SUPPORTING INFORMATION

Diastereoselective Synthesis of Enantiopure Morpholines by Electrophilic Selenium-Induced 6-*exo* Cyclizations on Chiral 3-Allyl-2-hydroxymethylperhydro-1,3-benzoxazine Derivatives.

Rafael Pedrosa,* Celia Andrés,* Raquel Arias, Pilar Mendiguchía and Javier Nieto

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid

Dr. Mergelina s/n, 47011-Valladolid, Spain.

FAX: Int. + 983 423 013

E-mail: pedrosa@qo.uva.es

Table of Contents

General experimental methods and procedure	
for Selenocyclization	Page S2
General Method for Elimination of	
the Menthol Appendage	Page S3
Synthesis of compound 3d	. Page S4
General Procedure for the reduction of ketones 3a-e with $NaBH_4$.	Page S4
Characterization data for compounds 4a-f	. Page S5
General Procedure for Reductive Deselenylation	
of Compounds 5a-d, 5f, 5g, 6a-e, 6g, 6h, 7e, 7h and 8h	Page S8
Characterization data for compounds 9a-h	Page S8
Characterization data for compounds 10a-h	Page S12
General Method for 1,3-Oxazine Ring Opening by	
Aluminum Hydride	Page S15
Characterization data for compounds 12, 13, 14, 17-18	Page S16

General Methods: All reactions were carried out in anhydrous solvents, under argon atmosphere, and in oven-dried glassware. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) were registered in CDCl₃ as solvent and chemical shifts are given relative to TMS as internal reference. Specific rotations were determined on a digital polarimeter using a Na lamp and concentration is given in g per 100 mL. Melting points were determined in open capillary tubes and are uncorrected. Solvents were dried by standard methods. TLC was performed on glass-backed plates coated with silica gel 60 with F254 indicator; the chromatograms were visualized under UV light and/or by staining with a Ce/Mo reagent. Flash chromatography was carried out on silica gel 60 (230-240 mesh).

Compounds $\mathbf{2}$, ³¹ $\mathbf{3a}$, ^{23c} $\mathbf{3b}$, ³¹ $\mathbf{3c}$, ^{23b} $\mathbf{3e}$, ³¹ $\mathbf{4g}^{33}$ and $\mathbf{4h}^{31}$ have been previously described.

General Procedure for Selenocyclization Reactions. Method A. To a stirred solution of PhSeCl (0.46 g, 2.4 mmol) in anhydrous CH_2Cl_2 (15 mL) cooled to -78 °C, a solution of SnCl₄ in CH_2Cl_2 (2.4 mL of 1.0 M solution, Aldrich) was added dropwise under nitrogen atmosphere. The mixture was stirred for 20 min, and then it was added dropwise to a solution of the appropriate alcohol **4a-h** (2.0 mmol) in CH_2Cl_2 (5 mL) cooled to -78 °C. Stirring was continued for 2 h at -78 °C and then the mixture was treated with a 10 % aqueous solution of NaOH (30 mL). The layers were separated and the aqueous was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic layers were washed with brine, dried over MgSO₄, concentrated at reduced pressure, and the residue was purified by flash chromatography on silica gel, using hexanes-ethyl acetate as eluent.

Method B. To a mixture of the appropriate alcohol **4a-h** (2.0 mmol), solid anhydrous K_2CO_3 (415 mg, 3 mmol) and CH_2Cl_2 (10 mL) at 0 °C was slowly added a solution of of PhSeCl (0.46 g, 2.4 mmol) in CH_2Cl_2 (12 mL). The stirring was continued for 5 h at 0

°C and then a 10 % aqueous solution of NaOH (30 ml) was added and the products were isolated as described in the method A.

Method C. To a mixture of the appropriate alcohol **4a-h** (2.0 mmol), anhydrous THF (10 mL) and MeOH (0.5 mL) cooled to -78 °C, a solution of PhSeCl in THF (10 mL) was added dropwise under nitrogen atmosphere. The mixture was stirred for 8 h at -78 °C and then treated with a 10 % aqueous solution of NaOH (30 mL). The THF was evaporated *in vacuo* and the remained aqueous phase was extracted with CH_2Cl_2 and the products isolated as described for methods A and B.

