Room Temperature Hydroamination of Alkenyl Ureas Catalyzed by a Gold(I) Carbene Complex

Christopher F. Bender and Ross A. Widenhoefer*
P. M. Gross Chemical Laboratory

Duke University
Durham, North Carolina 27708-0346

Supporting Information

Experimental procedures, analytical and spectroscopic data, and copies of NMR spectra for heterocycles and selected compounds (54 pages).

Experimental

General Methods. Reactions were performed under a nitrogen atmosphere utilizing standard Shlenk and drybox techniques unless specified otherwise. NMR were obtained on a Varian spectrometer operating at 400 MHz for ${ }^{1} \mathrm{H}$ NMR and 100 MHz for ${ }^{13} \mathrm{C}$ NMR in CDCl_{3} at $25^{\circ} \mathrm{C}$ unless stated otherwise. IR spectra were obtained on a Nicolet Avatar 360-FT IR spectrometer. Gas chromatography was performed on a HP 5890 gas chromatography equipped with a 25 m polydimethylsiloxane capillary column. Column chromatography was performed employing 230-450 mesh silica gel (Sorbent Technologies). All compounds were isolated as colorless oils unless noted otherwise. Elemental analyses were performed by Complete Analysis Laboratories (Parsippany, NJ). Thin layer chromatography (TLC) was performed on silica gel $60 \mathrm{~F}_{254}$. Room temperature is $22-24{ }^{\circ} \mathrm{C}$.

1,4-Dioxane (anhydrous Acros), methanol (anhydrous Aldrich), $\mathrm{Au}\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{Cl}$ (Aldrich), and 4 (Strem) were used as received. Tetrahydrofuran (THF) and diethyl ether were distilled from sodium benzophenone ketyl, and CDCl_{3} (Cambridge Isotope Labs) was distilled from CaH . 2,2-Diphenyl-4pentenylamine $\quad(\mathbf{S 1}),{ }^{\text {S1 }} \quad C$-[1-(2-methylallyl)-cyclohexyl]methylamine $\quad(\mathbf{S 2}),{ }^{\text {S1 }} \quad C$-(1-but-3-enylcyclohexyl)methylamine (S3), ${ }^{\text {S1 }} \quad$ 2-isopropyl-4-pentenylamine $(\mathbf{S 4})^{S 1}$ 2,2-dimethyl-4-pentenenitrile (S5), ${ }^{\text {S1 }}$ methyl-2-phenyl-4-pentenoate (S6), ${ }^{\text {S2 }}$ benzyl 2,2-diphenyl-4-pentenylcarbamate (2a), ${ }^{\text {S3 }} \mathrm{N}$-(2,2-diphenyl-4-pentenyl)acetamide (2b), ${ }^{\mathrm{S} 4} \mathrm{~N}$-(2,2-diphenyl-4-pentenyl)- N^{\prime}-phenylurea (2c), ${ }^{\mathrm{S} 4}$ and $\mathrm{Au}(\mathbf{4}) \mathrm{Cl}^{\mathrm{S} 5}$ were synthesized employing published procedures.

Substrates

\boldsymbol{N}-(2,2-Diphenyl-4-pentenyl)- \boldsymbol{N}^{\prime}-phenylurea (2c). Phenylisocyanate ($0.31 \mathrm{~mL}, 2.8 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{S 1}(0.66 \mathrm{~g}, 2.8 \mathrm{mmol})$ in $\mathrm{THF}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred overnight. The resulting solution was diluted with ether (50 mL), washed with $1 \mathrm{M} \mathrm{HCl}(25$ $\mathrm{mL})$, sat. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$, and brine $(25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The resulting white solid was chromatographed (ether- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 9\right)$ to give $2 \mathrm{c}(0.79 \mathrm{~g}, 80 \%)$ as a white solid. mp 171$172.5{ }^{\circ} \mathrm{C}$. TLC (ether- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 9\right): R_{f}=0.64 .{ }^{1} \mathrm{H}$ NMR: $\delta 6.99-7.24(\mathrm{~m}, 15 \mathrm{H}), 6.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 5.40 (tdd, $J=7.2,10.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta \quad 155.9,145.5,138.4,133.9,129.3,128.1,126.5$, $124.0,121.5,118.7,50.3,47.1,42.0$. IR (neat, cm^{-1}): $3324,2360,1642,1550,1232,694$. HRMS calcd (found) for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right): 357.1967$ (357.1966).
N-(2,2-Diphenyl-4-pentenyl)- N^{\prime}-ethylurea (S7), $\quad N$-(4-bromophenyl)- N^{\prime}-(2,2-diphenyl-4pentenyl)urea (S8), N-(2,2-diphenyl-4-pentenyl)- N^{\prime}-(4-methoxyphenyl)urea (S9), N-(4-acetylphenyl)- N^{\prime} -(2,2-diphenyl-4-pentenyl)urea (S10), N-[1-(2-methylallyl)cyclohexylmethyl]- N^{\prime}-phenylurea (S11), N-(1-but-3-enylcyclohexylmethyl)- N^{\prime}-phenylurea (S12), N-(1-but-3-enylcyclohexylmethyl)- N^{\prime}-ethylurea (S13), and N-(2-isopropyl-4-pentenyl)- N^{\prime}-phenylurea (S14) were synthesized employing a procedure similar to that used to synthesize $\mathbf{2 c}$.

S7. White solid, 57%. mp $179.5-180{ }^{\circ} \mathrm{C}$. TLC (ether- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 2\right): R_{f}=0.49 .{ }^{1} \mathrm{H}$ NMR: δ 7.17-7.31 (m, 10 H$), 5.45(\mathrm{tdd}, J=7.2,10.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{br} \mathrm{t}, J=5.6 \mathrm{~Hz}, 1$ H), $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.00-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 158.1,145.7,134.1,128.4,128.2,126.5,118.6,50.5,47.3,41.9,35.4,15.5$. IR (neat, cm^{-1}): 3347, 3290, 1615, 1574, 1494, 697. Anal. calcd (found) for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: \mathrm{H}, 7.84$ (7.84); C, 77.89 (78.00). HRMS calcd (found) for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 308.1889$ (308.1886).

