), 7.60 (d, <i>J</i> = 8.4, 4 H, HC(3)), 7.56 (s, 4 H, HC(9)), |
|                              | 7.21 (d, <i>J</i> = 16.3, 2 H, HC(6)), 7.13 (d, <i>J</i> = 16.3, 2 H, HC(7)),                     |
| <sup>13</sup> <u>C NMR</u> : | (126 MHz, CDCl <sub>3</sub> )                                                                     |
|                              | 141.8 (C(5)), 136.8 (C(8)), 132.7 (C(3)), 131.9 (C(6)), 127.6 (C(4)), 127.4 (C(7)),               |
|                              | 127.1 (C(9)), 119.2 (C(1)), 110.9 (C(2))                                                          |
| <u>TLC</u> :                 | $R_f 0.26 (CH_2Cl_2/hexane, 2/1) [UV + KMnO_4]$                                                   |

#### 4-[2-[4-[2-(2-Methylphenyl)ethenyl]phenyl]ethenyl]benzonitrile (24)



A solution of bis-silane **22** (390 mg, 1.0 mmol), 4-iodobenzonitrile (229 mg, 1.0 mmol, 1.0 equiv), and (allylPdCl)<sub>2</sub> (9.3 mg. 0.025 mmol, 0.025 equiv) in DME (4 mL) was stirred at room temperature for 5 min and then TMSOK (512 mg, 4.0 mmol, 4.0 equiv) was added. The reaction mixture was stirred at room temperature for 6 h whereupon EtOAc (20 mL) was added and the reaction was stirred for 10 min further. The reaction mixture was then filtered through a short silica gel column (20 g) and the plug was washed with EtOAc (100 mL) and the solvent was evaporated in vacuo. To the crude product was added 2-iodotoluene (128  $\mu$ L, 1.0 mmol, 1.0

equiv), (allylPdCl)<sub>2</sub> (9.3 mg. 0.025 mmol, 0.025) and a solution of TBAF (3.0 mL, 1 M in THF, 3.0 mmol, 3.0 equiv). The reaction mixture was stirred for 4 h at room temperature, then EtOAc (25 mL) was added. After stirring 10 min further, the reaction was quenched with water (25 mL) and extracted with ethyl acetate ( $3 \times 25$  mL). The combined organic extracts were washed with water ( $1 \times 30$  mL) and brine ( $1 \times 30$  mL). The organic layer was dried over MgSO<sub>4</sub> (anhydrous) and was filtered. After evaporation of the solvent, the residue was purified by column chromatography (SiO<sub>2</sub>, hexane/CH<sub>2</sub>Cl<sub>2</sub>, 2/1) and sublimed to afford 244 mg (76%) of **24** as yellow solid.

Data for 24:

- <u>mp</u>: 294 °C (subl.)
- <sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>)
  7.64 (d, J = 8.5, 2 H, HC(4)), 7.60 (m, 3 H, HC(3) and HC(15)), 7.54 (s, 4 H, HC(9) and HC(10)), 7.38 (d, J = 16.4, 1 H, HC(13)), 7.21 (m, 4 H, HC(6), HC(16), HC(17), and HC(18)), 7.11 (d, J = 16.3, 1 H, HC(7)), 7.01 (d, J = 16.1, 1 H, HC(12)), 2.45 (s, 3 H, HC20))
- <sup>13</sup><u>C NMR</u>:  $(126 \text{ MHz}, \text{CDCl}_3)$

142.1 (C(5)), 138.3 (C(14)), 136.4 (C(8)), 136.1 (C(11)), 135.8(C(19)), 132.7 (C(3)), 132.2 (C(6)), 130.7 (C(18)), 129.5 (C(17)), 127.9 (C(15)), 127.5 (C(4)), 127.3 (C(7)), 127.2 (C(9)), 127.0 (C(10)), 126.7 (C(16)), 126.5 (C(12)), 125.5 (C(13)), 119.3 (C(1)), 110.7 (C(2)), 20.1 (C(20))

- <u>IR</u>: (CHCl<sub>3</sub>) 3021 (m), 2227 (s), 1600 (s), 1514 (w), 1460 (w), 1214 (w), 1174 (w), 964 (s)
- <u>MS</u>: (EI, 70 eV) 321 (M<sup>+</sup>, 100), 203 (13), 157 (16)
- <u>TLC</u>:  $R_f 0.21$  (hexane/CH<sub>2</sub>Cl<sub>2</sub>, 2/1) [UV + KMnO<sub>4</sub>]
- <u>CG</u>:  $t_{\rm R}$  31.24 min (100%) (HP5, injector 225 °C, column 275 °C, 15 psi)
- <u>HRMS</u>: calc for  $C_{24}H_{19}N_1$ : 331.1518; found: 321.1517

# Determination of Response Factors for 1-[(E)-4-(1-Pentenyl)phenyl]ethanone (12) and 1-[(E)-4-(1-Heptenyl)phenyl]ethanone (13) with Respect to Naphthalene.

Samples containing various amount of 1-[(E)-4-(1-pentenyl)phenyl]ethanone (12) or 1-[(E)-4-(1-heptenyl)phenyl]ethanone (13), and naphthalene were weighed (amounts given below) into small vials. The samples were diluted with 10 mL of dry THF and were then injected into the GC three times to give the areas indicated below. The response factor for every sample was calculated by

| mg naphth | mmol naphth | area naphth | mg <b>12</b> | mmol 12 | area <b>12</b> | response factor |
|-----------|-------------|-------------|--------------|---------|----------------|-----------------|
| 45.6      | 0.354       | 17650       | 80.5         | 0.428   | 27031          | 0.788           |
| 45.6      | 0.354       | 17642       | 80.5         | 0.428   | 26972          | 0.790           |
| 45.6      | 0.354       | 17621       | 80.5         | 0.428   | 26752          | 0.795           |
| 44.4      | 0.345       | 30424       | 62.9         | 0.334   | 36812          | 0.801           |
| 44.4      | 0.345       | 30041       | 62.9         | 0.334   | 36498          | 0.797           |
| 44.4      | 0.345       | 30478       | 62.9         | 0.334   | 36904          | 0.800           |
| 44.0      | 0.342       | 19642       | 59.1         | 0.314   | 23376          | 0.772           |
| 44.0      | 0.342       | 19695       | 59.1         | 0.314   | 23403          | 0.773           |
| 44.0      | 0.342       | 19727       | 59.1         | 0.314   | 23490          | 0.771           |
|           |             |             |              |         | average        | 0.787           |

response factor =

mmol **12** x area naphthalene area **12** x mmol naphthalene

| mg naphth | mmol naphth | area naphth | mg <b>13</b> | mmol 13 | area <b>1 3</b> | response factor |
|-----------|-------------|-------------|--------------|---------|-----------------|-----------------|
| 48.0      | 0.373       | 28933       | 73.8         | 0.341   | 38879           | 0.681           |
| 48.0      | 0.373       | 29169       | 73.8         | 0.341   | 39474           | 0.676           |
| 48.0      | 0.373       | 28908       | 73.8         | 0.341   | 39126           | 0.676           |
| 45.6      | 0.354       | 17650       | 70.7         | 0.327   | 24499           | 0.665           |
| 45.6      | 0.354       | 17642       | 70.7         | 0.327   | 2444            | 0.666           |
| 45.6      | 0.354       | 17621       | 70.7         | 0.327   | 24403           | 0.666           |
| 44.4      | 0.345       | 30424       | 77.6         | 0.359   | 46491           | 0.681           |
| 44.4      | 0.345       | 30041       | 77.6         | 0.359   | 46519           | 0.672           |
| 44.4      | 0.345       | 30478       | 77.6         | 0.359   | 46953           | 0.675           |
|           |             |             |              |         | average         | 0.673           |

response factor =

### mmol **13** x area naphthalene area **13** x mmol naphthalene

### Determination of Response Factors for (*E*)-1-Methyl-2-(1-pentenyl)benzene (16) and (*E*)-1-Methyl-2-(1-heptenyl)benzene (17) with Respect to Naphthalene.

Samples containing various amount of (E)-1-methyl-2-(1-pentenyl)benzene (**16**), (E)-1-methyl-2-(1-heptenyl)benzene (**17**), and naphthalene were weighed (amounts given below) into small vials. The samples were diluted with 10 mL dry THF and were then injected into the GC three times to give the areas indicated below. The response factor for every sample was calculated by

| mg naphth | mmol naphth | area naphth | mg <b>9</b> | mmol <b>9</b> | area <b>9</b> | response factor |
|-----------|-------------|-------------|-------------|---------------|---------------|-----------------|
| 40.5      | 0.315       | 30289       | 44.6        | 0.278         | 31003         | 0.864           |
| 40.5      | 0.315       | 29947       | 44.6        | 0.278         | 30419         | 0.871           |
| 40.5      | 0.315       | 28763       | 44.6        | 0.278         | 29302         | 0.868           |
| 40.3      | 0.313       | 32362       | 52.1        | 0.325         | 39808         | 0.844           |
| 40.3      | 0.313       | 41383       | 52.1        | 0.325         | 51256         | 0.838           |
| 40.3      | 0.313       | 49832       | 52.1        | 0.325         | 61671         | 0.839           |
| 40.3      | 0.313       | 30144       | 49.8        | 0.311         | 34553         | 0.866           |
| 40.3      | 0.313       | 44474       | 49.8        | 0.311         | 51428         | 0.858           |
| 40.3      | 0.313       | 39946       | 49.8        | 0.311         | 46094         | 0.860           |
|           |             |             |             |               | average       | 0.857           |

response factor =

# mmol **16** x area naphthalene area **16** x mmol naphthalene

response factor =

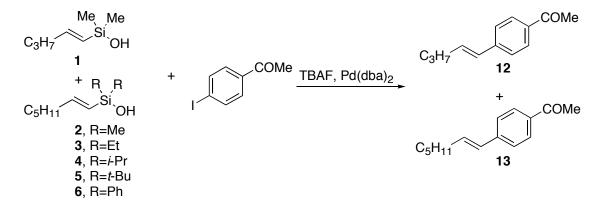
mmol **17** x area naphthalene area **17** x mmol naphthalene

| mg naphth | mmol naphth | area naphth | mg <b>17</b> | mmol <b>17</b> | area <b>17</b> | Response factor |
|-----------|-------------|-------------|--------------|----------------|----------------|-----------------|
| 41.9      | 0.325       | 36983       | 57.1         | 0.303          | 48111          | 0.716           |
| 41.9      | 0.325       | 39439       | 57.1         | 0.303          | 51425          | 0.715           |
| 41.9      | 0.325       | 40007       | 57.1         | 0.303          | 52262          | 0.713           |
| 40.5      | 0.315       | 32362       | 36.7         | 0.195          | 28947          | 0.693           |
| 40.5      | 0.315       | 41383       | 36.7         | 0.195          | 37631          | 0.681           |
| 40.5      | 0.315       | 49832       | 36.7         | 0.195          | 45294          | 0.682           |
| 40.3      | 0.313       | 30289       | 18.5         | 0.098          | 13049          | 0.728           |
| 40.3      | 0.313       | 29947       | 18.5         | 0.098          | 12827          | 0.733           |
| 40.3      | 0.313       | 28763       | 18.5         | 0.098          | 12351          | 0.731           |
|           |             |             |              |                | average        | 0.710           |

### Determination of Response Factors for (*E*)-1-Methoxy-4-(1-pentenyl)benzene (14) and (*E*)-1-Methoxy-4-(1-heptenyl)benzene (15) with Respect to Naphthalene.

Samples containing various amount of (E)-1-methoxy-4-(1-pentenyl)benzene (14) or (E)-1-methoxy-4-(1-heptenyl)benzene (15), and naphthalene were weighed (amounts given below) into small vials. The samples were diluted with 10 mL dry THF and were then injected into the GC three times to give the areas indicated bellow. The response factor for every sample was calculated by

| mg naphth | mmol naphth | area naphth | mg <b>14</b> | mmol 14 | area <b>14</b> | response factor |
|-----------|-------------|-------------|--------------|---------|----------------|-----------------|
| 46.7      | 0.365       | 72420       | 53.5         | 0.304   | 62181          | 0.970           |
| 46.7      | 0.365       | 71762       | 53.5         | 0.304   | 61892          | 0.965           |
| 46.7      | 0.365       | 72116       | 53.5         | 0.304   | 62232          | 0.965           |
| 46.3      | 0.363       | 47337       | 42.9         | 0.244   | 33038          | 0.964           |
| 46.3      | 0.363       | 47327       | 42.9         | 0.244   | 33121          | 0.961           |
| 46.3      | 0.363       | 47095       | 42.9         | 0.244   | 32856          | 0.964           |
| 38.3      | 0.299       | 35469       | 59.1         | 0.314   | 26951          | 0.974           |
| 38.3      | 0.299       | 35430       | 59.1         | 0.314   | 27081          | 0.968           |
| 38.3      | 0.299       | 35546       | 59.1         | 0.314   | 26987          | 0.975           |
|           |             |             |              |         | average        | 0.967           |


mmol **14** x area naphthalene response factor = area 14 x mmol naphthalene

S26

| mg naphth | mmol naphth | area naphth | mg <b>15</b> | mmol 15 | area 15 | response factor |
|-----------|-------------|-------------|--------------|---------|---------|-----------------|
| 52.5      | 0.410       | 60006       | 61.2         | 0.300   | 54756   | 0.801           |
| 52.5      | 0.410       | 60681       | 61.2         | 0.300   | 55506   | 0.799           |
| 52.5      | 0.410       | 60742       | 61.2         | 0.300   | 55982   | 0.794           |
| 46.7      | 0.365       | 72116       | 79.7         | 0.390   | 97750   | 0.789           |
| 46.7      | 0.365       | 71762       | 79.7         | 0.390   | 97148   | 0.790           |
| 46.7      | 0.365       | 72420       | 79.7         | 0.390   | 97336   | 0.796           |
| 46.4      | 0.363       | 47095       | 56.0         | 0.363   | 44820   | 0.795           |
| 46.4      | 0.363       | 47327       | 56.0         | 0.363   | 45218   | 0.792           |
| 46.4      | 0.363       | 47337       | 56.0         | 0.363   | 45330   | 0.790           |
|           |             |             |              |         | average | 0.794           |
|           | 1           | 1           |              |         | 1       | l               |

response factor =

### **Competition Experiments from Table 1 (Carbon Substituent Effects).**



**Competition Experiments with 4-Iodoacetophenone.** General Procedure I.

(*E*)-Dimethyl-(1-pentenyl)silanol (1), together with one of the other 1-heptenylsilanols (2-6), naphthalene, and Pd(dba)<sub>2</sub> were dissolved in a TBAF solution (1.0 M in THF) in a flamedried, 5-mL, 2-neck, round-bottomed flask under N<sub>2</sub>. The 4-iodoacetophenone was then added slowly to maintain an internal temperature < 30 °C. After the reaction was complete, determined by TLC, 25- $\mu$ L samples were taken via syringe. The sample aliquots were filtered through a plug of silica gel washing with hexane/ethyl acetate, 4/1 to achieve a total sample volume of ~2 mL. These samples were then subjected to GC analysis. The reaction mixture was filtered through a plug of silica gel (~15 g). The plug was washed with hexane/ethyl acetate, 4/1, (100 mL), and the solvent was evaporated in vacuo. The residue was purified by column chromatography (Reverse Phase C18, MeOH/H<sub>2</sub>O, 9/1) to afford the **12**, and **13** which were further purified by Kugelrohr distillation.

# Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Dimethyl-(1 heptenyl)silanol (2) with 4-Iodoacetophenone

Following General Procedure I, **1** (83.9 mg, 0.58 mmol), **2** (97.1 mg, 0.56 mmol), naphthalene (67.7 mg, 0.53 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF),  $Pd(dba)_2$  (14.4 mg 0.025 mmol), and 4-iodoacetophenone (123.0 mg, 0.50 mmol) was stirred at room temperature for 10 min and then sample aliquots were taken and reaction was worked up to afford 48 mg (51%) of **12** and 47 mg (43%) of **13**. GC analysis of samples showed a **12/13** ratio of 52.2/47.8.

|         | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|---------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample1 | 5546        | 4247           | 4396           | 0.78/0.67             | 53.1/46.9               |
| sample2 | 6125        | 7688           | 8524           | 0.78/0.67             | 51.3/48.7               |
| average | 5836        | 5968           | 6460           | 0.78/0.67             | 52.2/47.8               |

GC Data:

# Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Dimethyl-(1-heptenyl)silanol (2) with 4-Iodoacetophenone

Following General Procedure I, **1** (71.8 mg, 0.50 mmol), **2** (85.9 mg, 0.50 mmol), naphthalene (65.3 mg, 0.51 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF),  $Pd(dba)_2$  (14.4 mg 0.025 mmol), and 4-iodoacetophenone (123.0 mg, 0.50 mmol) was stirred at room temperature for 10 min and then sample aliquots were taken and reaction was worked up to afford 43 mg (46%) of **12** and 48 mg (44%) of **13**. GC analysis of samples showed a **12/13** ratio of 50.1/49.9.

GC Data:

|          | area naphth | area <b>12</b> | area 13 | response factor 12/13 | ratio <b>12/13</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 15309       | 10206          | 11863   | 0.78/0.67             | 50.2/49.84              |

## Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Dimethyl-(1-heptenyl)silanol (2) with 4-Iodoacetophenone

Following General Procedure I, **1** (72.1 mg, 0.50 mmol), **2** (86.2 mg, 0.50 mmol), naphthalene (64.5 mg, 0.50 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF),  $Pd(dba)_2$  (14.4 mg 0.025 mmol), and 4-iodoacetophenone (123.0 mg, 0.50 mmol) was stirred at room temperature for 10 min and then sample aliquots were taken and reaction was worked up to afford 40 mg (43%) of **12** and 46 mg (43%) of **13**. GC analysis of samples showed a **12/13** ratio of 49.9/50.1.

GC Data:

|          | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 6207        | 3990           | 4598           | 0.78/0.67             | 50.4/49.6               |
| sample 2 | 8196        | 4404           | 5257           | 0.78/0.67             | 49.5/50.1               |
| average  | 7202        | 4197           | 4928           | 0.78/0.67             | 49.9/50.1               |

## Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Dimethyl-(1-heptenyl)silanol (2) with 4-Iodoacetophenone

Following General Procedure I, **1** (71.7 mg, 0.50 mmol), **2** (86.2 mg, 0.50 mmol), naphthalene (64.2 mg, 0.50 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.2 mg 0.025 mmol), and 4-iodoacetophenone (123.1 mg, 0.50 mmol) was stirred at room temperature for 10 min and then sample aliquots were taken and reaction was worked up to afford 41 mg (44%) of **12** and 47 mg (43%) of **13**. GC analysis of samples showed a **12/13** ratio of 50.9/49.1.

### GC Data:

|          | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 7691        | 4788           | 5450           | 0.78/0.67             | 50.7/49.3               |
| sample 2 | 7560        | 4886           | 5463           | 0.78/0.67             | 51.1/48.9               |
| average  | 7626        | 4837           | 5457           | 0.78/0.67             | 50.9/49.1               |

## Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diethyl-(1-heptenyl)silanol (3) with 4-Iodoacetophenone

Following General Procedure I, **1** (71.4 mg, 0.50 mmol), **3** (100.4 mg, 0.50 mmol), naphthalene (64.3 mg, 0.50 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 4-iodoacetophenone (123.0 mg, 0.50 mmol) was stirred at room temperature for 10 min and then sample aliquots were taken and reaction was worked up to afford 49 mg (52%) of **12** and 40 mg (37%) of **13**. GC analysis of samples showed a **12/13** ratio of 56.7/43.3.

GC Data:

|          | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 14122       | 9596           | 8559           | 0.78/0.67             | 56.7/43.3               |
| sample 2 | 18001       | 12673          | 11386          | 0.78/0.67             | 56.6/43.4               |
| average  | 16062       | 11135          | 9973           | 0.78/0.67             | 56.7/43.3               |

# Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diethyl-(1-heptenyl)silanol (3) with 4-Iodoacetophenone

Following General Procedure I, **1** (71.9 mg, 0.50 mmol), **3** (100.4 mg, 0.50 mmol), naphthalene (64.6 mg, 0.50 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4

mg 0.025 mmol), and 4-iodoacetophenone (123.0 mg, 0.50 mmol) was stirred at room temperature for 10 min and then sample aliquots were taken and reaction was worked up to afford 49 mg (52%) of **12** and 44 mg (41%) of **13**. GC analysis of samples showed a **12/13** ratio of 56.6/43.4.

|          | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 12519       | 8940           | 8231           | 0.78/0.67             | 55.9/44.1               |
| sample 2 | 8857        | 6408           | 5624           | 0.78/0.67             | 57.1/42.9               |
| average  | 10688       | 7674           | 6928           | 0.78/0.67             | 56.6/43.4               |

GC Data:

## Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs. (*E*)-Di-isopropyl-(1-heptenyl)silanol (4) with 4-Iodoacetophenone

Following General Procedure I, **1** (71.3 mg, 0.49 mmol), **4** (115.1 mg, 0.50 mmol), naphthalene (65.3 mg, 0.51 mmol), TBAF (2.0 mL, 2.0 mmol, 1M in THF),  $Pd(dba)_2$  (14.4 mg 0.025 mmol), and 4-iodoacetophenone (123.0 mg, 0.50 mmol) was stirred at room temperature for 10 min and then sample aliquots were taken and reaction was worked up to afford 51 mg (54%) of **12** and 41 mg (38%) of **13**. GC analysis of samples showed a **12/13** ratio of 59.8/40.2. <u>GC Data</u>:

|          | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 8312        | 6852           | 5043           | 0.78/0.67             | 61.4/38.6               |
| sample 2 | 17074       | 11744          | 9869           | 0.78/0.67             | 58.2/41.8               |
| average  | 12693       | 9298           | 7456           | 0.78/0.67             | 59.8/40.2               |

### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Di-(1-methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoacetophenone

Following General Procedure I, **1** (72.4 mg, 0.50 mmol), **4** (114.5 mg, 0.50 mmol), naphthalene (66.4 mg, 0.52 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 4-iodoacetophenone (123.0 mg, 0.50 mmol) was stirred at room temperature for 10 min and then sample aliquots were taken and reaction was worked up to afford 49 mg (52%) of **12** and 37 mg (34%) of **13**. GC analysis of samples showed a **12/13** ratio of 59.9/40.1.

|          | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 9300        | 6470           | 5213           | 0.78/0.67             | 59.2/40.8               |
| sample 2 | 8435        | 6870           | 5238           | 0.78/0.67             | 60.5/39.5               |
| average  | 8868        | 6670           | 5226           | 0.78/0.67             | 59.9/40.1               |

GC Data:

### Competition of (E)-Dimethyl-(1-pentenyl)silanol (1) vs (E)-Di-(1,1-dimethylethyl)-(1-heptenyl)silanol (5) with 4-Iodoacetophenone

Following General Procedure I, **1** (71.4 mg, 0.50 mmol), **5** (127.9 mg, 0.50 mmol), naphthalene (63.7 mg, 0.50 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF),  $Pd(dba)_2$  (14.4 mg 0.025 mmol), and 4-iodoacetophenone (123.0 mg, 0.50 mmol) was stirred at room temperature for 10 min and then sample aliquots were taken and reaction was worked up to afford 78.2 mg (83%) of **12**. GC analysis of samples showed a **12/13** ratio of 96.7/3.3.

GC Data:

|          | area naphth | area 12 | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|----------|-------------|---------|----------------|-----------------------|-------------------------|
| sample 1 | 9077        | 10986   | 465            | 0.78/0.67             | 96.5/3.5                |
| sample 2 | 12930       | 15354   | 581            | 0.78/0.67             | 96.8/3.2                |
| average  | 11004       | 13170   | 523            | 0.78/0.67             | 96.7/3.3                |

# Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Di-(1,1-dimethylethyl)-(1-heptenyl)silanol (5) with 4-Iodoacetophenone

Following General Procedure I, **1** (72.0 mg, 0.50 mmol), **5** (130.6 mg, 0.51 mmol), naphthalene (65.0 mg, 0.51 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF),  $Pd(dba)_2$  (14.4 mg 0.025 mmol), and 4-iodoacetophenone (123.0 mg, 0.50 mmol) was stirred at room temperature for 10 min and then sample aliquots were taken and reaction was worked up to afford 77.9 mg (83%) of **12**. GC analysis of samples showed a **12/13** ratio of 96.1/3.9.

GC Data:

|          | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 12043       | 13323          | 727            | 0.78/0.67             | 95.5/4.5                |
| sample 2 | 16246       | 18945          | 748            | 0.78/0.67             | 96.7/3.3                |
| average  | 14145       | 16134          | 738            | 0.78/0.67             | 96.1/3.9                |

## Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoacetophenone

Following General Procedure I, **1** (72.7 mg, 0.50 mmol), **6** (148.5 mg, 0.50 mmol), naphthalene (64.0 mg, 0.50 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 4-iodoacetophenone (123.1 mg, 0.50 mmol) was stirred at room temperature for 10 min and then sample aliquots were taken and reaction was worked up to afford 42 mg (44%) of **12** and 47 mg (43%) of **13**. GC analysis of samples showed a **12/13** ratio of 50.0/50.0.

### GC Data:

|          | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 6743        | 4314           | 5140           | 0.78/0.67             | 49.5/50.5               |
| sample 2 | 11856       | 7302           | 7979           | 0.78/0.67             | 51.7/48.3               |
| sample 3 | 13140       | 9921           | 12249          | 0.78/0.67             | 48.7/51.3               |
| average  | 10580       | 7179           | 8456           | 0.78/0.67             | 50.0/50.0               |

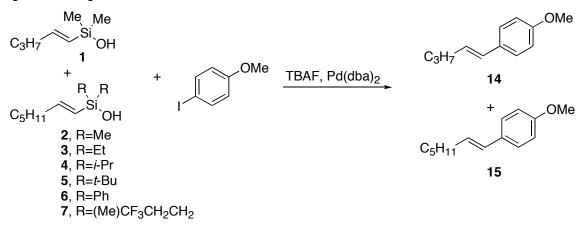
# Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoacetophenone

Following General Procedure I, **1** (72.6 mg, 0.50 mmol), **6** (148.7 mg, 0.50 mmol), naphthalene (64.5 mg, 0.50 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF),  $Pd(dba)_2$  (14.4 mg 0.025 mmol), and 4-iodoacetophenone (123.2 mg, 0.50 mmol) was stirred at room temperature for 10 min and then sample aliquots were taken and reaction was worked up to afford 41 mg (44%) of **12** and 47 mg (43%) of **13**. GC analysis of samples showed a **12/13** ratio of 48.5/51.5.

|          | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 15024       | 10671          | 13154          | 0.78/0.67             | 48.7/51.3               |
| sample 2 | 20718       | 15021          | 18537          | 0.78/0.67             | 48.7/51.3               |
| sample 3 | 17660       | 12865          | 16263          | 0.78/0.67             | 48.0/51.9               |
| average  | 17801       | 12852          | 15985          | 0.78/0.67             | 48.5/51.5               |

### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoacetophenone

Following General Procedure I, **1** (86  $\mu$ L, 0.50 mmol), **6** (148.4 mg, 0.50 mmol), naphthalene (65.9 mg, 0.51 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 4-iodoacetophenone (123.0 mg, 0.50 mmol) was stirred at room temperature for 10 min and then sample aliquots were taken and reaction was worked up to afford 43 mg (46%) of **12** and 48 mg (45%) of **13**. GC analysis of samples showed a **12/13** ratio of 48.4/51.6.


