
Supporting Information 

Stark effect spectroscopy of mono- and few-layer 

MoS2 

AUTHOR NAMES. 

J. Klein1*, J. Wierzbowski1*, A. Regler1,2, J. Becker1, F. Heimbach3, K. Müller1,4, M. Kaniber1† and J. J. Finley1† 

AUTHOR ADDRESS.  

1 Walter Schottky Institut und Physik Department, Technische Universität München, Am Coulombwall 4, 85748 

Garching, Germany 

2 Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2a, 85748 Garching, 

Germany 

3 Lehrstuhl für Physik funktionaler Schichtsysteme, Physik Department E10, Technische Universität München, 

James-Franck-Straße 1, 85747 Garching, Germany 

4 E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA 

†Correspondence to kaniber@wsi.tum.de or finley@wsi.tum.de  

* These authors contributed equally 

 

 

 

 

mailto:kaniber@wsi.tum.de
mailto:finley@wsi.tum.de


Content 

S1 Layer number identification 

S2 Calculation of the device capacitance 

S3 Device transfer characteristics and electric field simulations 

S4 Gate voltage dependent photoluminescence spectra of N = 1 and N = 5 

S5 Electric field approximation 

S6 Second order perturbation model for quantum wells 

 

 

S1 Layer number identification 

To identify the number of MoS2 layers embedded in the photocapacitor devices, we utilised Raman 

spectroscopy. As reported in literature,1 the in-plane 𝐸2𝑔
1  and out-of-plane 𝐴1𝑔 Raman modes are a clear 

fingerprint on the layer number. 

 



SI Figure 1. (a) Layer-dependent Raman spectra. The dashed lines mark the position of the 𝐸2𝑔
1  and 𝐴1𝑔 

modes for bulk material. All spectra are displaced for clarity. (b) Layer dependence of phonon modes 

plotted as a function of the layer number. (c) Difference of 𝐴1𝑔 mode and 𝐸2𝑔
1  mode from (b) is plotted as 

a function of the layer number. (d) Optical microscope image of few-layer MoS2. The scale bar is 5 µm. 

(e) Raman mapping of the mode difference 𝐴1𝑔 − 𝐸2𝑔
1  clearly reveals the different layer numbers. 

 

SI figure 1(a) shows Raman spectra of the in-plane and out-of-plane mode for different layer 

numbers and bulk material. Dashed lines define the position of the in-plane 𝐸2𝑔
1   and out-of-plane 𝐴1𝑔 

modes for bulk material. We can clearly identify an upshift of the 𝐴1𝑔 and a downshift of the 𝐸2𝑔
1   mode 

for a higher number of layers. SI Figure 1(b) shows the corresponding position of both phonon modes 

depending on the number of layers. We obtain a shift from 403.2 cm-1 to 408 cm-1 for the 𝐴1𝑔 mode and a 

shift from 384.6 cm-1 to 383.1 cm-1 for the 𝐸2𝑔
1   mode from monolayer to bulk material. By plotting the 

difference between both modes as presented in SI figure 1(c) we observe an overall increase from 18.6 cm-

1 to 24.9 cm-1 from a single layer to bulk material. We can utilise 𝐴1𝑔 − 𝐸2𝑔
1    as a clear fingerprint to 

identify the layer number. SI figure 1(d) depicts an optical microscope image of exfoliated few-layer MoS2 

on a Si wafer covered with 290 nm SiO2. SI figure 1(e) shows the corresponding Raman mapping of SI 

figure 1(d) where the mode difference is plotted as a function of the spatial position. The differently 

coloured areas can be immediately assigned to monolayer, bilayer, trilayer and bulk material. For 

additional validation, we applied the transfer matrix method2 to calculate the phase contrast up to many 

layers. 

 

 

 



S2 Calculation of the device capacitance 

 

 

SI Figure 2. (a) Theoretical device structure. Two stacking areas of Al2O3/MoS2/SiO2 and Al2O3/SiO2 

sandwiched between two metallic plates. (b) Corresponding circuit diagram of the capacitor. 