S8. White solid, $68 \% . \operatorname{mp} 219-220^{\circ} \mathrm{C}$. TLC (ether- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 19\right)$: $R_{f}=0.53 .{ }^{1} \mathrm{H}$ NMR $\left(d_{6}{ }^{-}\right.$ DMSO): $\delta 8.69$ (br s, 1 H), 7.19-7.36 (m, 14 H), 5.56 (br t, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{tdd}, J=7.0,12.3$, 17.1 Hz, 1 H$), 4.90-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (d_{6}-DMSO): $\delta 154.8,145.7,139.8,134.3,131.4,128.1,127.7,126.0,119.3,118.1,112.2,49.7,45.4$, 40.9. IR (neat, cm^{-1}): $3337,1647,1549,1489,1233,697$. Anal. calcd (found) for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}: \mathrm{H}$, 5.32 (5.23); C, 66.21 (66.07). HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{23}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 434.0994$ (434.0994).

S9. White solid, 48%. mp 177-177.5 ${ }^{\circ} \mathrm{C}$. TLC (ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 9$): $R_{f}=0.38 .{ }^{1} \mathrm{H}$ NMR: δ 7.09-7.26 (m, 10 H$), ~ 6.92-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.42(\mathrm{tdd}, J=7.2,10.1$, $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{brt}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $2.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 157.2, 156.6, 145.5, 133.9, 130.6, 128.4, 128.1, 126.5, 125.4, 118.7, 114.7, 55.6, 50.5, 47.1, 42.1. IR (neat, cm^{-1}): 3331, 1642, 1554, 1508, 1235, 696. Anal. calcd (found) forC $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}: ~ \mathrm{H}, 6.78$ (6.75); C, 77.69 (77.74). HRMS calcd (found) for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$ $\left(\mathrm{M}^{+}\right): 386.1994$ (386.1989).

S10. White, waxy solid, 88%. TLC (ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 9$): $R_{f}=0.39$. ${ }^{1} \mathrm{H}$ NMR: δ 7.76-7.79 (m, 2 H), 7.44 (br s, 1 H$), 7.14-7.30(\mathrm{~m}, 12 \mathrm{H}), 5.42(\mathrm{tdd}, J=7.0,10.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-5.00(\mathrm{~m}, 2$ H), 4.86 (br t, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta \quad 197.8,155.0,145.4,144.2,133.8,131.2,130.1,128.4,128.1,126.6,118.8,118.0$, 50.2, 47.0, 42.0, 26.5. IR (neat, cm^{-1}): 3343, 1660, 1533, 1223, 1176, 699. Anal. calcd (found) for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{H}, 6.58$ (6.54); C, 78.36 (78.56). HRMS calcd (found) for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 398.1994$, (398.2002).

S11. White solid, 85%. TLC (ether- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 19\right): R_{f}=0.41 .{ }^{1} \mathrm{H}$ NMR: $\delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.31$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{br} \mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ $(\mathrm{s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.44(\mathrm{~m}, 10 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta \quad 157.1,143.1,139.3,129.1,123.1,120.4,114.9,46.4,44.4,37.6,33.9,26.2,25.5$, 21.8. IR (neat, cm^{-1}): 3361, 2928, 1642, 1559, 1236, 893. mp 99.5-100.5 ${ }^{\circ} \mathrm{C}$. Anal. calcd (found) for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}: \mathrm{H}, 9.15$ (9.11); C, 75.48 (75.45). HRMS calcd (found) for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 286.2045$, (286.2051).

S12. White solid, 83%. TLC (ether- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 9\right): R_{f}=0.65 .{ }^{1} \mathrm{H}$ NMR: $\delta 7.93$ (br s, 1 H), $7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{br} \mathrm{t}, J=5.6 \mathrm{~Hz}, 1$ H), $5.74(\mathrm{tdd}, J=6.5,10.3,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.96(\mathrm{~m}, 2$ H), 1.20-1.44 (m, 12 H$).{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 157.1, 139.4, 139.4, 129.0, 122.9, 120.1, 114.2, 46.4, 36.4, $34.7,33.5,27.5,26.3,21.5$. IR (neat, cm^{-1}): 3333, 2925, 1645, 1557, 1233, 694. Anal. calcd (found) for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}: ~ \mathrm{H}, 9.15$ (9.29); C, 75.48 (75.32). HRMS calcd (found) for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 287.2123$ (287.2119).

S13. Colorless oil, 99%. TLC (ether $-\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 2$): $R_{f}=0.51 .{ }^{1} \mathrm{H}$ NMR: $\delta 5.79$ (tdd, $J=6.5$, $10.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{brt}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{brt}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ (dq, $J=5.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.48(\mathrm{~m}, 12 \mathrm{H}), 1.11(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 158.9,139.6,114.2,46.5,36.3,35.4,34.9,33.7,27.5,26.4,21.6$, 15.7. IR (neat, cm^{-1}): $3353,2924,2857,1629,1568,1253$. Anal. calcd (found) for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}: \mathrm{H}$, 10.99 (11.10); C, 70.54 (70.52). HRMS calcd (found) for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 238.2045$ (238.2047).

S14. White solid, 38\%. TLC (EtOAc-hexanes $=1: 2): R_{f}=0.29 .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}): \delta 7.68$ (br s, 1 H), 7.20-7.32 (m, 4 H$), 6.96-7.02(\mathrm{~m}, 1 \mathrm{H}), 5.64-5.78(\mathrm{~m}, 2 \mathrm{H}), 4.91-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.08-3.26$ $(\mathrm{m}, 2 \mathrm{H}), 2.04-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.44(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{~d}, J=$ 6.9 Hz, 3 H), $0.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 156.9, 139.4, 137.5, 129.0, 122.9, 120.0, 116.1, 44.3, 41.0, 33.5, 28.3, 19.6, 19.1. IR (neat, cm^{-1}): 3358, 2958, 1642, 1555, 1241, 694. Anal.
calcd (found) for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: ~ H, 9.00$ (9.07); C, 73.13 (73.27). HRMS calcd (found) for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ $\left(\mathrm{M}^{+}\right): 246.1732$ (246.1731).
N-(2,2-Dimethyl-1-phenyl-4-pentenyl)- N^{\prime}-phenylurea (S15). A solution of phenyl magnesium bromide (1 M in THF, $15 \mathrm{~mL}, 15 \mathrm{mmol}$) and $\mathbf{S 5}(1.08 \mathrm{~g}, 9.89 \mathrm{mmol})$ in ether (60 mL) was refluxed for 17 h . The resulting suspension was cooled to $-15^{\circ} \mathrm{C}$, treated with methanol $(17 \mathrm{~mL})$, stirred for 5 min , cooled to $-78{ }^{\circ} \mathrm{C}$, and treated with $\mathrm{NaBH}_{4}(920 \mathrm{mg}, 24.3 \mathrm{mmol})$ added in one portion. The reaction mixture was warmed slowly to room temperature and stirred for an additional 1 h . The resulting suspension was treated with $1 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$ and extracted with ether $(2 \times 50 \mathrm{~mL})$. The combined organic extracts were washed aqueous sodium hydroxide ($1 \mathrm{M}, 5 \mathrm{~mL}$) and brine (45 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to yield 2,2-dimethyl-1-phenyl-4-pentenylamine (S16, $760 \mathrm{mg}, 41 \%, 93 \%$ pure) that was used in the subsequent step without further purification.