### GC Data:

|          | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 8544        | 6339           | 7850           | 0.78/0.67             | 48.6/51.4               |
| sample 2 | 9659        | 7489           | 8883           | 0.78/0.67             | 49.7/50.3               |
| sample 3 | 8171        | 6224           | 8210           | 0.78/0.67             | 47.0/53.0               |
| average  | 8791        | 6684           | 8314           | 0.78/0.67             | 48.4/51.6               |

# Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoacetophenone

Following General Procedure I, **1** (86  $\mu$ L, 0.50 mmol), **6** (148.6 mg, 0.50 mmol), naphthalene (65.3 mg, 0.51 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 4-iodoacetophenone (123.0 mg, 0.50 mmol) was stirred at room temperature for 10 min and then sample aliquots were taken and reaction was worked up to afford 42 mg (45%) of **12** and 48 mg (44%) of **13**. GC analysis of samples showed a **12/13** ratio of 51.1/48.9.

|          | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 9901        | 9577           | 10105          | 0.78/0.67             | 52.6/47.4               |
| sample 2 | 7927        | 7712           | 8825           | 0.78/0.67             | 50.5/49.5               |
| sample 3 | 9563        | 6545           | 7641           | 0.78/0.67             | 50.0/50.0               |
| average  | 9130        | 7945           | 8857           | 0.78/0.67             | 51.1/48.9               |



**Competition Experiments with 4-Iodoanisole. General Procedure II.** 

A flame-dried, 5-mL, 2-neck, round-bottomed flask under N<sub>2</sub> was charged with (*E*)dimethyl-(1-pentenyl)silanol (1), one of the 1-heptenylsilanols (2-6) and 4-iodoanisole. THF solutions of naphthalene (0.25 M) and TBAF (1.0 M) were added next followed by Pd(dba)<sub>2</sub>. After 30 min two 25  $\mu$ L samples were taken via syringe. The sample aliquots were filtered through a plug of silica gel washing with Et<sub>2</sub>O to achieve a total sample volume of ~2 mL. These samples were then subjected to GC analysis. Reactions were performed in duplicate.

# Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Dimethyl-(1 heptenyl)silanol (2) with 4-Iodoanisole

Following General Procedure II, **1** (28.8 mg, 0.20 mmol), **2** (34.2 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 50.6/49.4.

| <u>GC</u> | <u>Data</u> : |  |
|-----------|---------------|--|
| <u>uc</u> | Data.         |  |

| reaction 1 | area naphth | area 14 | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|---------|---------|-----------------------|-------------------------|
| sample 1   | 17073       | 6579    | 7905    | 0.97/0.79             | 50.3/49.7               |
|            | 15511       | 7350    | 9663    | 0.97/0.79             | 48.1/51.9               |
| sample 2   | 17040       | 6385    | 7683    | 0.97/0.79             | 50.3/49.7               |
|            | 15464       | 6638    | 7780    | 0.97/0.79             | 50.9/49.1               |
| average    | 16272       | 6738    | 8258    | 0.97/0.79             | 49.9/50.1               |

| reaction 2 | area naphth | area 14 | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|---------|----------------|-----------------------|-------------------------|
| sample 1   | 15930       | 6665    | 7546           | 0.97/0.79             | 51.8/48.2               |
|            | 15320       | 6589    | 7544           | 0.97/0.79             | 51.5/48.5               |
| sample 2   | 18365       | 7931    | 8950           | 0.97/0.79             | 51.9/48.1               |
|            | 19179       | 8006    | 9632           | 0.97/0.79             | 50.3/49.7               |
| average    | 17199       | 7298    | 8418           | 0.97/0.79             | 51.4/48.6               |

# Competition of (E)-Dimethyl-(1-pentenyl)silanol (1) vs (E)-Diethyl-(1 heptenyl)silanol (3) with 4-Iodoanisole

Following General Procedure II, **1** (28.8 mg, 0.20 mmol), **3** (40.0 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 53.3/46.7.

GC Data:

| reaction 1 | area naphth | area 14 | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|---------|----------------|-----------------------|-------------------------|
| sample 1   | 52775       | 28507   | 30906          | 0.97/0.79             | 52.9/47.1               |
|            | 52994       | 28515   | 31363          | 0.97/0.79             | 52.5/47.5               |
| sample 2   | 53364       | 27642   | 28943          | 0.97/0.79             | 53.7/46.3               |
|            | 55121       | 28645   | 29998          | 0.97/0.79             | 53.7/46.3               |
| average    | 53564       | 28327   | 30303          | 0.97/0.79             | 53.2/46.8               |

| reaction 2 | area naphth | area 14 | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|---------|----------------|-----------------------|-------------------------|
| sample 1   | 63211       | 34126   | 37476          | 0.97/0.79             | 52.6/47.4               |
|            | 62612       | 33889   | 37294          | 0.97/0.79             | 52.5/47.5               |
| sample 2   | 62206       | 31979   | 33055          | 0.97/0.79             | 54.0/46.0               |
|            | 60815       | 31267   | 32562          | 0.97/0.79             | 53.9/46.1               |
| average    | 62211       | 32815   | 35097          | 0.97/0.79             | 53.3/46.7               |

#### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Di-(1-methylethyl)-(1 heptenyl)silanol (4) with 4-Iodoanisole

Following General Procedure II, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 61.7/38.3.

GC Data:

| reaction 1 | area naphth | area 14 | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|---------|---------|-----------------------|-------------------------|
| sample 1   | 54347       | 26594   | 19788   | 0.97/0.79             | 62.1/37.9               |
|            | 53748       | 26239   | 19719   | 0.97/0.79             | 61.8/38.2               |
| sample 2   | 51248       | 25325   | 19255   | 0.97/0.79             | 61.6/38.4               |
|            | 55214       | 26984   | 20228   | 0.97/0.79             | 61.9/38.1               |
| average    | 53639       | 26286   | 19748   | 0.97/0.79             | 61.9/38.1               |

| reaction 2 | area naphth | area 14 | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|---------|----------------|-----------------------|-------------------------|
| sample 1   | 81797       | 47840   | 36408          | 0.97/0.79             | 61.6/38.4               |
|            | 72884       | 43003   | 32741          | 0.97/0.79             | 61.6/38.4               |
| sample 2   | 75205       | 43959   | 33739          | 0.97/0.79             | 61.3/38.7               |
|            | 76017       | 45032   | 34276          | 0.97/0.79             | 61.6/38.4               |
| average    | 76476       | 44959   | 34291          | 0.97/0.79             | 61.5/38.5               |

### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Di-(1,1-dimethylethyl)-(1 heptenyl)silanol (5) with 4-Iodoanisole

Following General Procedure II, **1** (28.8 mg, 0.20 mmol), **5** (51.2 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 96.1/3.9.

| reaction 1 | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1   | 55450       | 47522          | 2288    | 0.97/0.79             | 96.1/3.9                |
|            | 54932       | 47437          | 2288    | 0.97/0.79             | 96.2/3.8                |
| sample 2   | 54793       | 48162          | 2439    | 0.97/0.79             | 96.0/4.0                |
|            | 54829       | 48032          | 2455    | 0.97/0.79             | 96.0/4.0                |
| average    | 55001       | 47788          | 2368    | 0.97/0.79             | 96.1/3.9                |

| reaction 2 | area naphth | area 14 | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|---------|---------|-----------------------|-------------------------|
| sample1    | 71951       | 62296   | 2900    | 0.97/0.79             | 96.3/3.7                |
|            | 72755       | 62632   | 2910    | 0.97/0.79             | 96.3/3.7                |
| sample2    | 42415       | 37516   | 1926    | 0.97/0.79             | 96.0/4.0                |
|            | 43065       | 37744   | 1942    | 0.97/0.79             | 95.9/4.1                |
| average    | 57547       | 50047   | 2420    | 0.97/0.79             | 96.1/3.9                |

# Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole

Following General Procedure II, **1** (28.8 mg, 0.20 mmol), **6** (59.2 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 56.3/43.7.

| reaction 1 | area naphth | area 14 | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|---------|----------------|-----------------------|-------------------------|
| sample 1   | 32648       | 17120   | 16258          | 0.97/0.79             | 56.2/43.8               |
|            | 34431       | 17747   | 17204          | 0.97/0.79             | 55.6/44.3               |
| sample 2   | 37270       | 20655   | 19817          | 0.97/0.79             | 55.9/44.1               |
|            | 39301       | 21202   | 20540          | 0.97/0.79             | 55.7/44.3               |
| average    | 35913       | 19181   | 18455          | 0.97/0.79             | 55.9/44.1               |

| reaction 2 | area naphth | area 14 | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|---------|----------------|-----------------------|-------------------------|
| sample 1   | 40364       | 21219   | 19995          | 0.97/0.79             | 56.3/43.6               |
|            | 42465       | 21045   | 19731          | 0.97/0.79             | 56.5/43.5               |
| sample 2   | 49337       | 24853   | 22506          | 0.97/0.79             | 57.3/42.7               |
|            | 46962       | 24173   | 22295          | 0.97/0.79             | 56.9/43.1               |
| average    | 44782       | 22823   | 21132          | 0.97/0.79             | 56.8/43.2               |

#### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Trifluoropropyl-(1-heptenyl)methylsilanol (7) with 4-Iodoanisole

Following General Procedure V (see p 51), **1** (28.8 mg, 0.20 mmol), **7** (50.8 mg, 0.20 mmol), 4-iodotoluene (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) was stirred for 1 h and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 44.6/55.4.

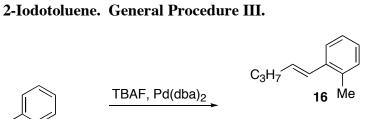
| reaction 1 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 19529       | 7840           | 11073          | 0.96/0.79             | 46.3/53.7               |
|            | 19238       | 7758           | 11028          | 0.96/0.79             | 46.2/53.8               |
| sample 2   | 15705       | 6999           | 11244          | 0.96/0.79             | 43.1/56.9               |
|            | 15460       | 6956           | 11174          | 0.96/0.79             | 43.1/56.9               |
| average    | 17483       | 7388           | 11130          | 0.96/0.79             | 44.7/55.3               |

| <u>GC</u> | <u>Data</u> : |
|-----------|---------------|
|           |               |

| reaction 2 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 14099       | 5661           | 8606           | 0.96/0.79             | 44.5/55.5               |
|            | 13931       | 6098           | 8592           | 0.96/0.79             | 46.4/53.6               |
| sample 2   | 16252       | 7291           | 11442          | 0.96/0.79             | 43.7/56.3               |
|            | 14740       | 6575           | 10250          | 0.96/0.79             | 43.8/56.2               |
| average    | 14756       | 6406           | 9723           | 0.96/0.79             | 44.6/55.4               |

Me Me

2. R=Me 3. R=Et


4, R=*i*-Pr

5. R=t-Bu 6. R=Ph

 $C_3H_7$ 

 $C_5H_{11}$ 

ОH



#### **Competition Experiments with 2-Iodotoluene. General Procedure III.**

Me

(E)-Dimethyl-(1-pentenyl)silanol (1), together with one of the other 1-heptenylsilanols (2-6), naphthalene, and Pd(dba)<sub>2</sub> were dissolved in a TBAF solution (1.0 M in THF) in a flamedried, 5-mL, 2-neck, round-bottomed flask under N<sub>2</sub>. The 2-iodotoluene was then added slowly to maintain an internal temperature <30 °C. After 30 min 25-µL samples were taken via syringe. The sample aliquots were filtered through a plug of silica gel washing with pentane to achieve a total sample volume of  $\sim 2$  mL. These samples were then subjected to GC analysis. The reaction mixture was filtered through a plug of silica gel ( $\sim 15g$ ). The plug was washed with hexane/ethyl acetate, 9/1, (100 mL), and the solvent was evaporated in vacuo. The residue was purified by column chromatography (Reverse Phase C18, MeOH/H<sub>2</sub>O, 9/1) to afford the 16, and 17 which were further purified by Kugelrohr distillation.

#### Competition of (E)-Dimethyl-(1-pentenyl)silanol (1) vs (E)-Dimethyl-(1-heptenyl)silanol (2) with 2-Iodotoluene

Following General Procedure III, 1 (86 µL, 0.50 mmol), 2 (86.2 mg, 0.50 mmol), naphthalene (65.1 mg, 0.51 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 2-iodotoluene (63.6 µL, 0.50 mmol) was stirred at room temperature for 30 min and then sample aliquots were taken and reaction was worked up to afford 35 mg (44%)of 16 and 42 mg (45%) of 17. GC analysis of samples showed a 16/17 ratio of 49.4/50.6.