 

 

For our theoretical considerations we take into account a stacking of Al2O3, MoS2 and SiO2 

sandwiched between two metallic plates as depicted in SI figure 2(a). The presence of MoS2 separates the 

complete area of the top-gate into an area 𝐴𝑤,𝑀𝑜𝑆2
 with MoS2 and an area 𝐴𝑤𝑜,𝑀𝑜𝑆2

 without. The full circuit 

diagram for this configuration is shown in SI figure 2(b). The total capacitance of the system is a parallel 

circuit of these two different areas given as follows 

 

𝐶𝑡𝑜𝑡 = 𝐶𝑤,𝑀𝑜𝑆2
+ 𝐶𝑤𝑜,𝑀𝑜𝑆2

 (1) 

 

with the capacitance 𝐶𝑤,𝑀𝑜𝑆2
 of the capacitor filled with MoS2 and the capacitance 𝐶𝑤𝑜,𝑀𝑜𝑆2

 without. Both 

values are given by a series connection of the different single capacitances of the respective layers, and are 

defined as follows 

 

𝐶𝑤,𝑀𝑜𝑆2
= (

1

𝐶𝐴𝑙2𝑂3
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1
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 (2) 
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1
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With the formula 𝐶 = 𝜀0𝜀𝑟
𝐴

𝑑
 for a simple parallel plate capacitor, we can derive the total capacitance 

 

𝐶𝑡𝑜𝑡 = 𝜀0 ∙ [𝐴𝑤,𝑀𝑜𝑆2
(

𝜀𝐴𝑙2𝑂3𝜀𝑆𝑖𝑂2
𝜀𝑀𝑜𝑆2

𝜀𝑆𝑖𝑂2𝜀𝑀𝑜𝑆2𝑑𝐴𝑙2𝑂3+𝜀𝐴𝑙2𝑂3𝜀𝑀𝑜𝑆2𝑑𝑆𝑖𝑂2+𝜀𝑆𝑖𝑂2𝜀𝐴𝑙2𝑂3𝑑𝑀𝑜𝑆2

) +

𝐴𝑤𝑜,𝑀𝑜𝑆2
(

𝜀𝐴𝑙2𝑂3𝜀𝑆𝑖𝑂2
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)]. (4) 

With the dielectric permittivities (𝜀𝐴𝑙2𝑂3
= 9.3, 𝜀𝑀𝑜𝑆2

= 2.8, 𝜀𝑆𝑖𝑂2
= 3.9)3 the layer thicknesses (𝑑𝐴𝑙2𝑂3

=

20 𝑛𝑚, 𝑑𝑀𝑜𝑆2
= 0.65 𝑛𝑚, 𝑑𝑆𝑖𝑂2

= 200 𝑛𝑚 / 290 𝑛𝑚) and the corresponding gate area for the materials. 

By substituting the area without MoS2 by making use of the relation 𝐴𝑤𝑜,𝑀𝑜𝑆2
= 𝐴𝑡𝑜𝑡 − 𝐴𝑤,𝑀𝑜𝑆2

 we obtain 

the total capacitance as a function of the flake area as given by 

 

𝐶𝑡𝑜𝑡(𝐴𝑤,𝑀𝑜𝑆2
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)]. (5) 

 

 

The total capacitance as a function of the crystal coverage in percent of the top-gate area for mono-, bi- 

and trilayer MoS2 is plotted in SI figure 3 for 200 nm SiO2 covered Si. The total capacitance is 

approximately independent on the MoS2 coverage and layer number for the micro-crystallites used in our 

experiments. Based on our model, we can estimate a theoretical capacitance of Ctheo  (7.95 ± 0.39) pF. The 



error originates from uncertainties in the effective top-gate area and from uncertainties of the SiO2 and 

Al2O3 thicknesses. 