Phenylisocyanate ($210 \mu \mathrm{~L}, 1.93 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{S 1 6}(380 \mathrm{mg}, 2.01$ mmol) in THF (10 mL) at $0{ }^{\circ} \mathrm{C}$ and the reaction was stirred overnight. The resulting solution was diluted with ether (25 mL), washed with $1 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$, sat. aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, and brine (15 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The resulting residue was chromatographed (ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $=1: 30)$ to give $\mathbf{S 1 5}(450 \mathrm{mg}, 76 \%)$ as a white solid. TLC (ether $\left.-\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 30\right): R_{f}=0.45 .{ }^{1} \mathrm{H}$ NMR: $\delta 7.73$ (br s, 1 H$), 7.14-7.19(\mathrm{~m}, 9 \mathrm{H}), 6.95-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.81(\mathrm{tdd}, J=7.3,10.1,17.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.98-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-2.05(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta \quad 156.3,140.4,139.1,134.8,129.1,128.5,127.9,127.1,123.1,120.2,118.1,62.0$, 44.2, 37.8, 24.1, 23.5. IR (neat, cm^{-1}): 3345, 1642, 1549, 1498, 1234, 696. Anal. calcd (found) for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: \mathrm{H}, 7.84$ (7.86); C, 77.89 (77.78). HRMS calcd (found) for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 308.1889$ (308.1888).
N-(2,2-Dimethyl-1-phenyl-4-pentenyl)- N^{\prime}-ethylurea (S17). S17 was synthesized in 66% yield as a colorless oil that solidified to a white solid over several days employing a procedure similar to that used to synthesize S15. TLC (ether- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 9\right): R_{f}=0.22 .{ }^{1} \mathrm{H}$ NMR: $\delta \quad 7.20-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.78$ $5.91(\mathrm{~m}, 2 \mathrm{H}), 4.95-5.10(\mathrm{~m}, 3 \mathrm{H}), 4.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-3.16(\mathrm{~m}, 2 \mathrm{H}), 1.98-2.11(\mathrm{~m}, 2 \mathrm{H})$, $0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}: \delta 158.5,140.8,135.0,128.5$, $127.8,127.0,117.9,62.2,44.2,37.9,35.2,24.2,23.4,15.5$. IR (neat, cm^{-1}): $3348,2969,1628,1559$, 1252, 703. Anal. calcd (found) for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: \mathrm{H}, 9.29$ (9.14); C, 73.81 (73.78). HRMS calcd (found) for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 260.1889$ (260.1889).
\boldsymbol{N}-Benzyl- \boldsymbol{N}^{\prime}-4-pentenylurea (S18). 4-Pentenitrile ($4.38 \mathrm{~g}, 54.0 \mathrm{mmol}$) was added to a suspension of $\mathrm{LiAlH}_{4}(8.15 \mathrm{~g}, 215 \mathrm{mmol})$ in ether $(250 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature, stirred overnight, cooled to $0{ }^{\circ} \mathrm{C}$, and quenched by successive addition of water $(11.5 \mathrm{~mL}), 15 \% \mathrm{NaOH}(11.5 \mathrm{~mL})$, and water $(11.5 \mathrm{~mL})$. The resulting suspension was warmed to room temperature, filtered through Celite, and eluted with ether (200 mL). The resulting solution was carefully concentrated to yield 4-pentenylamine ${ }^{\text {S6 }}(\mathbf{S 1 9}, 38 \% \mathrm{w} / \mathrm{w}$ in ether, $3.31 \mathrm{~g}, 72 \%) . \mathbf{S 1 8}$ was synthesized from S19 employing a procedure similar to that used to synthesize $\mathbf{2 c}$.

For S19: ${ }^{1} \mathrm{H}$ NMR: $\delta 5.80(\mathrm{tdd}, J=6.5,10.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-5.04(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.41$ (br. s, 2 H$).{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 138.5, 114.8, 41.8, 32.8, 31.2.

For S18: White solid, 70\%. TLC (ether- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 2\right): R_{f}=0.60 .{ }^{1} \mathrm{H}$ NMR: $\delta 7.18-7.27(\mathrm{~m}$, $5 \mathrm{H}), 5.73$ (tdd, $J=6.7,10.3,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{brt}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{brt}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.91-4.99 (m, 2 H$), 4.22(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.02-3.07(\mathrm{~m}, 2 \mathrm{H}), 1.96-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.46$ (quintet, $J=$ 7.3 Hz, 2 H$).{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 159.0,139.7,138.0,128.6,127.3,127.1,115.0,44.2,39.9,31.1,29.5$.

IR (neat, cm^{-1}): 3329, 2927, 1620, 1584, 1262, 692. Anal. calcd (found) for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{H}, 8.31$ (8.40); C, 71.53 (71.18). HRMS calcd (found) for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 218.1419$ (218.1420).
\boldsymbol{N}-Ethyl- \boldsymbol{N}^{\prime}-(2-phenyl-4-pentenyl)urea (S21). S6 in THF (35 mL) was added to a solution of $\mathrm{KOH}(89 \%, 5.9 \mathrm{~g}, 94 \mathrm{mmol})$ in water $(25 \mathrm{~mL}) . \mathrm{MeOH}(50 \mathrm{~mL})$ was added and the reaction mixture was heated at $40{ }^{\circ} \mathrm{C}$ for 19 h . The resulting mixture was cooled to room temperature, acidified with concentrated $\mathrm{HCl}(10 \mathrm{~mL})$, and extracted with EtOAc $(3 \times 75 \mathrm{~mL})$. The combined organic extracts were washed with $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ and brine $(45 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to yield 2-phenyl-4pentenoic acid ${ }^{\text {S2 }}(\mathbf{S 2 2}, 3.77 \mathrm{~g}, 92 \%)$ as a yellow oil.