Me

17

|          | area naphth | area 16 | area <b>17</b> | response factor 16/17 | ratio <b>16/17</b> 100 |
|----------|-------------|---------|----------------|-----------------------|------------------------|
| sample 1 | 22228       | 13304   | 16519          | 0.85/0.71             | 49.3/50.7              |
| sample 2 | 19390       | 11289   | 14030          | 0.85/0.71             | 49.3/50.7              |
| sample 3 | 19452       | 11439   | 13917          | 0.85/0.71             | 49.8/50.2              |
| average  | 20357       | 12011   | 14822          | 0.85/0.71             | 49.4/50.6              |

# Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Dimethyl-(1-heptenyl)silanol (2) with 2-Iodotoluene

Following General Procedure III, **1** (86  $\mu$ L, 0.50 mmol), **2** (86.2 mg, 0.50 mmol), naphthalene (64.4 mg, 0.50 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 2-iodotoluene (63.6  $\mu$ L, 0.50 mmol) was stirred at room temperature for 30 min and then sample aliquots were taken and reaction was worked up to afford 35 mg (44%) of **16** and 42 mg (45%) of **17**. GC analysis of samples showed a **16/17** ratio of 50.9/49.1. GC Data:

|          | area naphth | area 16 | area 17 | response factor 16/17 | ratio <b>16/17</b> x100 |
|----------|-------------|---------|---------|-----------------------|-------------------------|
| sample 1 | 7524        | 3507    | 4071    | 0.85/0.71             | 50.9/49.1               |
|          | 7675        | 3501    | 4117    | 0.85/0.71             | 50.7/49.3               |
| sample 2 | 12969       | 5873    | 6829    | 0.85/0.71             | 50.9/49.1               |
|          | 12933       | 5888    | 6848    | 0.85/0.71             | 50.9/49.1               |
| sample 3 | 11107       | 5041    | 5868    | 0.85/0.71             | 50.9/49.1               |
|          | 10846       | 5052    | 5896    | 0.85/0.71             | 50.9/49.1               |
| average  | 10509       | 4810    | 5605    | 0.85/0.71             | 50.9/49.1               |

# Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diethyl-(1-heptenyl)silanol (3) with 2-Iodotoluene

Following General Procedure II, **1** (86  $\mu$ L, 0.50 mmol), **3** (100.6 mg, 0.50 mmol), naphthalene (64.6 mg, 0.50 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 2-iodotoluene (63.6  $\mu$ L, 0.50 mmol) was stirred at room temperature for 30 min and then sample aliquots were taken and reaction was worked up to afford 42 mg (52%) of **16** and 39 mg (42%) of **17**. GC analysis of samples showed a **16/17** ratio of 57.5/42.5.

|          | area naphth | area <b>16</b> | area <b>17</b> | response factor 16/17 | ratio <b>16/17</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 19186       | 14700          | 13093          | 0.85/0.71             | 57.5/42.5               |
| sample 2 | 11585       | 8532           | 7937           | 0.85/0.71             | 56.5/43.5               |
| sample 3 | 9163        | 6769           | 5760           | 0.85/0.71             | 58.6/41.4               |
| average  | 13311       | 10000          | 8930           | 0.85/0.71             | 57.5/42.5               |

## Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diethyl-(1-heptenyl)silanol (3) with 2-Iodotoluene

Following General Procedure III, **1** (86  $\mu$ L, 0.50 mmol), **3** (100.1 mg, 0.50 mmol), naphthalene (66.2 mg, 0.52 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 2-iodotoluene (63.6  $\mu$ L, 0.50 mmol) was stirred at room temperature for 30 min and then sample aliquots were taken and reaction was worked up to afford 41 mg (51%) of **16** and 33 mg (35%) of **17**. GC analysis of samples showed a **16/17** ratio of 59.6/40.4. GC Data:

|          | area naphth | area <b>16</b> | area 17 | response factor 16/17 | ratio <b>16/17</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 12814       | 7894           | 6425    | 0.85/0.71             | 59.7/40.3               |
|          | 12655       | 7761           | 6326    | 0.85/0.71             | 59.7/40.3               |
| sample 2 | 11794       | 7148           | 5773    | 0.85/0.71             | 59.9/40.1               |
|          | 11860       | 7216           | 5768    | 0.85/0.71             | 60.1/39.9               |
| sample 3 | 10871       | 6531           | 5507    | 0.85/0.71             | 58.9/41.1               |
|          | 10639       | 6591           | 5438    | 0.85/0.71             | 59.4/40.6               |
| average  | 11772       | 7190           | 5873    | 0.85/0.71             | 59.6/40.4               |

### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Di-(1-methylethyl)-(1-heptenyl)silanol (4) with 2-Iodotoluene

Following General Procedure III, **1** (86  $\mu$ L, 0.50 mmol), **4** (114.7 mg, 0.50 mmol), naphthalene (64.2 mg, 0.50 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 2-iodotoluene (63.6  $\mu$ L, 0.50 mmol) was stirred at room temperature for 30 min and then sample aliquots were taken and reaction was worked up to afford 42 mg (53%) of **16** and 36 mg (38%) of **17**. GC analysis of samples showed a **16/17** ratio of 59.8/40.2.

|          | area naphth | area <b>16</b> | area 17 | response factor 16/17 | ratio <b>16/17</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 74249       | 52466          | 41686   | 0.85/0.71             | 60.3/39.7               |
|          | 74750       | 52972          | 42788   | 0.85/0.71             | 59.9/40.1               |
| sample 2 | 23057       | 16155          | 13050   | 0.85/0.71             | 59.9/40.1               |
|          | 23271       | 16273          | 13294   | 0.85/0.71             | 59.6/40.4               |
| sample 3 | 27105       | 18791          | 15527   | 0.85/0.71             | 59.4/40.6               |
|          | 27118       | 18732          | 15176   | 0.85/0.71             | 59.8/40.2               |
| average  | 41592       | 29232          | 23587   | 0.85/0.71             | 59.8/40.2               |

### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4) with 2-Iodotoluene

Following General Procedure III, **1** (86  $\mu$ L, 0.50 mmol), **4** (114.7 mg, 0.50 mmol), naphthalene (66.7 mg, 0.52 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 2-iodotoluene (63.6  $\mu$ L, 0.50 mmol) was stirred at room temperature for 30 min and then sample aliquots were taken and reaction was worked up to afford 43 mg (54%) of **16** and 32 mg (34%) of **17**. GC analysis of samples showed a **16/17** ratio of 61.1/38.9. GC Data:

|          | area naphth | area 16 | area <b>17</b> | response factor 16/17 | ratio <b>16/17</b> x100 |
|----------|-------------|---------|----------------|-----------------------|-------------------------|
| sample 1 | 9060        | 5548    | 4243           | 0.85/0.71             | 61.2/38.8               |
|          | 9143        | 5568    | 4247           | 0.85/0.71             | 61.3/38/7               |
| sample 2 | 9447        | 5773    | 4473           | 0.85/0.71             | 60.9/39.1               |
|          | 9477        | 5797    | 4453           | 0.85/0.71             | 61.1/38.9               |
| sample 3 | 12196       | 7549    | 5773           | 0.85/0.71             | 61.2/38.8               |
|          | 12295       | 7597    | 5819           | 0.85/0.71             | 61.2/38.8               |
| average  | 10270       | 6305    | 4835           | 0.85/0.71             | 61.1/38.9               |

## Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Di-(1,1-dimethylethyl)-(1-heptenyl)silanol (5) with 2-Iodotoluene

Following General Procedure III, **1** (86  $\mu$ L, 0.50 mmol), **5** (129.7 mg, 0.51 mmol), naphthalene (64.8 mg, 0.51 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 2-iodotoluene (63.6  $\mu$ L, 0.50 mmol) was stirred at room temperature for

30 min and then sample aliquots were taken and reaction was worked up to afford 67 mg (84%) of **16**. GC analysis of samples showed a **16/17** ratio of 100.0/0.0.

|          | area naphth | area <b>16</b> | area 17 | response factor 16/17 | ratio <b>16/17</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 10039       | 9771           | 0       | 0.85/0.71             | 100/0                   |
|          | 9995        | 9802           | 0       | 0.85/0.71             | 100/0                   |
| sample 2 | 7633        | 7435           | 0       | 0.85/0.71             | 100/0                   |
|          | 7644        | 7352           | 0       | 0.85/0.71             | 100/0                   |
| sample 3 | 8640        | 8404           | 0       | 0.85/0.71             | 100/0                   |
|          | 8633        | 8453           | 0       | 0.85/0.71             | 100/0                   |
| average  | 8764        | 8536           | 0       | 0.85/0.71             | 100.0/0.0               |

| GC | Data: |
|----|-------|
|    |       |

## Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Di-(1,1-dimethylethyl)-(1-heptenyl)silanol (5) with 2-Iodotoluene

Following General Procedure III, **1** (86  $\mu$ L, 0.50 mmol), **5** (128.2 mg, 0.50 mmol), naphthalene (65.2 mg, 0.51 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 2-iodotoluene (63.6  $\mu$ L, 0.50 mmol) was stirred at room temperature for 30 min and then sample aliquots were taken and reaction was worked up to afford 65 mg (82%) of **16**. GC analysis of samples showed a **16/17** ratio of 100.0/0.0.

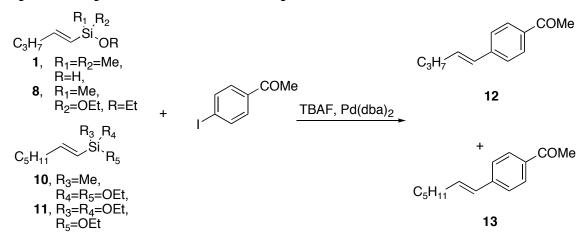
GC Data:

|          | area naphth | area 16 | area 17 | response factor 16/17 | ratio <b>16/17</b> x100 |
|----------|-------------|---------|---------|-----------------------|-------------------------|
| sample 1 | 8955        | 7390    | 0       | 0.85/0.71             | 100/0                   |
|          | 8965        | 7397    | 0       | 0.85/0.71             | 100/0                   |
| sample 2 | 11055       | 9174    | 0       | 0.85/0.71             | 100/0                   |
|          | 11114       | 9165    | 0       | 0.85/0.71             | 100/0                   |
| sample 3 | 10557       | 8605    | 0       | 0.85/0.71             | 100/0                   |
|          | 10412       | 8650    | 0       | 0.85/0.71             | 100/0                   |
| average  | 10176       | 8397    | 0       | 0.85/0.71             | 100.0/0.0               |

## Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 2-Iodotoluene

Following General Procedure III, **1** (86  $\mu$ L, 0.50 mmol), **6** (146.8 mg, 0.50 mmol), naphthalene (69.7 mg, 0.54 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 2-iodotoluene (63.6  $\mu$ L, 0.50 mmol) was stirred at room temperature for 30 min and then sample aliquots were taken and reaction was worked up to afford 35 mg (44%) of **16** and 42 mg (45%) of **17**. GC analysis of samples showed a **16/17** ratio of 50.1/49.9. GC Data:

|          | area naphth | area 16 | area 17 | response factor 16/17 | ratio <b>16/17</b> x100 |
|----------|-------------|---------|---------|-----------------------|-------------------------|
| sample 1 | 18494       | 9737    | 11707   | 0.85/0.71             | 50.1/49.9               |
|          | 19365       | 10020   | 21041   | 0.85/0.71             | 50.1/49.9               |
| sample 2 | 19794       | 10345   | 12443   | 0.85/0.71             | 50.1/49.9               |
|          | 20137       | 10600   | 12710   | 0.85/0.71             | 50.1/49.9               |
| sample 3 | 15928       | 8320    | 10035   | 0.85/0.71             | 50.5/50.0               |
|          | 16400       | 8516    | 10157   | 0.85/0.71             | 50.3/49.7               |
| average  | 18353       | 9590    | 13016   | 0.85/0.71             | 50.1/49.9               |


## Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 2-Iodotoluene

Following General Procedure III, **1** (86  $\mu$ L, 0.50 mmol), **6** (149.3 mg, 0.50 mmol), naphthalene (70.3 mg, 0.55 mmol), TBAF (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(dba)<sub>2</sub> (14.4 mg 0.025 mmol), and 2-iodotoluene (63.6  $\mu$ L, 0.50 mmol) was stirred at room temperature for 30 min and then sample aliquots were taken and reaction was worked up to afford 36 mg (45%) of **16** and 43 mg (45%) of **17**. GC analysis of samples showed a **16/17** ratio of 50.2/49.8.

|          | area naphth | area 16 | area <b>17</b> | response factor 16/17 | ratio <b>16/17</b> x100 |
|----------|-------------|---------|----------------|-----------------------|-------------------------|
| sample 1 | 13621       | 7254    | 8332           | 0.85/0.71             | 51.2/48.8               |
|          | 14192       | 7372    | 8437           | 0.85/0.71             | 51.3/48.7               |
| sample 2 | 16065       | 8346    | 9522           | 0.85/0.71             | 51.4/48.6               |
|          | 16195       | 8446    | 9711           | 0.85/0.71             | 51.2/48.8               |
| sample 3 | 13461       | 6945    | 8040           | 0.85/0.71             | 51.0/49.0               |
|          | 13655       | 7067    | 8222           | 0.85/0.71             | 50.9/49.1               |
| average  | 14532       | 7572    | 8711           | 0.85/0.71             | 50.2/49.8               |

**Competition Experiment from Table 2 (Heteroatom Substituent Effects).** 

**Competition Experiments with 4-Iodoacetophenone.** General Procedure IV.



A flame-dried, 5-mL, 2-neck, round-bottomed flask under N<sub>2</sub> was charged with (*E*)dimethyl-(1-pentenyl)silanol (**1**) or (*E*)-diethoxy-(1-pentenyl)methylsilane (**8**), (*E*)-triethoxy-(1heptenyl)silane (**10**) or (*E*)-diethoxy-(1-heptenyl)methylsilane (**11**), and 4-iodoacetophenone. THF solutions of naphthalene (0.25 M) and TBAF (1.0 M) were added next. The mixture was stirred at room temperature for 1 h and Pd(dba)<sub>2</sub> was added. After 30 min two 25-µL samples were taken via syringe. The sample aliquots were filtered through a plug of silica gel washing with Et<sub>2</sub>O to achieve a total sample volume of ~2 mL. These samples were then subjected to GC analysis. Reactions were performed in duplicate.

### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diethoxy-(1-heptenyl)methylsilane (10) with 4-Iodoacetophenone

Following General Procedure IV, **1** (28.8 mg, 0.20 mmol), **15** (46.0 mg, 0.20 mmol), 4iodoacetophenone (49.2 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) was stirred for 1 h and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **12/13** ratio of 49.2/50.8.