General Method for Elimination of the Menthol Appendage. A solution of the appropriate aminomenthol derivative (1.2 mmol) and PCC (1.3 g, 6.0 mmol) in anhydrous CH₂Cl₂ (25 mL) and 3 Å molecular sieves (2.5 g) was stirred under a nitrogen atmosphere until the oxidation was finished (TLC 5-9 h). The mixture was then treated with a 10 % aqueous solution of NaOH (50 mL) and extracted with CHCl₃ (5 x 20 mL). The organic phase was washed with brine, dried over anhydrous MgSO₄ and the solvent were removed under reduced pressure. The residue was redisolved in THF (16 mL) and MeOH (8 ml), an aqueous solution of KOH 2.5M (8 mL) was added, and the mixture stirred at room temperature for 4 h. After elimination of the THF and MeOH under reduced pressure, the residue was acidified with a 1 M solution of HCl to pH 1 and extracted twice with Et₂O (2 x 20 mL). The aqueous solution was neutralized to pH 12 with a 10% aqueous solution of NaOH and extracted with CHCl₃ (4 x 20 mL). The organic layer was washed with H₂O, dried over MgSO₄, and the solvent eliminated under vacuum. The morpholine obtained in this way was characterized as N-tosyl derivative that was obtained pure by treatment with an excess of tosyl chloride and diisopropylethylamine in ethyl acetate for 50 h, elimination of the solvent under vacuum and cromatography on silica gel using hexanes/EtOAc as eluent.

[(2S,4aS,7R,8aR)-3-(Cyclohex-1-en-1-ylmethyl)-4,4,7-trimethyl-**Synthesis** of octahydro-2H-benzo[e][1,3]oxazin-2-yl](phenyl)methanone (3d). A mixture of benzoxazine 2 (3.0 g, 14.1 mmol), potassium carbonate (3.9 g, 28.0 mmol) and 1-(bromomethyl)cyclohexene³⁹ (2.7 g, 15.5 mmol) in acetonitrile (8 mL) was heated in an oil bath at 80-90 °C until the reaction was complete (TLC, 60 h). The reaction mixture was diluted with ethyl acetate, and the solid was separated by filtration and washed with hot ethyl acetate (3 x 25 mL). The solvents were evaporated under vacuum and the residue was purified by flash chromatography on silica gel with hexanes/ethyl acetate 1:20 as eluent. Yield: 81%. Colorless solid. Mp: 95-96 °C (from ethanol). $\left[\alpha\right]_{D}^{25} = -25.3$ $(c = 1.0, CHCl_3)$. ¹H-NMR (δ): 0.93-1.10 (m, 6H); 0.94 (d, 3H, J = 6.5 Hz); 1.20 (s, 3H); 1.21 (m, 1H); 1.38 (s, 3H); 1.47-1.54 (m, 4H); 1.63-1.74 (m, 4H); 1.98 (m, 1H); 3.01 (d, 1H, J = 16.0 Hz); 3.30 (d, 1H, J = 16.0 Hz); 3.58 (td, 1H, $J_1 = 10.5$ Hz, $J_2 = 4.1$ Hz); 5.17 (m, 1H); 5.68 (s, 1H); 7.28-7.55 (m, 3H); 8.12-8.15 (m, 2H). ¹³C-NMR (δ): 19.1 (CH₃); 21.9 (2 CH₂); 22.1 (CH₃); 24.9 (2 CH₂); 25.9 (CH₂); 27.0 (CH₃); 31.2 (CH); 34.8 (CH₂); 41.1 (CH₂); 46.8 (CH); 49.4 (CH₂); 57.6 (C); 75.9 (CH); 88.3 (CH); 125.8 (CH); 127.6 (2 CH); 129.1 (2 CH); 132.4 (CH); 134.7 (C); 135.3 (C); 194.5 (C=O). IR (Nujol dispersion): 3050; 1690; 1600; 800; 760; 700 cm⁻¹. Anal. Calcd. for C₂₅H₃₅NO₂: C, 78.70; H, 9.25; N, 3.67. Found: C, 78.84; H, 9.12; N, 3.78.