Oxalyl chloride ($1.10 \mathrm{~mL}, 12.6 \mathrm{mmol}$) was added over 10 min to a solution of $\mathbf{S 2 2}(1.53 \mathrm{~g}, 8.68$ mmol) and toluene (10 mL), stirred for 3 h , and concentrated to $\sim 5 \mathrm{~mL}$ under reduced pressure. The resulting solution was added over 15 min to a solution of ammonia in toluene $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature, stirred overnight, and concentrated under vacuum to give a pale yellow oil that was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and $10 \% \mathrm{NaOH}(50 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The resulting residue was chromatographed (EtOAc- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 4\right)$ to give 2-phenyl-4-pentenamide ${ }^{\mathrm{S} 2}(\mathbf{S 2 3}, 1.05 \mathrm{~g}, 69 \%)$ as a white solid. $\mathrm{mp} 60-61^{\circ} \mathrm{C}$.

A solution of $\mathbf{S 2 3}(653 \mathrm{mg}, 3.73 \mathrm{mmol})$ in ether $(10 \mathrm{~mL})$ was added to a suspension of LiAlH_{4} ($580 \mathrm{mg}, 15.3 \mathrm{mmol}$) in ether $(40 \mathrm{~mL})$ and the resulting suspension was refluxed for 16 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by successive addition of water $(0.8 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.8$ $\mathrm{mL})$, and water $(0.8 \mathrm{~mL})$. The resulting suspension was warmed to room temperature, filtered through Celite, and eluted with ether $(150 \mathrm{~mL})$. The solution was carefully concentrated to yield 2-phenyl-4-
pentenylamine ${ }^{\text {S2 }}$ (S24, 75\% w/w in ether, $0.60 \mathrm{~g}, 100 \%$). S21 was synthesized from $\mathbf{S} 24$ employing a procedure similar to that used to synthesize $\mathbf{S 1 5}$.

For S21: Colorless, viscous oil, 72\%. TLC (ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 3$): $R_{f}=0.34$. ${ }^{1} \mathrm{H}$ NMR: δ 7.17$7.34(\mathrm{~m}, 6 \mathrm{H}), 5.68(\mathrm{tdd}, J=7.2,10.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{brt}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.65(\mathrm{ddd}, J=5.5,7.3,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{ddd}, J=4.4,9.2,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dt}, J=5.6,7.2 \mathrm{~Hz}, 2$ H), 2.82-2.90(m, 1 H$), 2.33-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 158.3, 142.7, $136.2,128.7,128.0,126.8,116.6,46.1,45.5,38.3,35.3,15.5$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3332,1630,1566,1256$, 913, 698. Anal. calcd (found) for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{H}, 8.68$ (8.76); C, 72.38 (72.21). HRMS calcd (found) for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 232.1576(232.1581)$.

For S22: ${ }^{1} \mathrm{H}$ NMR: $\delta 11.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.74(\mathrm{tdd}, J=6.8,10.3,17.1 \mathrm{~Hz}, 1$ H), 5.02-5.12 (m, 2 H$), 3.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.58(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 179.9,137.9,135.0,128.9,128.2,127.7,117.4,51.5,37.2$.

For S23: $\mathrm{TLC}\left(\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 4\right): R_{f}=0.32 .{ }^{1} \mathrm{H}$ NMR: $\delta 7.24-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.02(\mathrm{br} \mathrm{s}, 1$ H), $5.71(\mathrm{tdd}, J=7.0,9.7,16.7,1 \mathrm{H}), 5.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.96-5.08(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.84-2.92 (m, 1 H$), 2.48-2.55(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 175.7, 139.4, 135.8, 128.9, 128.1, 127.5, 116.9, 52.6, 37.2.

For S24: ${ }^{1} \mathrm{H}$ NMR: $\delta 7.17-7.34(\mathrm{~m}, 5 \mathrm{H}), 5.68(\mathrm{tdd}, J=6.5,10.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-5.01(\mathrm{~m}$, $2 \mathrm{H}), 2.96(\mathrm{dd}, J=4.6,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=8.7,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.44$ (m, 2 H), 1.47 (br s, 2 H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 143.1, 136.7, 128.7, 128.1, 126.7, 116.3, 49.5, 47.5, 38.5.
N-Phenyl- N^{\prime}-(2-phenyl-4-pentenyl)urea (S25). S25 was synthesized from S24 employing a procedure similar to that used to synthesize $\mathbf{S 1 5}$. White solid, 82%. TLC (ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 19$): $R_{f}=$ 0.37. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.00-7.28(\mathrm{~m}, 10 \mathrm{H}), 5.61(\mathrm{tdd}, J=7.0,10.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{br}$ $\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{td}, J=6.5,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{ddd}, J=5.0,8.7,13.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.76-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.42(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 156.4, 142.4, 139.0, 136.0, 129.1, 128.7, 127.9, 126.8, 123.3, 120.5, 116.7, 45.9, 45.3, 38.1. IR (neat, cm^{-1}): 3322, 1643, 1547, 1496, 1235, 694. Anal. calcd (found) for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{H}, 7.19$ (7.32); C, 77.11 (77.00). HRMS calcd (found) for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 280.1576$ (280.1574).

Heterocyclic Products

Phenyl 2-methyl-4,4-diphenyl-pyrrolidine-1-carboxlamide (3c). ${ }^{\mathrm{S} 4}$ Dioxane (0.50 mL) was added to a mixture of $\mathbf{2 c}(90 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{Au}(4) \mathrm{Cl}(7.5 \mathrm{mg}, 0.012 \mathrm{mmol})$, and $\mathrm{AgOTf}(3.4 \mathrm{mg}$, 0.013 mmol) and the resulting suspension was stirred at room temperature for 18 h . The resulting mixture was concentrated and chromatographed (ether- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 30\right)$ to give $\mathbf{5}(86 \mathrm{mg}, 96 \%)$ as white microcrystals. mp 184.5-186 ${ }^{\circ} \mathrm{C}$. TLC (ether $\left.-\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 30\right): R_{f}=0.41 .{ }^{1} \mathrm{H}$ NMR: $\delta 7.44(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7,13-7.30(\mathrm{~m}, 12 \mathrm{H}), 7.01(\mathrm{tt}, J=1.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.79-3.87 (m, 1 H$), 3.75(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{ddd}, J=1.4,6.3,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=9.2$, $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 154.2, 145.6, 145.2, 139.2, 128.9, 128.7, 128.5, 126.8, $126.6,126.4,122.9,119.8,56.2,52.8,52.1,46.6,20.8$. IR (neat, cm^{-1}): $3267,1645,1538,1443,1388$, 695. HRMS calcd (found) for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right): 357.1967$ (357.1969).