GC Data:

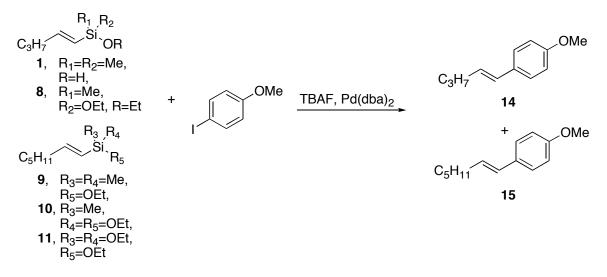
| reaction 1 | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 43234       | 22649          | 28321          | 0.78/0.67             | 48.4/51.6               |
|            | 43001       | 20833          | 26167          | 0.78/0.67             | 48.3/51.7               |
| sample 2   | 24316       | 15081          | 18853          | 0.78/0.67             | 48.4/51.6               |
|            | 31582       | 15703          | 18656          | 0.78/0.67             | 49.7/50.3               |
| average    | 35533       | 18567          | 22999          | 0.78/0.67             | 48.7/51.3               |
|            |             |                |                |                       |                         |
| reaction 2 | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
| sample 1   | 33537       | 16512          | 18458          | 0.78/0.67             | 51.2/48.8               |
|            | 37849       | 18562          | 21433          | 0.78/0.67             | 50.4/49.6               |
| sample 2   | 36630       | 16186          | 20262          | 0.78/0.67             | 48.4/51.6               |
|            | 44103       | 19495          | 23721          | 0.78/0.67             | 49.0/51.0               |
| average    | 38030       | 17689          | 20969          | 0.78/0.67             | 49.8/50.2               |

# Competition of (E)-Dimethyl-(1-pentenyl)silanol (1) vs (E)-Triethoxy-(1-heptenyl)silane (11) with 4-Iodoacetophenone

Following General Procedure IV, **1** (28.8 mg, 0.20 mmol), **11** (52 mg, 0.20 mmol), 4iodoacetophenone (49.2 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) was stirred for 1 h and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **12/13** ratio of 73.9/26.1.

| reaction 1 | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100  |
|------------|-------------|----------------|----------------|-----------------------|--------------------------|
| sample 1   | 33285       | 19312          | 7574           | 0.78/0.67             | 74.9/25.1                |
|            | 34349       | 20642          | 8491           | 0.78/0.67             | 74.0/26.0                |
| sample 2   | 41452       | 24629          | 10241          | 0.78/0.67             | 73.8/26.2                |
|            | 37199       | 23529          | 9387           | 0.78/0.67             | 74.6/25.4                |
| average    | 36571       | 22028          | 8923           | 0.78/0.67             | 74.3/25.7                |
|            |             |                |                |                       |                          |
| reaction 2 | area nanhth | area 12        | area 13        | response factor 12/13 | ratio $12/13 \times 100$ |

| reaction 2 | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 31830       | 23506          | 9484           | 0.78/0.67             | 74.4/25.6               |
|            | 30942       | 22643          | 9222           | 0.78/0.67             | 74.2/25.8               |
| sample 2   | 36959       | 23815          | 11330          | 0.78/0.67             | 71.1/28.8               |
|            | 34267       | 21527          | 8693           | 0.78/0.67             | 74.4/25.6               |
| average    | 33500       | 22873          | 9682           | 0.78/0.67             | 73.5/26.5               |


### Competition of (*E*)- Diethoxy-(1-pentenyl)methylsilane (8) vs (*E*)-Triethoxy-(1-heptenyl)silane (11) with 4-Iodoacetophenone

Following General Procedure IV, **8** (40.4 mg, 0.20 mmol), **14** (52.0 mg, 0.20 mmol), 4iodoacetophenone (49.2 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) was stirred for 1 h and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **12/13** ratio of 73.1/26.9.

| reaction 1 | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 46263       | 19698          | 8310           | 0.78/0.67             | 73.5/26.5               |
|            | 46379       | 21699          | 9886           | 0.78/0.67             | 72.0/28.0               |
| sample 2   | 39019       | 18565          | 8469           | 0.78/0.67             | 72.0/28.0               |
|            | 37506       | 18054          | 8248           | 0.78/0.67             | 72.0/28.0               |
| average    | 42292       | 19504          | 8728           | 0.78/0.67             | 72.4/27.6               |

| reaction 2 | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 34306       | 20132          | 8667           | 0.78/0.67             | 73.1/26.9               |
|            | 34281       | 20059          | 8871           | 0.78/0.67             | 72.6/27.4               |
| sample 2   | 29777       | 17456          | 6818           | 0.78/0.67             | 75.0/25.0               |
|            | 29877       | 17692          | 6950           | 0.78/0.67             | 74.9/25.1               |
| average    | 32060       | 18835          | 7827           | 0.78/0.67             | 73.9/26.1               |

#### **Competition Experiments with 4-Iodoanisole. General Procedure V.**



A flame-dried, 5-mL, 2-neck, round-bottomed flask under N<sub>2</sub> was charged with (*E*)dimethyl-(1-pentenyl)silanol (**1**) or (*E*)-diethoxy-(1-pentenyl)methylsilane (**8**), (*E*)-diethoxy-(1heptenyl)methylsilane (**11**) or (*E*)-Triethoxy-(1-heptenyl)silane (**15**) or (*E*)-dimethylethoxy-(1heptenyl)silane (**17**) and 4-iodoanisole. THF solutions of naphthalene (0.25 M) and TBAF (1.0 M) were added next. The mixture was stirred at room temperature for 1 h and Pd(dba)<sub>2</sub> was added. After 30 min two 25- $\mu$ L samples were taken via syringe. The sample aliquots were filtered through a plug of silica gel washing with Et<sub>2</sub>O to achieve a total sample volume of ~2 mL. These samples were then subjected to GC analysis. Reactions were performed in duplicate.

### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diethoxy-(1-heptenyl)methylsilane (10) with 4-Iodoanisole

Following General Procedure V, **1** (28.8 mg, 0.20 mmol), **10** (46.0 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) was stirred for 1 h and  $Pd(dba)_2$  (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 56.6/43.4.

| reaction 1 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 33508       | 19836          | 19364          | 0.96/0.79             | 55.5/44.5               |
|            | 35651       | 20941          | 19949          | 0.96/0.79             | 56.1/43.9               |
| sample 2   | 39588       | 24024          | 21623          | 0.96/0.79             | 57.5/42.5               |
|            | 40440       | 24611          | 22066          | 0.96/0.79             | 57.6/42.4               |
| average    | 37297       | 22353          | 20751          | 0.96/0.79             | 56.7/43.3               |
|            |             |                |                |                       |                         |
| reaction 2 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
| sample 1   | 36310       | 21747          | 19973          | 0.96/0.79             | 57.0/43.0               |
|            | 35890       | 21662          | 19462          | 0.96/0.79             | 57.5/42.5               |
| sample 2   | 59786       | 35099          | 33646          | 0.96/0.79             | 56.0/44.0               |
|            | 59901       | 35132          | 33666          | 0.96/0.79             | 56.0/44.0               |
| average    | 47972       | 28410          | 26687          | 0.96/0.79             | 56.6/43.4               |

GC Data:

# Competition of (E)-Dimethyl-(1-pentenyl)silanol (1) vs (E)-Triethoxy-(1-heptenyl)silane (11) with 4-Iodoanisole

Following General Procedure V, **1** (28.8 mg, 0.20 mmol), **11** (52.0 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) was stirred for 1 h and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 81.5/18.5.

| reaction 1 | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1   | 63425       | 43224          | 11789   | 0.96/0.79             | 81.7/18.3               |
|            | 63784       | 43594          | 11822   | 0.96/0.79             | 81.8/18.2               |
| sample 2   | 39579       | 27782          | 7613    | 0.96/0.79             | 81.6/18.4               |
|            | 40022       | 28112          | 7527    | 0.96/0.79             | 81.9/18.1               |
| average    | 51703       | 35678          | 9688    | 0.96/0.79             | 81.8/18.2               |
|            |             |                |         |                       |                         |
| reaction 2 | area naphth | area 14        | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |

| reaction 2 | area naphth | area 14 | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|---------|---------|-----------------------|-------------------------|
| sample 1   | 62306       | 48939   | 13656   | 0.96/0.79             | 81.4/18.6               |
|            | 63805       | 49961   | 13845   | 0.96/0.79             | 81.5/18.5               |
| sample 2   | 58500       | 46520   | 12973   | 0.96/0.79             | 81.4/18.6               |
|            | 58898       | 46305   | 12986   | 0.96/0.79             | 81.3/18.7               |
| average    | 60877       | 47931   | 13365   | 0.96/0.79             | 81.4/18.6               |

# Competition of (*E*)- Diethoxy-(1-pentenyl)methylsilane (8) vs (*E*)-Triethoxy-(1-heptenyl)-silane (11) with 4-Iodoanisole

Following General Procedure V, **8** (40.4 mg, 0.20 mmol), **11** (52.0 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) was stirred for 1 h and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 76.4/23.6.

| reaction 1 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 49082       | 28098          | 10621          | 0.96/0.79             | 76.3/23.7               |
|            | 46729       | 27132          | 10294          | 0.96/0.79             | 76.2/23.8               |
| sample 2   | 48724       | 28213          | 10717          | 0.96/0.79             | 76.2/23.8               |
|            | 47371       | 27367          | 10313          | 0.96/0.79             | 76.4/23.6               |
| average    | 47977       | 27703          | 10486          | 0.96/0.79             | 76.3/23.7               |

| reaction 2 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 48650       | 30306          | 11392          | 0.96/0.79             | 76.4/23.6               |
|            | 49689       | 30847          | 11457          | 0.96/0.79             | 76.6/23.4               |
| sample 2   | 49986       | 31218          | 11555          | 0.96/0.79             | 76.7/23.3               |
|            | 49589       | 30895          | 11566          | 0.96/0.79             | 76.5/23.5               |
| average    | 49479       | 30817          | 11493          | 0.96/0.79             | 76.6/23.4               |

#### Competition of (E)-Dimethyl-(1-pentenyl)silanol (1) vs (E)-Dimethyl-(1-heptenyl)ethoxysilane (9) with 4-Iodoanisole

Following General Procedure V, **1** (28.8 mg, 0.20 mmol), **9** (40.0 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) was stirred for 1 h and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 49.4/50.6.

| reaction 1 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 55280       | 29310          | 33723          | 0.96/0.79             | 53.8/46.2               |
|            | 51732       | 30201          | 40037          | 0.96/0.79             | 48.7/51.3               |
| sample 2   | 136226      | 66353          | 78334          | 0.96/0.79             | 50.8/49.2               |
|            | 103450      | 61348          | 79557          | 0.96/0.79             | 51.4/48.6               |
| average    | 86672       | 46803          | 57913          | 0.96/0.79             | 51.2/48.8               |

| reaction 2 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 36181       | 19548          | 25300          | 0.96/0.79             | 46.8/53.2               |
|            | 33750       | 16723          | 22760          | 0.96/0.79             | 47.8/52.2               |
| sample 2   | 51360       | 22762          | 23731          | 0.96/0.79             | 48.4/51.6               |
|            | 33920       | 19852          | 27421          | 0.96/0.79             | 47.2/52.8               |
| average    | 38803       | 19721          | 24803          | 0.96/0.79             | 47.6/52.4               |



#### **Competition Experiments with 2-Iodotoluene. General Procedure VI.**

A flame-dried, 5-mL, 2-neck, round-bottomed flask under N<sub>2</sub> was charged with (*E*)dimethyl-(1-pentenyl)silanol (**1**) or (*E*)-diethoxy-(1-pentenyl)methylsilane (**8**), (*E*)-triethoxy-(1heptenyl)silane (**10**) or (*E*)-diethoxy-(1-heptenyl)methylsilane (**11**), and 2-iodotoluene. THF solutions of naphthalene (0.25 M) and TBAF (1.0 M) were added next. The mixture was stirred at room temperature for 1 h and Pd(dba)<sub>2</sub> was added. After 30 min two 25- $\mu$ L samples were taken via syringe. The sample aliquots were filtered through a plug of silica gel washing with Et<sub>2</sub>O to achieve a total sample volume of ~2 mL. These samples were then subjected to GC analysis. Reactions were performed in duplicate.

#### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diethoxy-(1-heptenyl)methylsilane (10) with 2-Iodotoluene

Following General Procedure VI, **1** (28.8 mg, 0.20 mmol), **10** (46.0 mg, 0.20 mmol), 2iodotoluene (25.6  $\mu$ L, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) was stirred for 1 h and Pd(dba)2 (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **16/17** ratio of 51.4/48.6.

| reaction 1 | area naphth | area <b>16</b> | area <b>17</b> | response factor 16/17 | ratio <b>16/17</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 40099       | 23444          | 18578          | 0.86/0.71             | 51.1/48.9               |
|            | 17578       | 10609          | 9030           | 0.86/0.71             | 49.3/50.7               |
| sample 2   | 34377       | 20022          | 15754          | 0.86/0.71             | 51.3/48.7               |
|            | 31432       | 18853          | 15953          | 0.86/0.71             | 49.5/50.5               |
| average    | 30872       | 18232          | 14829          | 0.86/0.71             | 50.3/49.7               |
|            | •           |                |                |                       |                         |
| reaction 2 | area naphth | area <b>16</b> | area 17        | response factor 16/17 | ratio <b>16/17</b> x100 |
| sample 1   | 35409       | 19881          | 15110          | 0.86/0.71             | 52.1/47.9               |
|            | 36556       | 23764          | 18105          | 0.86/0.71             | 52.1/47.9               |
| sample 2   | 50075       | 27983          | 20912          | 0.86/0.71             | 52.6/47.4               |
|            | 46599       | 26336          | 19575          | 0.86/0.71             | 52.7/47.3               |
| average    | 42160       | 24491          | 18426          | 0.86/0.71             | 52.4/47.6               |

## Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Triethoxy-(1-heptenyl)silane (11) with 2-Iodotoluene

Following General Procedure VI, **1** (28.8 mg, 0.20 mmol), **14** (52.0 mg, 0.20 mmol), 2iodotoluene (25.6  $\mu$ L, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) was stirred for 1 h and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **16/17** ratio of 81.1/18.9

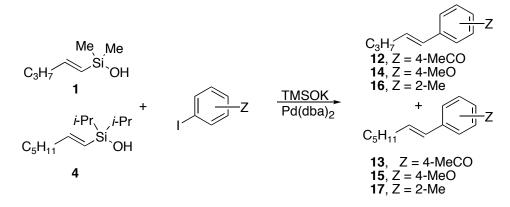
GC Data:

| reaction 1 | area naphth | area <b>16</b> | area <b>17</b> | response factor 16/17 | ratio <b>16/17</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 65559       | 41279          | 11396          | 0.86/0.71             | 81.4/18.6               |
|            | 64535       | 40389          | 11127          | 0.86/0.71             | 81.4/18.6               |
| sample 2   | 49213       | 30732          | 8575           | 0.86/0.71             | 81.2/18.8               |
|            | 49089       | 30672          | 8514           | 0.86/0.71             | 81.3/18.7               |
| average    | 57099       | 35768          | 9903           | 0.86/0.71             | 81.3/18.7               |

| reaction 2 | area naphth | area <b>16</b> | area <b>17</b> | response factor 16/17 | ratio <b>16/17</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 57551       | 41549          | 11813          | 0.86/0.71             | 80.9/19.1               |
|            | 58493       | 42322          | 12015          | 0.86/0.71             | 80.9/19.1               |
| sample 2   | 50523       | 36321          | 10311          | 0.86/0.71             | 80.9/19.1               |
|            | 51554       | 37040          | 10517          | 0.86/0.71             | 81.0/19.0               |
| average    | 54530       | 39308          | 11164          | 0.86/0.71             | 80.9/19.1               |

### Competition of (*E*)- Diethoxy-(1-pentenyl)methylsilane (8) vs (*E*)-Triethoxy-(1-heptenyl)silane (11) with 2-Iodotoluene

Following General Procedure VI, **8** (40.4 mg, 0.20 mmol), **11** (52.0 mg, 0.20 mmol), 2iodotoluene (25.6  $\mu$ L, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) was stirred for 1 h and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **16/17** ratio of 74.4/25.6.


