# Efficient Asymmetric Synthesis of a Novel Gastrin 

 Receptor Antagonist AG-041R via Highly Stereoselective Alkylation of Oxindole EnolatesTakashi Emura, ${ }^{*}{ }^{\dagger}$ Toru Esaki, ${ }^{\dagger}$ Kazutaka Tachibana, ${ }^{\dagger}$ and Makoto Shimizu ${ }^{\ddagger}$<br>Chemistry Research Dept. 1 Chugai Pharmaceutical Co., LTD., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan, and<br>Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577<br>Kurimamachiya-cho, Tsu, Mie 514-8507, Japan.<br>emuratks@chugai-pharm.co.jp<br>Supporting Information

## Table of Contents

General Methods ..... S2
Experimental and Spectral Data ..... S2-S7
ORTEP Drawing for the X-ray Structure of 12 ..... S8
Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra ..... S9-S25

## General Methods

All reactions were performed under nitrogen atmosphere. All commercially available reagents and solvents were used without further purification unless otherwise noted. Column chromatography was performed with silica gel $(0.040-0.100 \mathrm{~mm})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were evaporated under reduced pressure. All yields given refer to an isolated yield. Diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectra or HPLC analysis using YMC-Pack CN column ( $4.6 \times 300$ ) with a mobile phase of $n$-Hexane $i$ - $\mathrm{PrOH}=99: 1$, and flow rate $0.9 \mathrm{~mL} / \mathrm{min}$. NMR spectra were recorded on a 300 MHz spectrometer. Chemical shifts are reported in ppm. Coupling constants ( $J$ values) are reported in Hertz. HRMS experiments were performed on a high resolution magnetic sector mass spectrometer.

## Experimental and Spectral Data

[(R)-2-Oxo-1-(2-oxo-ethyl)-3-(3-p-tolyl-ureido)-2,3-dihydro-1H-indol-3-yl]-acetic acid (1R,2S,5R)-2-isopropyl-5-methyl-cyclohexyl ester (11). To a solution of 9 ( $210 \mathrm{mg}, 0.386 \mathrm{mmol}$ ) in acetone ( 10 mL ) and water ( 10 mL ) was added $2 \mathrm{~N} \mathrm{HCl}(0.5 \mathrm{~mL})$. The mixture was refluxed for 14 h . To the reaction mixture was added saturated $\mathrm{NaHCO}_{3}$ solution, followed by removal of solvent in vacuo. The mixture was extracted with diethyl ether $(20 \mathrm{ml} \times 2)$. The combined organic layers were dried over $\mathrm{MgSO}_{4}$ and then concentrated under vacuum. The crude mixture was purified by silica gel chromatography to give title compound $\mathbf{1 1}$ as a white amorphous powder ( $142 \mathrm{mg}, 78 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.70(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{ddd}, J=7.8,7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-6.94(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$ $(\mathrm{dd}, J=11.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.08-$ $0.74(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.63(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.9,176.1,169.4,153.9,141.8,135.2,133.1,129.4,129.3,129.1,123.2,123.0,120.7$, $108.5,75.6,59.3,49.9,46.7,41.1,40.8,34.1,31.5,26.1,23.3,22.1,20.9,20.8,16.2$. HRMS m/z [M + $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{5}$, 520.2811; found, 520.2806.
(1R,2S,5R)-2-isopropyl-5-methyl-cyclohexyl ester (12). To a solution of 11 (448 mg, 0.862 mmol ) in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ was added sodium borohydride $(16.3 \mathrm{mg}, 0.431 \mathrm{mmol})$. After stirring at rt for 1 h , water was added and then extracted with methylene chloride $(20 \mathrm{ml} \times 2)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated in vacuo. The crude mixture was purified by silica gel chromatography to give the title compound 12 as a white crystal ( $443 \mathrm{mg}, 94 \%$ yield): $\mathrm{mp} 155-157{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.09-6.96(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}$, $1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{ddd}, J=10.8,10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.04-3.85(\mathrm{~m}, 3 \mathrm{H}), 3.80-$ $3.69(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.71$ $(\mathrm{s}, 1 \mathrm{H}), 1.70-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.06-0.72(\mathrm{~m}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) 0.60(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.4,169.5$, $153.9,142.8,134.9,133.4,129.4,129.22,129.17,123.1,122.7,120.9,109.1,75.6,59.05,58.96,46.8$, $43.3,40.8,40.7,34.1,31.4,26.1,23.3,22.1,20.9,20.8,16.2 . \operatorname{HRMS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{5}, ~ 522.2968$; found, 522.2968. The crystal for X-ray analysis was obtained by recrystallization from ethyl acetate and hexane.