The remaining nitrogen heterocycles were synthesized employing a procedure analogous to that used to synthesize 3c.

Benzyl 2-methyl-4,4-diphenylpyrrolidinecarbamate (3a). ${ }^{\mathrm{S} 3}$ Viscous colorless oil. TLC $($ EtOAc-hexanes $=1: 5): R_{f}=0.41 .{ }^{1} \mathrm{H}$ NMR (1:1 ratio of rotomers): $\delta 7.11-7.40(\mathrm{~m}, 15 \mathrm{H}),[5.31(\mathrm{~d}, J$ $=12.4 \mathrm{~Hz}), 5.09(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 1: 1,1 \mathrm{H}],[5.18(\mathrm{abq}, J=12.4 \mathrm{~Hz}), 1: 1,1 \mathrm{H}],[4.74(\mathrm{dd}, J=2.0,11.6$ Hz), $4.58(\mathrm{dd}, J=1.6,11.6 \mathrm{~Hz}), 1: 1,1 \mathrm{H}], 3.65-3.81(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.86(\mathrm{~m}, 1 \mathrm{H}),[2.31(\mathrm{dd}, J=9.6$, $12.4 \mathrm{~Hz}), 2.26(\mathrm{dd}, J=9.6,12.8 \mathrm{~Hz}), 1: 1,1 \mathrm{H}],[1.36(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 1.29(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 1: 1,3 \mathrm{H}]$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta \quad[155.7,154.9,(1: 1)],[146.0,146.0,(1: 1)],[145.5,145.3,(1: 1)],[137.4,137.3,(1: 1)]$, $128.8,128.8,128.8,128.7,128.3,128.3,128.1,127.8,127.1,126.8,126.8,126.7,126.7,126.6,[67.1$, $66.9,(1: 1)], 56.2,[53.1,53.1,(1: 1)],[52.9,52.5,(1: 1)],[47.2,46.3,(1: 1)],[21.5,20.4,(1: 1)]$. IR (neat, cm^{-1}): 3031, 2963, 1700, 1447, 1216, 1095. Anal. calcd (found) for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{2}: \mathrm{H}, 6.78$ (6.59); C, 80.83 (80.83); N, 3.77 (3.80).

1-(2-Methyl-4,4-diphenyl-pyrrolidin-1-yl)-ethanone (3b). ${ }^{\mathrm{S} 4}$ White solid. TLC (ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $=1: 2): R_{f}=0.57 .{ }^{1} \mathrm{H}$ NMR (1:1 mixture of rotomers): $\delta 7.13-7.33(\mathrm{~m}, 10 \mathrm{H}),[4.99(\mathrm{dd}, J=2.4,12.1$ $\mathrm{Hz}), 4.29(\mathrm{dd}, J=1.9,10.8 \mathrm{~Hz}), 1 \mathrm{H}],[4.04(\mathrm{qdd}, J=6.5,6.5,8.9 \mathrm{~Hz}), 3.77(\mathrm{qdd}, J=6.2,6.2,12.6 \mathrm{~Hz})$, $1 \mathrm{H}],[3.94(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 3.58(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 1 \mathrm{H}],[3.00(\mathrm{ddd}, J=2.6,6.8,12.6 \mathrm{~Hz}), 2.93(\mathrm{ddd}, J$ $=1.9,7.0,12.8), 1 \mathrm{H}],[2.40(\mathrm{dd}, J=8.7,12.5 \mathrm{~Hz}), 2.23(\mathrm{dd}, J=9.1,12.8 \mathrm{~Hz}), 1 \mathrm{H}],[2.11(\mathrm{~s}), 2.02(\mathrm{~s})$, $3 \mathrm{H}],[1.33(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 1.32(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 3 \mathrm{H}] .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (1:1 mixture of rotomers): δ $169.9,168.9,145.8,145.7,145.2,145.0,128.8,128.7,128.7,128.7,126.8,126.7,126.7,126.5,126.5$, $126.4,58.1,54.6,53.1,52.8,52.5,52.3,47.4,45.7,23.5,22.1,21.6,20.2$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 2969,2876$, 1637, 1412, 1347, 699. Anal. calcd (found) for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}: \mathrm{H}, 7.58$ (7.38); C, 81.68 (81.80).

Ethyl 2-methyl-4,4-diphenyl-pyrrolidine-1-carboxamide (S26). Colorless oil. TLC (ether$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 4\right): R_{f}=0.35 .{ }^{1} \mathrm{H}$ NMR: $\delta 7.09-7.28(\mathrm{~m}, 10 \mathrm{H}), 4.48(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{br} \mathrm{t}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{ddd}, J=1.7,6.3$, $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=9.1,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 157.0,145.9,145.6,128.6,128.6,127.0,126.6,126.6,126.4,56.1,52.9,51.8,47.1$, 35.6, 21.0, 15.9. IR (neat, cm^{-1}): 3332, 2967, 1625, 1530, 1336, 698. Anal. calcd (found) for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: \mathrm{H}, 7.84$ (7.79); C, 77.89 (78.04). HRMS calcd (found) for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 308.1889$, found 308.1888.

4-Bromophenyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (S27). White solid. TLC (ether- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 19\right): R_{f}=0.69 .{ }^{1} \mathrm{H}$ NMR: $\delta 7.15-7.40(\mathrm{~m}, 14 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79-3.85(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=5.1,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=9.2,12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.37(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 153.8, 145.5, 145.1, 138.3, 131.9, 128.8, 128.7, 126.9, $126.8,126.7,126.5,121.2,115.5,56.3,52.9,52.3,46.9,20.9$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 2972,1643,1518,1401$, 1238, 698. Anal. calcd (found) for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}: \mathrm{H}, 5.32$ (5.20); C, 66.21 (66.02). HRMS calcd (found) for $\mathrm{C}_{24} \mathrm{H}_{23}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 434.0994$ (434.0999).