GC Data:

| reaction 1 | area naphth | area <b>16</b> | area <b>17</b> | response factor 16/17 | ratio <b>16/17</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 60499       | 46284          | 19176          | 0.86/0.71             | 74.4/25.6               |
|            | 63396       | 48347          | 19938          | 0.86/0.71             | 74.2/25.8               |
| sample 2   | 49896       | 33954          | 14214          | 0.86/0.71             | 74.2/25.8               |
|            | 51629       | 34852          | 14214          | 0.86/0.71             | 74.7/25.3               |
| average    | 56355       | 40859          | 16886          | 0.86/0.71             | 74.4/25.6               |

| reaction 2 | area naphth | area <b>16</b> | area 17 | response factor 16/17 | ratio <b>16/17</b> x100 |
|------------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1   | 55396       | 37786          | 15739   | 0.86/0.71             | 74.3/25.7               |
|            | 55300       | 37694          | 15739   | 0.86/0.71             | 74.3/25.7               |
| sample 2   | 40863       | 31296          | 13097   | 0.86/0.71             | 74.2/25.8               |
|            | 40115       | 30675          | 12811   | 0.86/0.71             | 74.3/25.7               |
| average    | 47919       | 34363          | 14347   | 0.86/0.71             | 74.3/25.7               |

#### Competition Experiments with Potassium Trimethylsilanolate as Activator.

Competition Experiments with Carbon Substituents in the Presence of Potassium Trimethylsilanolate. General Procedure VII.



A flame-dried, 5-mL, 2-neck, round-bottomed flask under N<sub>2</sub> was charged with (*E*)dimethyl-(1-pentenyl)silanol (1), di(1-methylethyl)-(1-heptenyl)silanol (4) and the aryl iodide. A THF solution of naphthalene (0.25 M) was added next followed by TMSOK and Pd(dba)<sub>2</sub>. After an appropriate time, two 25- $\mu$ L samples were taken via syringe. The sample aliquots were filtered through a plug of silica gel washing with Et<sub>2</sub>O to achieve a total sample volume of ~2 mL. These samples were then subjected to GC analysis. Reactions were performed in duplicate.

### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diisopropyl-(1-heptenyl)silanol (4) with 4-Iodoacetophenone

Following General Procedure VII, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoacetophenone (49.2 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in DME) and TMSOK (25.8 mg, 0.80 mmol) and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) were stirred at room temperature for 14 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **12/13** ratio of 100/0.

| reaction 1 | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 8109        | 7911           | 0              | 0.78/0.67             | 100/0                   |
|            | 7088        | 7579           | 0              | 0.78/0.67             | 100/0                   |
| sample 2   | 10186       | 9874           | 0              | 0.78/0.67             | 100/0                   |
|            | 9290        | 9418           | 0              | 0.78/0.67             | 100/0                   |
| average    | 8668        | 8696           | 0              | 0.78/0.67             | 100.0/0.0               |
|            |             |                |                |                       |                         |

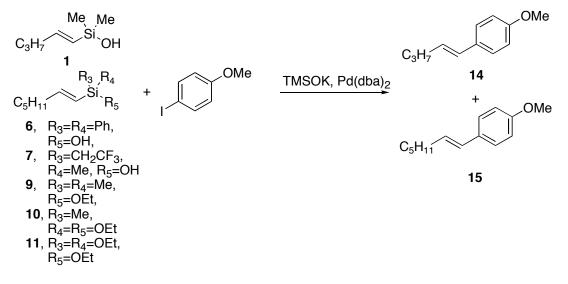
| reaction 2 | area naphth | area <b>12</b> | area <b>13</b> | response factor 12/13 | ratio <b>12/13</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 9034        | 1325           | 0              | 0.78/0.67             | 100/0                   |
|            | 7985        | 10105          | 0              | 0.78/0.67             | 100/0                   |
| sample 2   | 9303        | 11746          | 0              | 0.78/0.67             | 100/0                   |
|            | 9312        | 11335          | 0              | 0.78/0.67             | 100/0                   |
| average    | 8909        | 8628           | 0              | 0.78/0.67             | 100.0/0.0               |

### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Di(1-methylsethy)-(1 heptenyl)silanol (4) with 2-Iodotoluene

Following General Procedure VII, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 2iodotoluene (25.6  $\mu$ L, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in DME) and TMSOK (25.8 mg, 0.80 mmol) and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) were stirred at room temperature for 4 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **16/17** ratio of 93.7/6.3.

| reaction 1 | area naphth | area <b>16</b> | area <b>17</b> | response factor 16/17 | ratio <b>16/17</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 16988       | 12745          | 947            | 0.78/0.67             | 94.2/5.8                |
|            | 15051       | 10791          | 801            | 0.78/0.67             | 94.2/5.8                |
| sample 2   | 13632       | 10101          | 962            | 0.78/0.67             | 92.7/7.3                |
|            | 13838       | 10258          | 981            | 0.78/0.67             | 92.7/7.3                |
| average    | 14877       | 10974          | 923            | 0.78/0.67             | 93.5/6.5                |

| reaction 2 | area naphth | area <b>16</b> | area 17 | response factor 16/17 | ratio <b>16/17</b> x100 |
|------------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1   | 14763       | 13054          | 1042    | 0.78/0.67             | 93.8/6.8                |
|            | 14012       | 12536          | 1002    | 0.78/0.67             | 93.7/6.3                |
| sample 2   | 22285       | 19442          | 1322    | 0.78/0.67             | 94.7/5.4                |
|            | 19526       | 17396          | 1371    | 0.78/0.67             | 93.9/6.1                |
| average    | 17647       | 15607          | 1184    | 0.78/0.67             | 93.9/6.1                |


### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Di-(1-methylethyl)-(1 heptenyl)silanol (4) with 4-Iodoanisole

Following General Procedure VII, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in DME) and TMSOK (25.8 mg, 0.80 mmol) and  $Pd(dba)_2$  (5.8 mg 0.01 mmol) were stirred at room temperature for 4 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 95.0/5.0.

| reaction 1 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 10177       | 8386           | 663            | 0.96/0.79             | 93.9/6.0                |
|            | 11986       | 9371           | 642            | 0.96/0.79             | 94.7/5.3                |
| sample 2   | 14510       | 10237          | 549            | 0.96/0.79             | 95.8/4.2                |
|            | 13521       | 10010          | 545            | 0.96/0.79             | 95.7/4.3                |
| average    | 12549       | 9501           | 600            | 0.96/0.79             | 95.0/5.0                |

| reaction 2 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 12820       | 9712           | 609            | 0.96/0.79             | 95.1/4.9                |
|            | 14275       | 10540          | 650            | 0.96/0.79             | 95.2/4.8                |
| sample 2   | 15035       | 8525           | 498            | 0.96/0.79             | 95.4/4.6                |
|            | 12941       | 7787           | 543            | 0.96/0.79             | 94.6/5.4                |
| average    | 13768       | 9141           | 575            | 0.96/0.79             | 95.1/4.9                |

Competition Experiments with 4-Iodoanisole in the Presence of Potassium Trimethylsilanolate. General Procedure VIII.



A flame-dried, 5-mL, 2-neck, round-bottomed flask under N<sub>2</sub> was charged with (*E*)dimethyl-(1-pentenyl)silanol (1), one of the (1-heptenyl)silanols (6-11) and 4-iodoanisole. A THF solution of naphthalene (0.25 M) was added next followed by TMSOK and Pd(dba)<sub>2</sub>. After 4 h, two 25- $\mu$ L samples were taken via syringe. The sample aliquots were filtered through a plug of silica gel washing with Et<sub>2</sub>O to achieve a total sample volume of ~2 mL. These samples were then subjected to GC analysis. Reactions were performed in duplicate.

# Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diphenyl-(1 heptenyl)silanol (6) with 4-Iodoanisole

Following General Procedure VIII, **1** (28.8 mg, 0.20 mmol), **6** (59.2 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TMSOK (102 mg, 0.80 mmol) and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) were stirred at room temperature for 4 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 20.6/79.4. 12746

10889

11945

2744

2812

2426

| area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|-------------|----------------|---------|-----------------------|-------------------------|
| 10920       | 2036           | 10383   | 0.96/0.79             | 19.3/80.7               |
| 13224       | 2111           | 10117   | 0.96/0.79             | 20.3/79.7               |

0.96/0.79

0.96/0.79

0.96/0.79

GC Data:

reaction 1

sample 1

sample 2

average

| reaction 2 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 27002       | 5281           | 25181          | 0.96/0.79             | 20.3/79.7               |
|            | 22444       | 4990           | 24059          | 0.96/0.79             | 20.2/79.8               |
| sample 2   | 21416       | 4494           | 22861          | 0.96/0.79             | 19.3/80.7               |
|            | 23732       | 5307           | 23967          | 0.96/0.79             | 21.2/78.8               |
| average    | 23649       | 5018           | 24017          | 0.96/0.79             | 20.3/79.7               |

12088

11887

11119

### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Trifluoropropyl-(1-heptenyl)methylsilanol (7) with 4-Iodoanisole

Following General Procedure VIII, **1** (28.8 mg, 0.20 mmol), **7** (50.8 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TMSOK (102 mg, 0.80 mmol) were stirred for 1 h and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 4 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 34.9/65.1.

|--|

| reaction 1 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 9213        | 3254           | 7782           | 0.96/0.79             | 33.7/66.3               |
|            | 10920       | 3618           | 7965           | 0.96/0.79             | 35.6/64.4               |
| sample 2   | 18740       | 5826           | 12499          | 0.96/0.79             | 36.2/63.8               |
|            | 17974       | 5708           | 12352          | 0.96/0.79             | 36.0/64.0               |
| average    | 14212       | 4602           | 10150          | 0.96/0.79             | 35.4/64.6               |

21.6/78.4

22.4/77.6

20.9/79.1

| reaction 2 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 15913       | 4443           | 10072          | 0.96/0.79             | 34.9/65.1               |
|            | 14890       | 4399           | 10118          | 0.96/0.79             | 34.6/65.4               |
| sample 2   | 16420       | 4736           | 10709          | 0.96/0.79             | 35.0/65.0               |
|            | 14129       | 4372           | 10713          | 0.96/0.79             | 33.1/66.9               |
| average    | 15338       | 4488           | 10403          | 0.96/0.79             | 34.4/65.6               |

## Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)- Dimethyl-(1-heptenyl) ethoxysilane (9) with 4-Iodoanisole

Following General Procedure VIII, **1** (28.8 mg, 0.20 mmol), **9** (40.0 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TMSOK (102 mg, 0.80 mmol) were stirred for 1 h and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 4 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 48.1/51.9.

| reaction 1 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 7822        | 3398           | 4320           | 0.96/0.79             | 48.9/51.1               |
|            | 5984        | 2763           | 4025           | 0.96/0.79             | 45.5/54.4               |
| sample 2   | 5884        | 2883           | 4082           | 0.96/0.79             | 46.2/53.7               |
|            | 6834        | 2846           | 3733           | 0.96/0.79             | 48.1/51.9               |
| average    | 6631        | 2973           | 4040           | 0.96/0.79             | 47.2/52.8               |

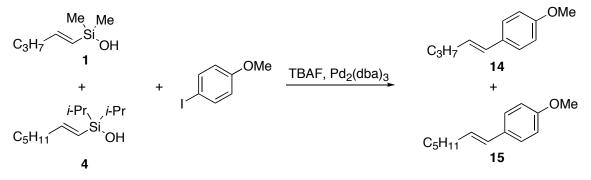
| reaction 2 | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio 14/15x100 |
|------------|-------------|----------------|---------|-----------------------|-----------------|
| sample 1   | 14268       | 5150           | 6635    | 0.96/0.79             | 48.6/51.4       |
|            | 12609       | 4823           | 6132    | 0.96/0.79             | 48.9/51.1       |
| sample 2   | 11388       | 3972           | 4765    | 0.96/0.79             | 50.4/49.6       |
|            | 8838        | 4555           | 5975    | 0.96/0.79             | 48.1/51.9       |
| average    | 11776       | 4625           | 5877    | 0.96/0.79             | 49.0/51.0       |

#### Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diethoxy-(1-heptenyl)methylsilane (10) with 4-Iodoanisole

Following General Procedure VIII, **1** (28.8 mg, 0.20 mmol), **10** (46.0 mg, 0.20 mmol), 4iodotoluene (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TMSOK (102 mg, 0.80 mmol, 4 equiv) was stirred for 1 h and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 4 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 45.2/54.8.