General procedure for the asymmetric alkylation. To a solution of oxindole derivatives (0.10 mmol) in THF ( 0.40 mL ) was added LiHMDS ( 0.10 mmol ) at $0{ }^{\circ} \mathrm{C}$ followed by the addition of bromoacetic acid ester ( 0.110 mmol ). After stirring for 5 h , aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and extracted with methylene chloride $(20 \mathrm{ml} \times 2)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated in vacuo. The crude mixture was purified by silica gel chromatography to give the title compound.

1-(1-Methyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-3-p-tolyl-urea (14a). To a solution of oxime 1-methyl-1H-indole-2,3-dione, 3-(O-methyloxime) ( $511 \mathrm{mg}, 2.69 \mathrm{mmol}$ ) in acetonitrile was added $5 \%$ palladium on carbon $(50 \mathrm{mg})$. The mixture was stirred under hydrogen under atmospheric pressure at ambient temperature for 2 h . After removal of the palladium on carbon, p-tolyl isocyanate ( $358 \mathrm{mg}, 2.69$ mmol) was added at ambient temperature. The mixture was stirred for 1 h during which time a solid was
generated. The cake was collected and washed with acetonitrile and then dried under reduced pressure to give the title compound 14a as a white crystal ( $690 \mathrm{mg}, 87 \%$ yield): mp $260{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO-d $d_{6}$ ) $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.04-6.89(\mathrm{~m}, 5 \mathrm{H}), 5.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}$, 3H), $2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , DMSO- $d_{6}$ ) $\delta 174.3,154.2,143.5,137.2,129.8,128.7,128.0$, 127.8, 122.9, 121.7, 117.6, 108.0, 52.5, 26.1, 20.2. HRMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}$, 296.1399; found, 296.1393.
(1-Methyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-carbamic acid tert-butyl ester (14b). To a solution of 1-methyl-1H-indole-2,3-dione, 3-(O-methyloxime) ( $310 \mathrm{mg}, 1.63 \mathrm{mmol}$ ) and $\mathrm{BOC}_{2} \mathrm{O}$ ( $391 \mathrm{mg}, 1.79$ mmol ) in acetonitrile was added $5 \%$ palladium on carbon ( 20 mg ). The mixture was stirred under hydrogen under atmospheric pressure at ambient temperature for 2 h . After removal of the palladium on carbon, the solvent was removed under reduced pressure. The mixture was purified by a silica gel column to give the title product 14b. (394 mg, $92 \%$ yield): mp $122-123{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=7.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{ddd}, J=7.8,7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{brs}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $174.3,155.7,143.4,128.9,126.7,124.3,122.7,108.1,80.4,53.6,28.3,26.5$. HRMS m/z $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}, 263.1396$; found, 263.1390.
(1-Methyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-carbamic acid (14c). To a solution of 1-methyl-1H-indole-2,3-dione, 3-(O-methyloxime) ( $511 \mathrm{mg}, 2.69 \mathrm{mmol}$ ) in acetonitrile ( 30 mL ) was added $5 \%$ palladium on carbon ( 50 mg ). The mixture was stirred under hydrogen under atmospheric pressure at ambient temperature for 2 h . After removal of the palladium carbon by filtration, $\mathrm{N}, \mathrm{N}$-dimethylaniline ( $391 \mathrm{mg}, 3.22 \mathrm{mmol}$ ) and methyl chloroformate ( $305 \mathrm{mg}, 3.22 \mathrm{mmol}$ ) were added successively at ambient temperature. The mixture was stirred for 0.5 h . The mixture was extracted with AcOEt. The organic layer was washed with 2 N HCl , saturated NaCl , and saturated $\mathrm{NaHCO}_{3}$ successively. After removal of the solvent in vacuo, a crystalline product was obtained. The crystalline mixture was washed with 1:1 AcOEt/hexane, affording the title product $\mathbf{1 4 c}$. ( $295 \mathrm{mg}, 50 \%$ yield): $\mathrm{mp} 158-159{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR
( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.37-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{ddd}, J=7.5,7.5,0.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.76(\mathrm{br}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 174.1$, 156.7, 143.4, 129.1, 126.2, 124.1, 122.8, 108.1, 53.8, 52.6, 26.5. HRMS m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}$, 221.0926; found, 221.0917.