4-Methoxyphenyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (S28). White solid. TLC (ether- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 9\right): R_{f}=0.52 .{ }^{1} \mathrm{H}$ NMR: $\delta 7.14-7.33(\mathrm{~m}, 12 \mathrm{H}), 6.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.07$ $(\mathrm{s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (dd, $J=6.3,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=9.2,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$: $\delta 155.9,154.6,145.7,145.3,132.2,128.8,128.7,127.0,126.8,126.6,122.0,114.3,56.3,55.7,52.9$, 52.2, 47.0, 20.9. IR (neat, cm^{-1}): 3301, 1640, 1511, 1372, 1232, 699. Anal. calcd (found) for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}: ~ \mathrm{H}, 6.78$ (6.56); C, 77.69 (77.42). HRMS calcd (found) for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 386.1994$ (386.1996).

4-Acetylphenyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxyamide (S29). White solid. TLC (ether- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 9\right): R_{f}=0.35 .{ }^{1} \mathrm{H}$ NMR: $\delta 7.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.14-7.31 (m, 10 H$), 6.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.89(\mathrm{dd}, J=6.5,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{dd}, J=9.2,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 197.2,153.4,145.4,145.0,144.0,131.6,129.9,128.8,128.7,126.8,126.7$, 126.4, 118.4, 56.3, 52.9, 52.4, 46.7, 26.5, 20.8. IR (neat, cm^{-1}): 1653, 1519, 1367, 1250, 1176, 699. HRMS calcd (found) for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 398.1994$ (398.1997).

Phenyl 3-methyl-2-aza-spiro[4.5]decane-2-carboxamide (S30). White solid. TLC (ether$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 19\right): R_{f}=0.50 .{ }^{1} \mathrm{H}$ NMR: $\delta 7.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 1$ H), $6.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}), 1.38-1.59(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ $153.8,139.4,128.9,122.7,119.8,61.7,58.4,54.2,40.0,37.6,28.9,26.0,23.5$. IR (neat, cm^{-1}): 3297 , 2924, 2854, 1637, 1367, 757. Anal. calcd (found) for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: \mathrm{H}, 8.88$ (8.82); C, 74.96 (74.92). HRMS calcd (found) for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{\dagger}\right): 286.2045$ (286.2043).

Ethyl 3,3,5-trimethyl-2-phenyl-pyrrolidine-1-carboxamide (S31). Chromatography of the crude reaction product gave three fractions, one of which consisted of a $>20: 1$ mixture of cis-S31:transS31, a second that consisted of a 14:1 mixture of cis-S31:trans-S31, and a third that consisted of a 1:2.8 mixture of cis-S31:trans-S31. Spectroscopic analysis of these fractions allowed assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances corresponding to cis-S31 and trans-S31, respectively. Combination of these fractions gave $\mathbf{S 3 1}[99 \%, 3.9: 1$ (cis/trans) $]$ as a white solid. TLC (ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 5$): $R_{f}=0.44$. ${ }^{1} \mathrm{H}$ NMR (cis-S31): $\delta 7.23-7.37(\mathrm{~m}, 5 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 4.09-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{br} \mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.00-3.19 (m, 2 H$), 1.76(\mathrm{dd}, J=6.7,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{dd}, J=10.3,12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(c i s-\mathrm{S} 31): \delta 158.3$, 141.2, 128.7, 127.8, 127.2, 74.0, 52.9, 45.9, 42.1, 35.2, 29.6, 25.3, 21.1, 15.5. ${ }^{1} \mathrm{H}$ NMR (trans-S31): δ 7.26-7.32 (m, 3 H), $7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.29-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{br} \mathrm{t}, J=5.8 \mathrm{~Hz}, 1$ H), 2.88-3.13 (m, 2 H), $2.10(\mathrm{dd}, J=9.1,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{dd}, J=3.6$, $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (trans-S31): δ $157.2,140.8,128.6,127.7,127.2,72.8,54.3,45.2,42.5,35.2,30.5,25.9,22.2,15.3$. IR (neat, cm^{-1}): 3397, 2963, 1626, 1519, 1324, 697. HRMS calcd (found) for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 260.1889$ (260.1894).

The stereochemistry of the major diastereomer of $\mathbf{S 3 1}$ (cis-S31) was determined via ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY analysis (Figures S1 and S3). A cis relationship between Me_{a} and H_{Ph} was established by the
much stronger cross peak between Me_{b} and H_{Bn} relative to the cross peak between Me_{a} and H_{Bn} and from the presence of a cross peak between Me_{a} and H_{Ph} and the absence of a detectable cross peak between Me_{b} and H_{Ph}. The cis relationship between H_{b} and Me_{b} was established by the greater magnitude of the $\mathrm{Me}_{\mathrm{b}} / \mathrm{H}_{\mathrm{b}}$ cross peak relative to the $\mathrm{Me}_{\mathrm{a}} / \mathrm{H}_{\mathrm{b}}$ cross peak. The overlapping resonances corresponding to H_{a} and Me_{c} in the ${ }^{1} \mathrm{H}$ NMR spectrum of cis- $\mathbf{S 3 1}$ complicated, stereochemical analysis. Nevertheless, the cis relationship between H_{a} and Me_{c} was established from the NOESY spectrum. First, was the presence of a cross peak between $\mathrm{H}_{\mathrm{a}} / \mathrm{Me}_{\mathrm{c}}$ and Me_{a} and the absence of a cross peak between $H_{a} / \mathrm{Me}_{\mathrm{c}}$ and Me_{b}. Second was the presence of a cross peak between H_{Ph} and $\mathrm{H}_{a} / \mathrm{Me}_{\mathrm{c}}$ and the absence of cross peaks between either $H_{P h}$ and H_{c} or between $H_{P h}$ and H_{b}. Therefore H_{a} and Me_{c} must be cis to one another and, because H_{b} is trans to $\mathrm{H}_{\mathrm{Ph}}, \mathrm{Me}_{\mathrm{c}}$ must be cis to H_{Ph}. Taken together, these data establish the cis relationship between Me_{c} and H_{Ph}.

Figure S1. Relevant cross-peaks and NOE enhancements observed in the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of cis-S31 (all values reported are absolute enhancements and not standardized).