GC Data:

| reaction 1 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 12383       | 5015           | 6820           | 0.96/0.79             | 47.2/52.8               |
|            | 14152       | 5473           | 7759           | 0.96/0.79             | 46.2/53.8               |
| sample 2   | 14350       | 5591           | 7614           | 0.96/0.79             | 47.2/52.8               |
|            | 12685       | 5158           | 7438           | 0.96/0.79             | 45.8/54.2               |
| average    | 13393       | 5309           | 7408           | 0.96/0.79             | 46.6/53.4               |


| reaction 2 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 10483       | 3694           | 5885           | 0.96/0.79             | 43.3/56.7               |
|            | 10944       | 3532           | 5508           | 0.96/0.79             | 43.8/56.1               |
| sample 2   | 13787       | 4374           | 6477           | 0.96/0.79             | 45.1/54.9               |
|            | 11565       | 3684           | 5892           | 0.96/0.79             | 43.2/56.8               |
| average    | 11695       | 3821           | 5941           | 0.96/0.79             | 43.9/56.1               |

# Competition of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Triethoxy-(1-heptenyl)silane (11) with 4-Iodoanisole

Following General Procedure VIII, **1** (28.8 mg, 0.20 mmol), **11** (52.0 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), a solution of naphthalene (0.8 mL, 0.20 mmol, 0.25 M in THF) and TMSOK (102 mg, 0.80 mmol, 4 equiv) were stirred for 1 h and Pd(dba)<sub>2</sub> (5.8 mg 0.01 mmol) was added. The reaction was stirred at room temperature for 4 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 51.6/48.4.

| reaction 1 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|------------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1   | 20487       | 8602           | 10147          | 0.96/0.79             | 50.8/49.2               |
|            | 20825       | 11020          | 12209          | 0.96/0.79             | 52.4/47.6               |
| sample 2   | 22197       | 9139           | 10343          | 0.96/0.79             | 51.8/48.2               |
|            | 20003       | 8185           | 9599           | 0.96/0.79             | 50.9/49.1               |
| average    | 20878       | 9237           | 10575          | 0.96/0.79             | 51.5/48.5               |
|            |             |                |                |                       |                         |
| reaction 2 | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
| sample 1   | 19421       | 6903           | 7745           | 0.96/0.79             | 52.0/48.0               |
|            | 14983       | 6151           | 7832           | 0.96/0.79             | 48.9/51.1               |
| sample 2   | 17814       | 7132           | 8018           | 0.96/0.79             | 52.0/48.0               |
|            | 17462       | 6857           | 7118           | 0.96/0.79             | 53.8/46.2               |
| average    | 17420       | 6761           | 7678           | 0.96/0.79             | 51.7/48.3               |

Competition Experiments of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole. General Procedure IX.



(*E*)-Dimethyl-(1-pentenyl)silanol (1), together with (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4), naphthalene, and 4-iodoanisole were dissolved in a TBAF solution (1.0 M in THF) in a flame-dried, 5-mL, 2-neck, round-bottomed flask under Ar.  $Pd_2(dba)_3$  was added next and the resulting mixture stirred for 1 h. Two 25 µL samples were then taken via syringe. The sample aliquots were filtered through a plug of silica gel washing with EtOAc to achieve a total sample volume of ~2 mL. These samples were then subjected to GC analysis. Reactions were performed in duplicate.

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole and 1 equiv TBAF.

Following General Procedure IX, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (22.3 mg), TBAF (0.2 mL, 0.20 mmol, 1.0 M in THF) and  $Pd_2(dba)_3$  (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 53.4/46.6.

#### GC Data:

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 33357       | 14468          | 14037   | 0.87/0.79             | 53.1/46.9               |
| sample 2 | 40130       | 16930          | 16170   | 0.87/0.79             | 53.6/46.4               |
| average  | 36744       | 15699          | 15104   | 0.87/0.79             | 53.4/46.6               |

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole and 1 equiv TBAF.

Following General Procedure IX, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (11.6 mg), TBAF (0.2 mL, 0.20 mmol, 1.0 M in THF) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 55.7/44.3.

|          | area naphth | area <b>14</b> | area <b>1 5</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|-----------------|-----------------------|-------------------------|
| sample 1 | 18797       | 12336          | 10723           | 0.87/0.79             | 55.9/44.1               |
| sample 2 | 30774       | 19873          | 17691           | 0.87/0.79             | 55.4/44.6               |
| average  | 24745       | 16105          | 14207           | 0.87/0.79             | 55.7/44.3               |

GC Data:

Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole and 2 equiv TBAF.

Following General Procedure IX, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (11.4 mg), TBAF (0.4 mL, 0.40 mmol, 1.0 M in THF) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 58.5/41.5.

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 25030       | 25148          | 19628          | 0.87/0.79             | 58.5/41.5               |
| sample 2 | 26012       | 26279          | 20708          | 0.87/0.79             | 58.4/41.6               |
| average  | 25521       | 25714          | 20168          | 0.87/0.79             | 58.5/41.5               |

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole and 2 equiv TBAF.

Following General Procedure IX, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (22.2 mg), TBAF (0.4 mL, 0.40 mmol, 1.0 M in THF) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 58.5/41.5.

#### GC Data:

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 29357       | 18201          | 14864   | 0.87/0.79             | 57.5/42.6               |
| sample 2 | 26383       | 14283          | 10732   | 0.87/0.79             | 59.4/40.6               |
| average  | 27870       | 16242          | 12798   | 0.87/0.79             | 58.5/41.6               |

## Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole and 4 equiv TBAF.

Following General Procedure IX, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (20.8 mg), TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 66.9/33.1.

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 8147        | 4295           | 2282           | 0.87/0.79             | 67.5/32.5               |
| sample 2 | 14041       | 7763           | 4282           | 0.87/0.79             | 66.8/33.4               |
| average  | 11094       | 6029           | 3282           | 0.87/0.79             | 66.9/33.1               |

### Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Di(1methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole and 4 equiv TBAF.

Following General Procedure IX, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (14.1 mg), TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 65.0/34.0.

GC Data:

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 10116       | 8167           | 4814    | 0.87/0.79             | 65.2/34.8               |
| sample 2 | 10205       | 9091           | 5443    | 0.87/0.79             | 64.9/35.1               |
| average  | 10161       | 8629           | 5129    | 0.87/0.79             | 65.1/34.9               |

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole and 8 equiv TBAF.

Following General Procedure IX, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (23.5 mg), TBAF (1.6 mL, 1.60 mmol, 1.0 M in THF) and  $Pd_2(dba)_3$  (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 67.1/32.9.

GC Data:

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 21870       | 12164          | 6563           | 0.87/0.79             | 67.1/32.9               |
| sample 2 | 6474        | 3705           | 2023           | 0.87/0.79             | 67.1/32.9               |
| average  | 14172       | 7935           | 4293           | 0.87/0.79             | 67.1/32.9               |

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole and 8 equiv TBAF.

Following General Procedure IX, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (14.5 mg), TBAF (1.6 mL, 1.60 mmol, 1.0 M in THF) and  $Pd_2(dba)_3$  (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 66.1/33.9.

#### GC Data:

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 7962        | 4936           | 2450    | 0.87/0.79             | 68.9/31.1               |
| sample 2 | 14725       | 10608          | 6836    | 0.87/0.79             | 63.1/36.9               |
| average  | 11344       | 7772           | 4643    | 0.87/0.79             | 66.1/33.9               |

# Competition of 2 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 2 equiv (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole and 8 equiv TBAF.

Following General Procedure IX, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoanisole (23.4 mg, 0.10 mmol), naphthalene (10.3 mg), TBAF (0.8 mL, 0.8 mmol, 1.0 M in THF) and  $Pd_2(dba)_3$  (2.3 mg 0.0025 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 68.0/32.0.

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 15634       | 8491           | 4485    | 0.87/0.79             | 68.1/31.9               |
| sample 2 | 16164       | 9183           | 4751    | 0.87/0.79             | 67.9/32.1               |
| average  | 15899       | 8837           | 4618    | 0.87/0.79             | 68.0/32.0               |

GC Data:

Competition of 2 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 2 equiv (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole and 8 equiv TBAF.

Following General Procedure IX, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoanisole (23.4 mg, 0.10 mmol), naphthalene (11.0 mg), TBAF (0.8 mL, 0.8 mmol, 1.0 M in THF) and Pd<sub>2</sub>(dba)<sub>3</sub> (2.3 mg 0.0025 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 66.0/34.0.

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 12430       | 6762           | 3973           | 0.87/0.79             | 65.3/34.7               |
| sample 2 | 11752       | 5981           | 3294           | 0.87/0.79             | 66.7/33.4               |
| average  | 12091       | 6372           | 3634           | 0.87/0.79             | 66.0/34.0               |

# Competition of 3 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 3 equiv (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole and 12 equiv TBAF.

Following General Procedure IX, **1** (43.2 mg, 0.30 mmol), **4** (68.5 mg, 0.30 mmol), 4iodoanisole (23.4 mg, 0.10 mmol), naphthalene (8.7 mg), TBAF (1.2 mL, 1.2 mmol, 1.0 M in THF) and Pd<sub>2</sub>(dba)<sub>3</sub> (2.3 mg 0.0025 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 68.8/31.2.

|          | area naphth | area <b>14</b> | area <b>1 5</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|-----------------|-----------------------|-------------------------|
| sample 1 | 7068        | 4567           | 2183            | 0.87/0.79             | 69.8/30.2               |
| sample 2 | 12681       | 8735           | 4560            | 0.87/0.79             | 67.9/32.1               |
| average  | 9875        | 6651           | 3372            | 0.87/0.79             | 68.8/31.2               |

GC Data:

## Competition of 3 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 3 equiv (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole and 12 equiv TBAF.

Following General Procedure IX, **1** (43.2 mg, 0.30 mmol), **4** (68.5 mg, 0.30 mmol), 4iodoanisole (23.4 mg, 0.10 mmol), naphthalene (10.3 mg), TBAF (1.2 mL, 1.2 mmol, 1.0 M in THF) and Pd<sub>2</sub>(dba)<sub>3</sub> (2.3 mg 0.0025 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 69.9/30.1.

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 8751        | 5424           | 2666           | 0.87/0.79             | 69.2/30.8               |
| sample 2 | 11933       | 7329           | 3381           | 0.87/0.79             | 70.5/29.5               |
| average  | 12091       | 6372           | 3634           | 0.87/0.79             | 69.9/30.1               |

### Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Di(1methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole and 1 equiv TMSOK.

Following General Procedure IX, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (20.5 mg), TMSOK (0.2 mL, 0.20 mmol, 1.0 M in THF) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 1.0/0.

GC Data:

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 51446       | 13127          | 0       | 0.87/0.79             | 1.0/0                   |
| sample 2 | 44112       | 10900          | 0       | 0.87/0.79             | 1.0/0                   |
| average  | 47779       | 12014          | 0       | 0.87/0.79             | 1.0/0                   |


# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Di(1-methylethyl)-(1-heptenyl)silanol (4) with 4-Iodoanisole and 2 equiv TMSOK.

Following General Procedure IX, **1** (28.8 mg, 0.20 mmol), **4** (45.6 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (19.5 mg), TMSOK (0.4 mL, 0.40 mmol, 1.0 M in THF) and  $Pd_2(dba)_3$  (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 1.0/0.

GC Data:

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 42337       | 23484          | 0              | 0.87/0.79             | 1.0/0                   |
| sample 2 | 58993       | 33079          | 0              | 0.87/0.79             | 1.0/0                   |
| average  | 50665       | 28282          | 0              | 0.87/0.79             | 1.0/0                   |

Competition Experiments of (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole. General Procedure X.



(*E*)-Dimethyl-(1-pentenyl)silanol (1), together with (*E*)-diphenyl-(1-heptenyl)silanol (6), naphthalene, and 4-iodoanisole were dissolved in a TBAF solution (1.0 M in THF) in a flamedried, 5-mL, 2-neck, round-bottomed flask under Ar.  $Pd_2(dba)_3$  was added next and the resulting mixture stirred for 1 h. Two 25 µL samples were then taken via syringe. The sample aliquots were filtered through a plug of silica gel washing with EtOAc to achieve a total sample volume of ~2 mL. These samples were then subjected to GC analysis. Reactions were performed in duplicate.

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 1 equiv TBAF.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (20.1 mg), TBAF (0.2 mL, 0.20 mmol, 1.0 M in THF), and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 42.3/57.7.

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 22546       | 9143           | 14358          | 0.87/0.79             | 41.3/58.7               |
| sample 2 | 33737       | 12703          | 18270          | 0.87/0.79             | 43.4/56.6               |
| average  | 28141       | 10923          | 16314          | 0.87/0.79             | 42.3/57.7               |

|--|

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 1 equiv TBAF.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (15.9 mg), TBAF (0.2 mL, 0.20 mmol, 1.0 M in THF), and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 40.3/59.7.

#### GC Data:

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 17268       | 8725           | 14173   | 0.87/0.79             | 40.5/59.5               |
| sample 2 | 13180       | 6984           | 11599   | 0.87/0.79             | 40.0/60.0               |
| average  | 15224       | 7854           | 12886   | 0.87/0.79             | 40.3/59.7               |

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 2 equiv TBAF.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (20.2 mg), TBAF (0.4 mL, 0.40 mmol, 1.0 M in THF), and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 50.2/49.8.

GC Data:

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 20967       | 12601          | 13955          | 0.87/0.79             | 49.9/50.1               |
| sample 2 | 25207       | 14023          | 15160          | 0.87/0.79             | 50.5/49.5               |
| average  | 23087       | 13312          | 14557          | 0.87/0.79             | 50.2/49.8               |

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 2 equiv TBAF.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (15.9 mg), TBAF (0.4 mL, 0.40 mmol, 1.0 M in THF), and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 50.2/49.8.

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 11532       | 7726           | 8375           | 0.87/0.79             | 50.5/49.5               |
| sample 2 | 20061       | 13663          | 15283          | 0.87/0.79             | 49.7/50.3               |
| average  | 15796       | 10694          | 11829          | 0.87/0.79             | 50.2/49.8               |

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 4 equiv TBAF.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (19.5 mg), TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF), and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 59.5/40.5.