Reduction of ketones 3a-e with NaBH₄. General Procedure. To a solution of the corresponding ketone 3a-e (10.0 mmol) in ethanol (60 mL) cooled at -10 °C, NaBH₄ (200 mg, 5.2 mmol) was added with magnetic stirring. After 2 h stirring, additional NaBH₄ (100 mg) was added and the mixture was further stirred for 3 h at 0 °C. Then 150 mL of H₂O was added, and the mixture was stirred for 1 h at room temperature. The

ethanol was removed under vacuum and the remaining water was extracted with ethyl acetate (4 x 35 mL). The combined organic layers were washed with brine, dried over $MgSO_4$, concentrated at reduced pressure and the resulting residue was purified by flash chromatography on silica gel using hexanes-ethyl acetate 45:1 as eluent and/or recristallyzation.

(S)-[(2S,4aS,7R,8aR)-3-Allyl-4,4,7-trimethyl-octahydro-2*H*-benzo[*e*][1,3]oxazin-2yl](phenyl)methanol (4a). Yield: 93%. Colorless oil. $[\alpha]_{D}^{25} = -64.2$ (c = 2.5, CH₂Cl₂). ¹H-NMR (δ): 0.84-1.07 (m, 3H); 0.86 (d, 3H, *J* = 6.5 Hz); 1.19 (s, 3H); 1.29 (s, 3H); 1.35 (m, 1H); 1.46 (m,1H); 1.57 (m, 1H); 1.61-1.77 (m, 2H); 3.12 (s, 1H); 3.24 (td, 1H, *J*₁ = 10.6 Hz, *J*₂ = 4.0 Hz); 3.38 (ddt, 1H, *J*₁ = 17.9 Hz, *J*₂ = 4.7 Hz, *J*₃ = 1.7 Hz); 3.63 (ddt, 1H, *J*₁ = 17.9 Hz, *J*₂ = 6.1 Hz, *J*₃ = 1.7 Hz); 4.53 (s, 2H); 5.08 (dq, 1H, *J*₁ = 10.2 Hz, *J*₂ = 1.7 Hz); 5.28 (dq, 1H, *J*₁ = 17.2 Hz, *J*₂ = 1.7 Hz); 6.04 (m, 1H); 7.21-7.32 (m, 3H); 7.41-7.49 (m, 2H). ¹³C-NMR (δ): 22.2 (CH₃); 22.6 (CH₃); 25.0 (CH₂); 26.9 (CH₃); 31.3 (CH); 35.1 (CH₂); 41.0 (CH₂); 44.5 (CH₂); 45.1 (CH); 57.6 (CH); 71.7 (CH); 77.1 (CH); 90.5 (CH); 114.6 (CH₂); 127.2 (2 CH); 127.4 (CH); 127.8 (2 CH); 140.5 (CH); 141.1 (C). IR (Nujol dispersion): 3500 (broad); 3030;1630; 1590; 750; 720; 690 cm⁻¹. Anal. Calcd. for C₂₁H₃₁NO₂: C, 76.55; H, 9.48; N, 4.25. Found: C, 76.43; H, 9.61; N, 4,12.

(S)-[(2S,4aS,7R,8aR)-3-((E)-But-2-enyl)-4,4,7-trimethyl-octahydro-2H-1,3-

benzo[*e*][1,3]oxazin-2-yl](phenyl)methanol (4b). Yield: 90 % .Colorless oil. $[\alpha]_D^{25} = -$ 87.5 (c = 1.0, CH₂Cl₂). ¹H-NMR (δ): 0.84-1.08 (m, 3H); 0.89 (d, 3H, *J* = 6.5 Hz); 1.20 (s, 3H); 1.21 (s, 3H); 1.31 (m, 1H); 1.42 (m, 1H); 1.55 (m, 1H); 1.59-1.76 (m, 2H); 1.70 (d, 3H, *J* = 4.6 Hz); 3.09-3.40 (m, 3H); 3.58 (dd, 1H, *J*₁ = 16.5 Hz, *J*₂ = 5.2 Hz); 4.50 (d, 1H, *J* = 8.5 Hz); 4.55 (d, 1H, *J* = 8.5 Hz); 5.58-5.67 (m, 2H); 7.17-7.30 (m, 3H); 7.47-7.49 (m, 2H). ¹³C-NMR (δ): 17.8 (CH₃); 22.2 (CH₃); 22.6 (CH₃); 24.9 (CH₂); 27.0

(CH₃); 31.3 (CH); 35.1 (CH₂); 41.0 (CH₂); 43.6 (CH₂); 45.1 (CH); 57.4 (C); 71.6 (CH); 77.0 (CH); 90.6 (CH); 125.4 (CH); 127.1 (2 CH); 127.3 (CH); 127.7 (2 CH); 133.1 (CH); 141.2 (C). IR (Film): 3450 (broad); 3020; 1590; 750; 720; 690 cm⁻¹. Anal. Calcd. for C₂₂H₃₃NO₂: C, 76.92; H, 9.68; N, 4.08. Found: C, 77.02; H, 9.79; N, 4.16.