NOE enhancements
$\mathrm{H}_{\mathrm{Ph}} \rightarrow \mathrm{H}_{\mathrm{b}}=3.4 \%$
$\mathrm{H}_{\mathrm{Ph}} \rightarrow \mathrm{Me}_{\mathrm{c}}=6.4 \%$
$\mathrm{H}_{\mathrm{Ph}} \rightarrow \mathrm{Me}_{\mathrm{a}}=4.3 \%$
$\mathrm{Me}_{\mathrm{a}} \rightarrow \mathrm{H}_{\mathrm{Bn}}=2.4 \%$
$\mathrm{Me}_{\mathrm{a}} \rightarrow \mathrm{H}_{\mathrm{b}}=1.8 \%$
$\mathrm{Me}_{\mathrm{a}} \rightarrow \mathrm{H}_{\mathrm{a}}=4.6 \%$
$\mathrm{Me}_{\mathrm{b}} \rightarrow \mathrm{H}_{\mathrm{Bn}}=5.6 \%$
$\mathrm{Me}_{\mathrm{b}} \rightarrow \mathrm{H}_{\mathrm{b}}=4.0 \%$

Phenyl 3,3,5-trimethyl-2-phenyl-pyrrolidine-1-carboxamide (S32). Chromatography of the crude reaction product gave two fractions, one of which consisted of a $>20: 1$ mixture of cis-S32:trans-

S32 and a second that consisted of 3.4:1 mixture of cis-S32:trans-S32. Spectroscopic analysis of these fractions allowed assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances corresponding to cis-S32 and trans-S32. Combination of these fractions gave a 3.6:1 mixture of cis-S32:trans-S32 (92\%) as a white solid. TLC (ether- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 19\right): R_{f}=0.54 .{ }^{1} \mathrm{H}$ NMR (cis-S32): $\delta 7.32-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.19(\mathrm{~m}$, $2 \mathrm{H}), 7.07-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{td}, J=1.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.29(\mathrm{~m}, 1 \mathrm{H})$, $1.85(\mathrm{dd}, J=6.5,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=10.1,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3$ $\mathrm{H}), 0.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (cis-S32): δ 155.3, 140.4, 139.1, 129.1, 128.8, 128.3, 127.4, 122.6, 119.1, 74.3, 53.1, 45.8, 42.2, 29.6, 25.2, 20.6. ${ }^{1} \mathrm{H}$ NMR (trans-S32): $\delta 6.89-7.46(\mathrm{~m}, 10 \mathrm{H}), 5.94(\mathrm{~s}, 1$ H), $4.46(\mathrm{~s}, 1 \mathrm{H}), 4.40-4.44(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=9.1,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.54$ (dd, $J=3.6,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (trans-S32): δ 154.2, 140.0, $139.0,128.8,128.7,128.1,127.4,122.7,119.5,73.0,54.5,45.2,42.6,30.3,25.8,22.0$. IR (neat, cm^{-1}): 3409, 2961, 1664, 1524, 1440, 1331. HRMS calcd (found) for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 308.1889$ (308.1892).

Phenyl 2-methyl-4-phenyl-pyrrolidine-1-carboxamide (S33). Chromatography of the crude reaction product gave two fractions, one of which consisted of a >20 :1 mixture of cis-S33:trans-S33 and a second that consisted of 3.7:1 mixture of cis-S33:trans-S33. Spectroscopic analysis of these fractions allowed assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances corresponding to cis-S33 and trans-S33. Combination of these fractions gave $\mathbf{S 3 3}$ [99\%, 2.9:1 (cis/trans)] as a white solid. TLC (ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}=$ 1:19): $R_{f}=0.19 .{ }^{1} \mathrm{H}$ NMR (cis-S33): $\delta 7.22-7.40(\mathrm{~m}, 9 \mathrm{H}), 6.96-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.06-$ $4.14(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=8.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.58(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{dt}, J=9.4$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}($ cis-S33 $): \delta 154.2,140.3,139.3,129.0,128.8$, 127.3, 127.1, 122.9, 119.6, 54.0, 53.5, 43.4, 42.1, 21.3. ${ }^{1} \mathrm{H}$ NMR (trans-S33): $\delta 7.22-7.40(\mathrm{~m}, 9 \mathrm{H})$, 6.96-7.01 (m, 1 H$), 6.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.27-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=8.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.68(\mathrm{~m}, 1$ H), $3.34-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{dt}, J=8.0,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{dd}, J=6.5,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.5$
$\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (trans-S33): δ 153.7, 140.8, 139.2, 129.0, 128.9, 127.2, 127.2, 122.9, 119.6, 53.5, 53.0, 42.2, 40.0, 21.1. IR (neat, cm^{-1}): 3276, 1639, 1532, 1443, 1377, 756. HRMS calcd (found) for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 280.1576$ (280.1574).

Ethyl 2-methyl-4-phenyl-pyrrolidine-1-carboxamide (S34). Chromatography of the crude reaction product gave two fractions, one of which consisted of a $>20: 1$ mixture of cis-S34:trans-S34 and a second that consisted of 3.0:1 mixture of cis-S34:trans-S34. Spectroscopic analysis of these fractions allowed assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances corresponding to cis-S34 and trans-S34. Combination of these fractions gave a $3.3: 1$ mixture of cis-S34:trans-S34 S34 (84\%) as a white solid. TLC (ether- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 19\right): R_{f}=0.21 .{ }^{1} \mathrm{H}$ NMR (cis-S34): $\delta 7.22-7.34(\mathrm{~m}, 5 \mathrm{H}), 4.13(\mathrm{br} \mathrm{t}, J=5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.67(\mathrm{~m}, 4 \mathrm{H}), 2.50-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=$ 6.2 Hz, 3 H), $1.15(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (cis-S34): δ 157.1, 140.8, 128.7, 127.2, 126.9, 53.5, 53.1, 43.2, 42.3, 35.5, 21.5, 15.8. ${ }^{1} \mathrm{H}$ NMR (trans-S34): $\delta 7.21-7.33(\mathrm{~m}, 5 \mathrm{H}), 4.18$ (br t, $J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=8.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.36(\mathrm{~m}, 4 \mathrm{H}), 2.13-2.21(\mathrm{~m}, 1 \mathrm{H})$, $1.94(\mathrm{dd}, J=6.2,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (trans-S34): $\delta 156.6,141.2,128.7,127.2,127.0,53.1,52.7,42.1,40.1,35.4,21.2,15.9$. IR (neat, cm^{-} $\left.{ }^{1}\right): 3335,2968,1626,1532,1369,761$. HRMS calcd (found) for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 232.1576$ (232.1569).