#### GC Data:

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 12345       | 7335           | 5487    | 0.87/0.79             | 59.6/40.4               |
| sample 2 | 16274       | 10275          | 7769    | 0.87/0.79             | 59.4/40.6               |
| average  | 14309       | 8805           | 6628    | 0.87/0.79             | 59.5/40.5               |

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 4 equiv TBAF.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (15.9 mg), TBAF (0.8 mL, 0.80 mmol, 1.0 M in THF), and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 59.8/40.2.

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 23124       | 21653          | 16187          | 0.87/0.79             | 59.6/40.4               |
| sample 2 | 27174       | 16805          | 12354          | 0.87/0.79             | 60.0/40.0               |
| average  | 25149       | 19229          | 14270          | 0.87/0.79             | 59.8/40.2               |

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 8 equiv TBAF.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (25.4 mg), TBAF (1.6 mL, 1.60 mmol, 1.0 M in THF), and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 50.5/49.5.

GC Data:

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 17080       | 6780           | 6930           | 0.87/0.79             | 51.9 /48.1              |
| sample 2 | 13917       | 5536           | 6292           | 0.87/0.79             | 49.3/50.7               |
| average  | 15498       | 6158           | 6611           | 0.87/0.79             | 50.5/49.5               |

Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 8 equiv TBAF.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (15.9 mg), TBAF (1.6 mL, 1.60 mmol, 1.0 M in THF), and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 49.5/50.5.

GC Data:

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 9853        | 6193           | 7086    | 0.87/0.79             | 49.1/50.9               |
| sample 2 | 9333        | 6034           | 6722    | 0.87/0.79             | 49.8/50.2               |
| average  | 9593        | 6113           | 6904    | 0.87/0.79             | 49.5/50.5               |

# Competition of 2 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 2 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 8 equiv TBAF.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (23.4 mg, 0.10 mmol), naphthalene (10.8 mg), TBAF (0.8 mL, 0.8 mmol, 1.0 M in THF), and Pd<sub>2</sub>(dba)<sub>3</sub> (2.3 mg 0.0025 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 59.4/40.6.

#### GC Data:

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 11521       | 5999           | 4543           | 0.87/0.79             | 59.3/40.7               |
| sample 2 | 13250       | 6885           | 5197           | 0.87/0.79             | 59.4/40.6               |
| average  | 12385       | 6442           | 4847           | 0.87/0.79             | 59.4/40.6               |

# Competition of 2 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 2 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 8 equiv TBAF.

Following General Procedure X, 1 (28.8 mg, 0.20 mmol), 6 (59.3 mg, 0.20 mmol), 4iodoanisole (23.4 mg, 0.10 mmol), naphthalene (15.9 mg), TBAF (0.8 mL, 0.8 mmol, 1.0 M in THF), and Pd<sub>2</sub>(dba)<sub>3</sub> (2.3 mg 0.0025 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a 14/15 ratio of 59.9/40.1.

GC Data:

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 8203        | 8043           | 5865           | 0.87/0.79             | 60.2/39.8               |
| sample 2 | 5103        | 4599           | 3444           | 0.87/0.79             | 59.6/40.4               |
| average  | 6653        | 4821           | 4654           | 0.87/0.79             | 59.9/40.1               |

# Competition of 3 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 3 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 12 equiv TBAF.

Following General Procedure X, **1** (43.3 mg, 0.30 mmol), **6** (88.9 mg, 0.30 mmol), 4iodoanisole (23.4 mg, 0.10 mmol), naphthalene (15.9 mg), TBAF (1.2 mL, 1.2 mmol, 1.0 M in THF), and Pd<sub>2</sub>(dba)<sub>3</sub> (2.3 mg 0.0025 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 58.8/41.2.

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 9551        | 4979           | 3736           | 0.87/0.79             | 59.6/40.4               |
| sample 2 | 7102        | 6100           | 4907           | 0.87/0.79             | 57.9/42.1               |
| average  | 8326        | 5539           | 4321           | 0.87/0.79             | 58.8/41.2               |

Competition of 3 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 3 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 12 equiv TBAF.

Following General Procedure X, **1** (43.3 mg, 0.30 mmol), **6** (88.9 mg, 0.30 mmol), 4iodoanisole (23.4 mg, 0.10 mmol), naphthalene (13.6 mg), TBAF (1.2 mL, 1.2 mmol, 1.0 M in THF), and Pd<sub>2</sub>(dba)<sub>3</sub> (2.3 mg 0.0025 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 57.7/42.3.

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 12218       | 5908           | 4766    | 0.87/0.79             | 57.8/42.2               |
| sample 2 | 14495       | 6549           | 5322    | 0.87/0.79             | 57.6/42.4               |
| average  | 13356       | 6228           | 5044    | 0.87/0.79             | 57.7/42.3               |

Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 1 equiv TMSOK.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (18.1 mg), TMSOK (25.6 mg, 0.20 mmol), THF (0.4 mL) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 15.8/84.2.

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 28110       | 1051           | 6006           | 0.87/0.79             | 16.2/83.8               |
| sample 2 | 33532       | 1120           | 6827           | 0.87/0.79             | 15.3/84.7               |
| average  | 30821       | 1085           | 6416           | 0.87/0.79             | 15.8/84.2               |

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 1 equiv TMSOK.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (15.9 mg), TMSOK (25.6 mg, 0.20 mmol), THF (0.4 mL) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 12.5/87.5.

GC Data:

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 26560       | 992            | 7692    | 0.87/0.79             | 12.5/87.5               |
| sample 2 | 14063       | 509            | 3952    | 0.87/0.79             | 12.5/87.5               |
| average  | 20311       | 750            | 5822    | 0.87/0.79             | 12.5/87.5               |

Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 2 equiv TMSOK.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (15.9 mg), TMSOK (51.2 mg, 0.40 mmol), THF (0.4 mL) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 15.7/84.3.

GC Data:

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 27147       | 3535           | 20885          | 0.87/0.79             | 15.8/84.2               |
| sample 2 | 37987       | 5169           | 30850          | 0.87/0.79             | 15.6/84.4               |
| average  | 32567       | 4352           | 25867          | 0.87/0.79             | 15.7/84.3               |

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 2 equiv TMSOK.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (19.6 mg), TMSOK (51.2 mg, 0.40 mmol), THF (0.4 mL) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 16.3/83.7.

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 37643       | 4556           | 25154   | 0.87/0.79             | 16.7/83.3               |
| sample 2 | 30725       | 3506           | 20405   | 0.87/0.79             | 16.0/84.0               |
| average  | 34184       | 4031           | 22779   | 0.87/0.79             | 16.3/83.7               |

Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 4 equiv TMSOK.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (20.9 mg), TMSOK (103 mg, 0.80 mmol), THF (0.8 mL) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 40.2/59.8.

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 20175       | 7329           | 12366   | 0.87/0.79             | 39.6/60.4               |
| sample 2 | 19947       | 7353           | 11844   | 0.87/0.79             | 40.7/59.3               |
| average  | 20061       | 7341           | 12105   | 0.87/0.79             | 40.2/59.8               |

GC Data:

Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 4 equiv TMSOK.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (15.9 mg), TMSOK (103 mg, 0.80 mmol), THF (0.8 mL) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 31.4/68.6.

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 14843       | 6020           | 14238          | 0.87/0.79             | 31.8/68.2               |
| sample 2 | 16122       | 6836           | 16818          | 0.87/0.79             | 31.0/69.0               |
| average  | 15482       | 6428           | 15528          | 0.87/0.79             | 31.4/68.6               |

Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 4 equiv TMSOK.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (13.1 mg), TMSOK (103 mg, 0.80 mmol), THF (0.8 mL) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 35.2/64.8.

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 16624       | 9111           | 16841   | 0.87/0.79             | 37.4/62.6               |
| sample 2 | 18291       | 9833           | 22055   | 0.87/0.79             | 33.0/67.0               |
| average  | 17457       | 9472           | 19448   | 0.87/0.79             | 35.2/64.8               |

GC Data:

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 8 equiv TMSOK.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (20.1 mg), TMSOK (205 mg, 1.60 mmol), THF (1.6 mL) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 61.2/38.8.

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 9806        | 6231           | 4376           | 0.87/0.79             | 61.1/38.9               |
| sample 2 | 7811        | 4701           | 3283           | 0.87/0.79             | 61.3/38.7               |
| average  | 8808        | 5466           | 3829           | 0.87/0.79             | 61.2/38.8               |

# Competition of 1 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 1 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 8 equiv TMSOK.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (46.8 mg, 0.20 mmol), naphthalene (15.9 mg), TMSOK (205 mg, 1.60 mmol), THF (1.6 mL) and Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg 0.005 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 56.4/43.6.

GC Data:

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 6228        | 2407           | 1909    | 0.87/0.79             | 58.2/41.8               |
| sample 2 | 5060        | 2138           | 1971    | 0.87/0.79             | 54.5/45.5               |
| average  | 5644        | 2272           | 1940    | 0.87/0.79             | 56.4/43.6               |

Competition of 2 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 2 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 8 equiv TMSOK.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (23.4 mg, 0.10 mmol), naphthalene (11.9 mg), TMSOK (103 mg, 0.80 mmol), THF (0.8 mL) and  $Pd_2(dba)_3$  (2.3 mg 0.0025 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 35.7/64.3.

GC Data:

|          | area naphth | area <b>14</b> | area <b>1 5</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|-----------------|-----------------------|-------------------------|
| sample 1 | 11054       | 3523           | 7644            | 0.87/0.79             | 33.7/66.3               |
| sample 2 | 12260       | 4103           | 7514            | 0.87/0.79             | 37.6/62.4               |
| average  | 11657       | 3813           | 7579            | 0.87/0.79             | 35.7/64.3               |

# Competition of 2 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 2 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 8 equiv TMSOK.

Following General Procedure X, **1** (28.8 mg, 0.20 mmol), **6** (59.3 mg, 0.20 mmol), 4iodoanisole (23.4 mg, 0.10 mmol), naphthalene (15.9 mg), TMSOK (103 mg, 0.80 mmol), THF (0.8 mL) and Pd<sub>2</sub>(dba)<sub>3</sub> (2.3 mg 0.0025 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 33.5/66.5.

GC Data:

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 6176        | 2685           | 5603    | 0.87/0.79             | 34.6/65.4               |
| sample 2 | 5039        | 2091           | 4827    | 0.87/0.79             | 32.4/67.6               |
| average  | 5607        | 2388           | 5215    | 0.87/0.79             | 33.5/66.5               |

Competition of 3 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 3 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 12 equiv TMSOK.

Following General Procedure X, **1** (43.3 mg, 0.30 mmol), **6** (88.9 mg, 0.20 mmol), 4iodoanisole (23.4 mg, 0.10 mmol), naphthalene (14.0 mg), TMSOK (103 mg, 0.80 mmol), THF (0.8 mL) and Pd<sub>2</sub>(dba)<sub>3</sub> (2.3 mg 0.0025 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 39.6/60.4.

|          | area naphth | area <b>14</b> | area 15 | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|---------|-----------------------|-------------------------|
| sample 1 | 7584        | 2232           | 3655    | 0.87/0.79             | 40.3/59.7               |
| sample 2 | 8436        | 2222           | 3845    | 0.87/0.79             | 39.0/61.0               |
| average  | 8010        | 2227           | 3750    | 0.87/0.79             | 39.6/60.4               |

GC Data:

Competition of 3 equiv (*E*)-Dimethyl-(1-pentenyl)silanol (1) vs 3 equiv (*E*)-Diphenyl-(1-heptenyl)silanol (6) with 4-Iodoanisole and 12 equiv TMSOK.

Following General Procedure X, **1** (43.3 mg, 0.30 mmol), **6** (88.9 mg, 0.20 mmol), 4iodoanisole (23.4 mg, 0.10 mmol), naphthalene (15.9 mg), TMSOK (103 mg, 0.80 mmol), THF (0.8 mL) and Pd<sub>2</sub>(dba)<sub>3</sub> (2.3 mg 0.0025 mmol) were stirred at room temperature for 1 h and then two sample aliquots were taken and analyzed twice on GC. GC analysis of samples showed a **14/15** ratio of 36.2/63.8.

| <u>GC Data</u> : |
|------------------|
|------------------|

|          | area naphth | area <b>14</b> | area <b>15</b> | response factor 14/15 | ratio <b>14/15</b> x100 |
|----------|-------------|----------------|----------------|-----------------------|-------------------------|
| sample 1 | 4874        | 1863           | 3955           | 0.87/0.79             | 34.2/65.8               |
| sample 2 | 4703        | 2188           | 3917           | 0.87/0.79             | 38.2/61.8               |
| average  | 4788        | 2025           | 3936           | 0.87/0.79             | 36.2/63.8               |

#### References

- (1) Gilman, H.; Cartledge, F. K.; Sin, S.-Y. J. Organomet. Chem. 1963, 1, 8.
- (2) Chandra, G.; Lo, P. Y.; Hitencock, P. B.; Lappert, M. F. Organometallics 1987, 6,

191.

(3) Denmark, S. E.; Wehrli, D.; Choi, J. Y. Org. Lett. 2000, 2, 2491.

(4) Barrett, A. G. M.; Bennett, A. J.; Menzer, S.; Smith, M. L.; White, A. J. P.; Williams,

#### D. J. J. Org. Chem. 1999, 64, 162.

(5) Le Bigot, Y.; Delmas, M.; Gaset, A. Synth. Commun. 1982, 12, 1115.

(6) Austin, W. B.; Bilow, N.; Kelleghan, J.; Lau, J. S. Y. J. Org. Chem. 1981, 46, 2280.

(7) Esteruelas M. A.; Werner, H. J. Organomet. Chem. 1986, 303, 221.

(8) Tsuda, K.; Ishizone, T.; Hirao, A.; Nakahama, S. Macromolecules 1993, 26, 6985.

(9) Meng, H.-H. B.; Dalton, L. R.; Wu, S.-T. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 1994, 250, 303.

(10) Stammel, C.; Frohlich, R.; Wolf, C.; Wenck, H.; de Meijere, A.; Mattay, J. *Eur. J. Org. Chem.* **1999**, 1790.