(3-Methoxycarbonylamino-1-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-acetic acid (1R,2S,5R)-2-isopropyl-5-methyl-cyclohexyl ester $(\mathbf{1 5 c}+\mathbf{1 6 c})$. General procedure was followed with $\mathbf{1 4 c}$. The diastereomeric ratio was determined to be $72: 28$ by comparison of one of geminal protons in ${ }^{1} \mathrm{H}$ NMR analysis of the crude product ( $-\mathrm{CH}_{2} \mathrm{CO}_{2} l$-Menthyl, major $\delta 2.55 \mathrm{ppm}$, minor $\delta 2.50 \mathrm{ppm}$ ). The title compounds 15 c and 16 c was obtained in $58 \%$ yield as an inseparable mixture of diastereomers as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\boldsymbol{\delta} 7.35-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 1.3$ H), $6.61($ brs, 0.7 H$), 4.80-4.62(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.97(\mathrm{~d}$, $J=15.3 \mathrm{~Hz}, 0.3 \mathrm{H}), 2.55(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.50(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 0.3 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.78-$ $1.56(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.12-0.8(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.9 \mathrm{H}), 0.89$ (d, $J=6.4 \mathrm{~Hz}, 2.1 \mathrm{H}), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2.1 \mathrm{H}), 0.79(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.9 \mathrm{H}), 0.73(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.9 \mathrm{H})$, $0.69(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2.1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 174.9,169.3,155.0,143.4,129.4,128.7$, 123.3, 123.0, 122.7, 122.6, 108.3, 75.7, 75.6, 59.1, 52.4, 46.8, 46.7, 40.8, 40.7, 40.6, 34.1, 31.45, 31.40, 26.7, 26.2, 25.9, 23.3, 22.0, 20.7, 16.3, 16.1. HRMS m/z $[M+H]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}, 417.2389$; found, 417.2390.
$N$-(1-Methyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-benzamide (14d). To a solution of 1-methyl-1H-indole-2,3-dione, 3-(O-methyloxime) ( $419 \mathrm{mg}, 2.20 \mathrm{mmol}$ ) in acetonitrile ( 25 mL ) was added $5 \%$ palladium on carbon ( 23 mg ). The mixture was stirred under hydrogen under atmospheric pressure at ambient temperature for 1.5 h . After removal of the palladium carbon by filtration, $\mathrm{N}, \mathrm{N}$-dimethylaniline ( $319 \mathrm{mg}, 2.64 \mathrm{mmol}$ ) and benzoyl chloride ( $340 \mathrm{mg}, 2.42 \mathrm{mmol}$ ) were added successively at ambient temperature. The mixture was stirred for 0.5 h . The mixture was extracted with AcOEt. The organic layer was washed with 2 N HCl , saturated NaCl , and saturated $\mathrm{NaHCO}_{3}$, successively. After removal of
the solvent in vacuo, a crystalline product was obtained. The crystalline mixture was washed with 1:1 AcOEt:Hexane, affording the title product 14d. ( $577 \mathrm{mg}, 98 \%$ ): mp $190-191{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{dddd}, J=7.5,6.9,1.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{dddd}, J=$ $7.7,7.6,1.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{ddd}, J=7.6,7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 174.4,167.3,143.5,132.8$, 131.7, 129.0, 128.3, 127.1, 126.5, 124.4, 123.0, 108.2, 53.2, 26.6. HRMS m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$, 267.1134; found, 267.1124.
(3-Benzoylamino-1-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-acetic acid (1R,2S,5R)-2-isopropyl-5-methyl-cyclohexyl ester ( $\mathbf{1 5 d} \mathbf{+ 1 6 d}$ ). General procedure was followed with 14d, 1.2 equivalent of base and 1.3 equivalent of $l$-menthyl bromoacetate. The diastereomeric ratio was determined to be 95:5 by comparison of one of geminal protons in ${ }^{1} \mathrm{H}$ NMR analysis of the crude product $\left(-\mathrm{CH}_{2} \mathrm{CO}_{2} l\right.$-Menthyl, major $\delta 2.54 \mathrm{ppm}$, minor $\delta 2.51 \mathrm{ppm}$ ). The title compounds $\mathbf{1 5 d}$ and $\mathbf{1 6 d}$ was obtained in $82 \%$ yield as an inseparable mixture of diastereomers as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 8.58(\mathrm{~s}, 1 \mathrm{H})$, $7.85-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{ddd}, J=7.8,7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-$ $7.22(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{ddd}, J=7.6,7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{ddd}, J=11.0,10.8,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.62$ (m, 3H), 1.60-1.42 (m, 1H), 1.40-1.28 (m, 1H), 1.14-0.80 (m, 3H), $0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.5,170.7,165.5,143.4,132.6$, 131.7, 129.3, 128.6, 128.3, 127.1, 122.6, 122.5, 108.4, 76.1, 59.2, 46.8, 40.9, 40.2, 34.1, 31.5, 26.9, 26.4, 23.5, 22.1, 20.7, 16.4. HRMS m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4}, 463.2597$; found, 463.2595.