(S)-[(2S,4aS,7R,8aR)-3-(2-methylallyl)-4,4,7-trimethyl-octahydro-2H-1,3-

benzo[*e*][1,3]oxazin-2-yl](phenyl)methanol (4c). Yield: 92 % .Colorless solid. Mp: 94-95 °C (from ethanol). [α]_D²⁵ = -57.9 (c = 1.2, CH₂Cl₂). ¹H-NMR (δ) : 0.84-1.09 (m, 3H); 0.85 (d, 3H, J = 6.5 Hz); 1.13 (s, 3H); 1.27 (s, 3H); 1.30-1.48 (m, 2H); 1.58 (m, 1H); 1.61-1.75 (m, 2H); 1.77 (s, 3H); 3.05 (s, 1H); 3.21 (d, 1H, J = 19.1 Hz); 3.28 (td, 1H, $J_1 = 10.5$ Hz, $J_2 = 4.0$ Hz); 3.53 (d, 1H, J = 19.1 Hz); 4.07 (d, 1H, J = 7.1 Hz); 4.12 (d, 1H, J = 7.1 Hz); 4.95 (s, 1H); 5.31 (s, 1H); 7.20-7.36 (m, 3H); 7.43-7.46 (m, 2H). ¹³C-NMR (δ) : 20.9 (CH₃); 22.1 (CH₃); 22.5 (CH₃); 24.9 (CH₂); 26.0 (CH₃); 31.3 (CH); 35.1 (CH₂); 41.0 (CH₂); 45.2 (CH); 47.2 (CH₂); 47.3 (C); 72.5 (CH); 77.0 (CH); 90.6 (CH); 109.8 (CH₂); 127.1 (2 CH); 127.3 (CH); 127.7 (2 CH); 141.1 (C); 147.7 (C). IR (Nujol dispersion): 3500; 3080; 3020; 1610; 760; 720; 700 cm-1. Anal. Calcd. for C₂₂H₃₃NO₂: C, 76.92; H, 9.68; N, 4.08. Found: C, 76.81; H, 9.74; N, 4.19.

(S)-[(2S,4aS,7R,8aR)-3-(Cyclohex-1-en-1-ylmethyl)-4,4,7-trimethyl-octahydro-2*H*-1,3-benzo[*e*][1,3]oxazin-2-yl](phenyl)methanol (4d). Yield: 89 % .Colorless oil. $[\alpha]_{D}^{25}$ = -31.1 (c = 1.0, CH₂Cl₂). ¹H-NMR (δ): 0.84-1.06 (m, 3H); 0.85 (d, 3H, *J* = 6.5 Hz); 1.14 (s, 3H); 1.26 (s, 3H); 1.27-1.47 (m, 2H); 1.51-1.72 (m, 7H); 1.95-2.08 (m, 4H); 3.09 (s, 1H); 3.15 (d, 1H, *J* = 18.4 Hz); 3.28 (td, 1H, *J*₁ = 10.5 Hz, *J*₂ = 4.0 Hz); 3.50 (d, 1H, *J* = 18.4 Hz); 4.43 (d, 1H, *J* = 8.4 Hz); 4.55 (d, 1H, *J* = 8.4 Hz); 5.95 (m, 1H); 7.21-7.33 (m, 3H); 7.42-7.45 (m, 2H). ¹³C-NMR (δ): 22.2 (CH₃); 22.4 (CH₃); 22.7 (CH₂); 22.8 (CH₂); 24.9 (2 CH₂); 26.4 (CH₃); 27.3 (CH₂); 31.3 (CH); 35.1 (CH₂); 41.0 (CH₂); 45.4 (CH); 47.1 (CH₂); 57.2 (C); 72.5 (CH); 76.9 (CH); 90.6 (CH); 121.0 (CH); 127.2 (2 CH); 127.3 (CH); 127.7 (2 CH); 139.6 (C); 141.2 (C). IR (Film): 3490; 3020; 1590; 715; 690 cm⁻¹. Anal. Calcd. for C₂₅H₃₇NO₂: C, 78.28; H, 9.72; N, 3.65. Found: C, 78.36; H, 9.84; N, 3.69.