The cis-stereochemistry of the major diastereomer of $\mathbf{S 3 4}$ was established by combined ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY analysis of the major diastereomer of $\mathbf{S 3 4}$ (Figures S2, S4, \& S5). 1H assignments were made on the basis of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY analysis. The cis relationship between the menthyl group and phenyl group of the pyrrolidine ring was established from the presence of a cross peak between the aryl protons and the methyl group. Furthermore, the cis relationship between H_{Ph} and H_{b} was established by the presence of a cross peak between $H_{P h}$ and H_{b} and the absence of a cross peak
betweeh H_{Ph} and H_{c}. The cis relationship between H_{b} and Me was established by the presence of a cross peak between Me and H_{b} and the absence of a cross peak between Me and H_{c}.

Figure S2. Proton assignments for cis-S34.

Phenyl 4-isopropyl-2-methyl-pyrrolidine-1-carboxamide (S35). Chromatography of the crude reaction product gave two fractions, one of which consisted of a 6.3:1 mixture of cis-S35:transS35, and a second that consisted of 4.1:1 mixture of cis-S35:trans-S35. Spectroscopic analysis of these fractions allowed assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances corresponding to cis-S35 and partial assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances corresponding to trans-S35. Combination of these fractions gave a $5.5: 1$ mixture of cis-S35:trans-S35. S35 (98\%) as a white solid. TLC (ether$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 11\right): R_{f}=0.62 .{ }^{1} \mathrm{H}$ NMR (cis-S35): $\delta 7.37-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}$, $1 \mathrm{H}), 6.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.92-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{td}, J=6.7$, $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.28(\mathrm{~m}, 2 \mathrm{H})$, 0.92-0.96 (m, 6 H$).{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (cis-S35): δ 154.3, 139.4, 128.9, 122.7, 119.5, 54.0, 51.6, 45.7, 40.0, 32.1, 21.6, 21.4, 21.2. ${ }^{1} \mathrm{H}$ NMR (trans-S35, partial): $\delta 6.14$ (br s, 1 H), 4.14-4.21 (m, 1 H$), 3.61$ (dd, $J=8.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (trans-S35): δ 154.3, 139.4, 128.9, 122.7, 119.6, 53.5, 50.7, 44.4, 37.4, 32.5, 21.3, 21.2, 21.0. IR (neat, cm^{-1}): 3223, 2959, 1633, 1443, 1385, 756. Anal. calcd (found) for
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: \mathrm{H}, 9.00$ (9.00); C, 73.13 (72.90). HRMS calcd (found) for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 246.1732$ (246.1731).

Benzyl 2-methyl-pyrrolidine-1-carboxamide (S36). TLC (ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 2$): $\quad R_{f}=0.46$. White solid. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.22-7.33(\mathrm{~m}, 5 \mathrm{H}), 4.53(\mathrm{br} \mathrm{t}, 1 \mathrm{H}), 4.36-4.48(\mathrm{~m}, 2 \mathrm{H}), 3.96-4.03(\mathrm{~m}, 1 \mathrm{H})$, 3.21-3.34(m, 2 H$), 1.82-2.03(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}: \delta$ $156.6,140.0,128.6,127.8,127.2,52.8,45.9,44.7,32.9,23.6,20.7 . \operatorname{IR}\left(n e a t, \mathrm{~cm}^{-1}\right): 3334,2962,1626$, 1533, 1389, 1350. HRMS calcd (found) for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 218.1419$ (218.1418).

Ethyl 3-methyl-2-aza-spiro[5.5]undecane-2-carboxamide (S37). TLC (ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 3$): $R_{f}=0.50$. Colorless oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 4.41$ (br t, $\left.J=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.08-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.13-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.43(\mathrm{~m}, 13 \mathrm{H}), 1.08$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 157.8, 47.2, 46.2, 38.1, 35.7, 33.1, $31.4,30.2,26.7,25.7,21.8,21.5,15.7,15.6$. IR (neat, cm^{-1}): 3344, 2925, 2855, 1617, 1532, 1295. HRMS calcd (found) for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right): 238.2045$ (238.2043).

Figure S3. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY of cis-S31.

Figure S4. Partial ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY of cis-S34.

Figure S5. Partial ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY of $c i s-S 34$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 c}$.

Figure S7. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2c.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}$.

Figure S9. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 c}$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$.

Figure S11. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 b}$.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$.

Figure S13. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 a}$.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 2 6}$.

Figure S15. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{S} 26$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S} 27$.

Figure S17. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{S} 27$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 2 8}$.

Figure S19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{S 2 8}$.

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 2 9}$.

Figure S21. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{S 2 9}$.

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 3 0}$.

Figure S23. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{S 3 0}$.

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum (14:1-cis:trans) S31.

Figure S25. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($>20: 1$-cis:trans) spectrum of $\mathbf{S 3 1}$.

Figure S26. ${ }^{1}$ H NMR spectrum of the cis-diastereomer of $\mathbf{S 3 2}$.

Figure S27. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of cis-diastereomer of S32.

Figure S28. ${ }^{1}$ H NMR (3.7:1-cis:trans) spectrum of S33.

Figure S29. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (3.7:1-cis:trans) spectrum of S33.

Figure S30. ${ }^{1}$ H NMR (3.0:1-cis:trans) spectrum of S34.

Figure S31. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (3.0:1-cis:trans) spectrum of S34.

Figure S32. ${ }^{1} \mathrm{H}$ NMR (4.1:1-cis:trans) spectrum of S35.

Figure S33. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (4.1:1-cis:trans) NMR spectrum of S35.

Figure S34. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 3 6}$.

Figure S35. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{S 3 6}$.

Figure S36. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 3 7}$.

Figure S37. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{S 3 7}$.

References.

S1) Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2005, 127, 1070.
S2) Pour, M.; Špulák, M.; Balšánek, V.; Kuneš, J.; Kubanová, P.; Buchta, V. Biorg. \& Med. Chem. 2003, 11, 2843.

S3) Han, X.; Widenhoefer, R. A. Angew. Chem. Int. Ed. 2006, 45, 1747.
S4) Bender, C. F.; Widenhoefer, R. A. Chem. Commun. 2006, DOI: 10.1039/b608638a.
S5) de Frémont, P.; Scott, N. M.; Stevens, E. D.; Nolan, S. P. Organometallics 2005, 24, 2411.
S6) El Samii, Z. K. M.; Al Ashmawy, M. I.; Mellor, J. M. J. Chem. Soc., Perkin Trans. 1 1988, 2517.