 

 

SI Figure 3. Calculated micro-capacitor capacitance from eq. 5 as a function of the MoS2 crystal coverage 

for mono-, bi- and trilayer material on p-doped Si substrate with 200 nm SiO2. 

 

S3 Device transfer characteristics and electric field simulations 

 

SI Figure 4. (a) Typical transfer curve of a photocapacitor device with the current density plotted as a 

function of the applied top-gate voltage on a semi-logarithmic scale. (b) Simulated electric field at the 

MoS2 for devices with 200 nm SiO2 (black) and 290 nm SiO2 (red) as a function of the top-gate voltage. 

 



SI Figure 4(a) shows a typical transfer characteristic of an as-fabricated photocapacitor device on 

a semi-logarithmic scale. The device suffers no leakage currents between -120 V to 120 V and is therefore 

suited for our measurements that require high electric fields. In order to possess a measure on the 

magnitude of the applied electric field directly at the MoS2 crystal, we simulated the effective applied 

electric field using finite-element simulations (Comsol). The calculated electric field for the 200 nm and 

290 nm device is plotted as a function of the applied top-gate voltage in SI figure 4(b). For the maximum 

voltages applied in the optical experiments (± 100 V) we effective apply electric fields of - 3.75 MVcm-1 

≤ F ≤ 3.75 MVcm-1 (- 2.175 MVcm-1 ≤ F ≤ 2.175 MVcm-1) for 200 nm SiO2 covered Si (290 nm covered 

SiO2) at the MoS2 micro-crystallites. 

 

S4 Gate voltage dependent photoluminescence spectra of N = 1 and N = 5 

 

To provide the reader with detailed PL spectra for N = 1 and N = 5 we added SI figure 5 that shows the 

A-exciton PL for trace 2 and their corresponding transition energies for N = 1 and N = 5. SI figure 5(a) 

shows the A-exciton transition energy for N = 1 as a function of the applied gate voltage with 

corresponding PL spectra shown in SI figure 5(b). The gate voltage was tuned from VG = - 60 V to VG = 

60 V. The A-exciton emission stems solely from trion emission. SI figure 5(c) shows the A-exciton 

transition energy for N = 5. Corresponding gate voltage dependent spectra are shown in SI figure 5(d). The 

emission at VG = - 100 V features a weak amount of residual neutral exciton emission which quickly 

vanishes when tuning to VG = 100 V supporting the conclusion that the observed energy shift arises from 

X- subject to the quantum confined Stark effect. 



 

SI Figure 5. (a) Transition energy of the A-exciton for N = 1 as a function of the applied gate voltage. (b) 

The corresponding PL spectra when the applied voltage is tuned from VG = - 60 V to VG = 60 V. (c) 

Transition energy of the A-exciton for N = 5 as a function of the applied gate voltage. (d) The 

corresponding PL spectra when the applied voltage is tuned from VG = - 100 V to VG = 100 V. 

 

 

 



S5 Electric field approximation 

 

   The effective applied electric field at position A/E in fig. 2(b) can be approximated using the following 

expression that describes the DC-Stark effect in a polarisable medium 

∆𝐸 = −𝛽 ∙ 𝐹2 − 𝑝 ∙ 𝐹  (6) 

Where, ΔE is the energy detuning (ΔE  ̴  (10 ± 1) meV) of the trion luminescence at A/E with respect to 

C/G, β the layer-independent A-exciton polarisability (β = (0.58 ± 0.25) × 10-8 DmV-1) and p is the static 

dipole moment accounting for the possible polarisation of the exciton by the dielectric environment 

without an applied voltage. Solving SI eq. 6 for the electric field F, we obtain 

𝐹1/2 =
−𝑝 ± √𝑝2 − 4 ∙ 𝛽 ∙ (−∆𝐸)

2 ∙ 𝛽
.  (7) 

By assuming p = 0 (zero permanent excitonic dipole), this reduces to  

𝐹1/2 = ±√
∆𝐸

𝛽
 .  (8) 

 

From this simple approach we can infer an effective applied electric field of 

|𝐹| = (2.88 ± 0.64) MVcm-1 at position A/E, orientated in a direction parallel to the out-of-plane 

direction, i.e. towards the Al2O3 layer. 