$\boldsymbol{N}$-(1-Methyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-acetamide (14e). To a solution of 1-methyl-1H-indole-2,3-dione, 3-(O-methyloxime) ( $406 \mathrm{mg}, 2.13 \mathrm{mmol}$ ) in acetonitrile ( 25 mL ) was added $5 \%$ palladium on carbon ( 50 mg ). The mixture was stirred under hydrogen under atmospheric pressure at ambient temperature for 1.5 h . After removal of the palladium carbon by filtration, $\mathrm{N}, \mathrm{N}$-dimethylaniline ( $311 \mathrm{mg}, 2.56 \mathrm{mmol}$ ) and acetic anhydride ( $234 \mathrm{mg}, 2.34 \mathrm{mmol}$ ) were added successively at ambient
temperature. The mixture was stirred for 0.5 h . The mixture was extracted with AcOEt. The organic layer was washed with 2 N HCl , saturated NaCl and saturated $\mathrm{NaHCO}_{3}$ successively. After removal of the solvent in vacuo, a crystalline product was obtained. The crystalline mixture was washed with 1:1 AcOEt/hexane, affording the title product 14e. (242 mg, 56\%): mp 205-207 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , DMSO- $d_{6}$ ) $\delta 8.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dddd}, J=7.8,7.6,1.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{dd}, J=7.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}$, 3 H ); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , DMSO- $d_{6}$ ) $\delta 173.5,169.0,143.6,128.3,127.0,123.1,121.8,108.1,51.7,26.1$, 22.2. $\mathrm{HRMS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$, 205.0977; found, 205.0971.
(3-Acetylamino-1-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-acetic acid (1R,2S,5R)-2-isopropyl-5-methyl-cyclohexyl ester $(\mathbf{1 5} \mathbf{e}+\mathbf{1 6 e})$. General procedure was followed with $\mathbf{1 4 e}, 1.2$ equivalent of base and 1.3 equivalent of $l$-menthyl bromoacetate. The diastereomeric ratio was determined to be $84: 16$ by comparison of one of geminal protons in ${ }^{1} \mathrm{H}$ NMR analysis of the crude product $\left(-\mathrm{CH}_{2} \mathrm{CO}_{2} l\right.$-Menthyl, major $\delta 2.46 \mathrm{ppm}$, minor $\delta 2.43 \mathrm{ppm}$ ). The title compound $\mathbf{1 5 e}$ and $\mathbf{1 6 e}$ was obtained in $69 \%$ yield as an inseparable mixture of diastereomers as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 7.51$ (brs, 1 H ), 7.29 (ddd, $J=7.8,7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{ddd}, J=7.9,1.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{ddd}, J=7.6,7.5,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{ddd}, J=11.0,10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~d}, J=15.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.46(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.39(\mathrm{~m}, 1 \mathrm{H})$, $1.36-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.12-0.76(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 174.7,170.0,168.8,143.4,129.2,128.5,122.9,122.5,108.3$, $75.9,59.1,46.9,40.9,40.2,34.1,31.5,26.8,26.3,23.4,22.8,22.1,20.8,16.4 . \mathrm{HRMS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}, 401.2440$; found, 401.2443.

ORTEP Drawing for the X-ray Structure of 12.


Agosir
Pulse Bequence: s2pu1


C13 STMETDARD PRRAMETER
Eulse sequance: a2pu1


MIE1-74-gure




MIE1-75-pure
Pulse sequence: azpul


6


C13 standard paramitigr
Pulae sequence: arpux



C13 standard paranietizr
Pulse Bequance: s2pul

urea-manthy1-pure
Pulse sequenco: в2pul





C13 STANDARD PARATEXTER
Pulse Sequence: b2pul





C13 gtahdard parameter
Fulse aequance: 02 prul


3ITE1-66-pure
Pulse sequence: s2pul


C13 standard parameter
pulse sequenco: sapul





## :

Pulse Sequence: $\$ 2 \mathrm{pul}$


## MIE1-36-pure

Pu1se sequence: ${ }^{2} 2 \mathrm{pu} 1$



C13 stanmard parameter
Pulse Saquence: anpul








Pulae sequence: a2pul