 

S6 Second order perturbation model for quantum wells 

 

The polarisability in quantum wells is described by the following expression obtained from second order 

perturbation theory3  

∆𝐸 =
𝜇∗𝑒2𝑤4

ℏ2
𝐹2 = 𝛽 ∙ 𝐹2  (9) 



with 𝜇∗ the reduced effective mass of electron and hole (
1

𝜇∗ =
1

𝑚𝑒
∗ +

1

𝑚ℎ
∗ ), 𝑤 the quantum well width and 𝛽 

the exciton polarisability. It is evident that 𝛽(𝑤) =
𝜇∗𝑒2𝑤4

ℏ2  and the calculated polarisability as a function 

of the well width for typically reported values in the literature for the reduced effective mass (𝜇∗ =

(0.195 − 0.284) 𝑚0)4-6 is plotted in SI figure 6(a) in addition to the experimentally obtained layer 

independent A-exciton polarisability 〈�̅�𝑁〉  = (0.58 ± 0.25) × 10-8 DmV-1 (dashed black line). The 

experimental polarisability and the calculated one is in good agreement with the theoretically expected 

well width which is on the order of less than 4.6 Å. This is about twice the covalent bond length of Mo 

and S (dMo - S = 2.4 Å) and less than the thickness of a single atomic layer of MoS2 (d(N = 1) = 6.5 Å).7 Hence, 

the conclusion of an upper bound of the well width on the order of twice the covalent bond length of Mo 

and S and the conclusion of strongly confined excitons in each individual monolayer seems to be 

reasonable. We further used ∆𝐸 =
𝜇∗𝑒2𝑤4

ℏ2 ∙ 𝐹2 to calculate the theoretically expected magnitude of the 

quantum confined Stark effect in order to compare it with the experimentally observed A-exciton detuning. 

Due to the error in the experimentally obtained polarisability (grey area in SI figure 6(a)), we chose to 

calculate the polarisability for the two cases which yield a minimum and a maximum value for the 

polarisability as depicted by the black and red circles in SI figure.6(a). The result is shown in SI figure 

6(b) for w = 3.7 Å and µ* = 0.284 m0 (black curve) and for w = 5.1 Å and µ* = 0.195 m0 (red curve). In 

addition, the experimentally obtained A-exciton detuning for N = 5 (black circles) is shown. The magnitude 

of the experimentally obtained detuning is well within the expectation of this simple model which leads to 

a detuning on the order of 10 - 25 meV for electric fields of F = ± 3.75 MV/cm. SI figure 6(c) and SI figure 

6(d) show the complete data set of the calculated A-exciton detuning as a function of the well width and 

applied electric field for µ* = 0.284 m0 and µ* = 0.195 m0 with the corresponding cuts (white dashed lines) 

that are shown in SI figure 6(b). 
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SI Figure 6. (a) Calculated polarisability from perturbation theory as a function of the well width for a 

reduced effective mass of µ* = 0.284 m0 (red curve) and µ* = 0.195 m0 (blue curve). The experimentally 

obtained polarisability is plotted with a dashed line with the error depicted as grey area. (b) Calculated A-

exciton detuning for w = 3.7 Å and µ* = 0.284 m0 (black curve) and for w = 5.1 Å and µ* = 0.195 m0 (red 

curve) as marked with circles in (a) with experimental data for N = 5 (black circles). (c) Calculated 

detuning as a function of the well width and the applied electric field for µ* = 0.284 m0. (d) Calculated 

detuning for µ* = 0.195 m0. The cuts (white dashed lines) are plotted in (b). 
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