(S)-[(2S,4aS,7R,8aR)-3-(3-Methylbut-2-enyl)-4,4,7-trimethyl-octahydro-2H-1,3-

benzo[e][1,3]oxazin-2-yl](phenyl)methanol (4e). Yield: 90 % .Colorless solid. Mp: 103-104 °C (from ethanol). $[α]_D^{25} = -97.1$ (c = 1.0, CH₂Cl₂). ¹H-NMR (δ): 0.86–1.08 (m, 3H); 0.87 (d, 3H, J = 6.5 Hz); 1.20 (s, 3H); 1.22 (s, 3H); 1.37 (m, 1H); 1.48 (m, 1H); 1.56 (m, 1H); 1.62-1.78 (m, 2H); 1.69 (s, 3H); 1.71 (s, 3H); 3.24 (td, 1H $J_1 = 10.6$ Hz, $J_2 = 4.0$ Hz); 3.25 (s, 1H); 3.28 (dd, 1H, $J_1 = 17.3$ Hz, $J_2 = 4.7$ Hz); 3.65 (dd, 1H $J_1 = 17.3$ Hz, $J_2 = 7.1$ Hz); 4.5 (s, 2H); 5.38 (dd, 1H, $J_1 = 7.1$ Hz, $J_2 = 4.7$ Hz); 7.22-7.37 (m, 3H); 7.42-7.48 (m, 2H). ¹³C-NMR (δ): 18.0 (CH₃); 22.1 (CH₃); 22.7 (CH₃); 24.9 (CH₂); 25.8 (CH₃); 27.0 (CH₃); 31.3 (CH); 35.1 (CH₂); 40.0 (CH₂); 41.0 (CH₂); 45.0 (CH); 57.4 (C); 71.5 (CH); 77.1 (CH); 90.6 (CH); 126.8 (CH); 127.1 (2 CH); 127.3 (CH); 127.8 (2 CH); 131 (C); 141.2 (C). IR (Nujol dispersion): 3480; 3060; 3020; 1600; 760; 730; 700 cm⁻¹. Anal. Calcd. for C₂₃H₃₅NO₂: C, 77.27; H, 9.87; N, 3.92. Found: C, 77.14; H, 9.99; N, 4.03.

Synthesis of (S)-1-[(2S,4aS,7R,8aR)-3-(3-Methylbut-2-enyl)-4,4,7-trimethyloctahydro-2*H*-1,3-benzo[*e*][1,3]oxazin-2-yl]-1-phenylethanol (4f). To a stirred solution of the ketone 3e (3.0 g, 8.4 mmol) in anhydrous ethyl ether (50 mL) cooled to -10 °C, an ethereal 3.0 M solution of methylmagnesium iodide (4.2 mL of 3.0 M solution, Aldrich) was added dropwise under a nitrogen atmosphere. Stirring was continued until disappearance of the starting ketone (TLC, 25 min.).The mixture was quenched with saturated aqueous NH₄Cl (50 mL), the layers were separated and the aqueous was extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed with brine, dried over MgSO₄, concentrated at reduced pressure; and residue was purified by flash chromatography on silica gel, using hexanes-ethyl acetate 40:1 as eluent. Yield: 87 %. Colorless oil. $[\alpha]_D^{25} = + 1.0$ (c = 1.0, CH₂Cl₂). ¹H-NMR (δ): 0.88-1.18 (m, 4H); 0.93 (s, 3H); 0.95 (d, 3H, J = 6.5 Hz); 1.20 (s, 3H); 1.42 (s, 6H); 1.44-1.59 (m, 2H); 1.53 (s, 3H); 1.69 (m, 1H); 1.96 (m, 1H); 3.08 (dd, 1H, $J_1 = 17.5$ Hz, $J_2 = 6.4$ Hz); 3.28 (s, 1H); 3.52-3.63 (m, 2H); 4.20 (m, 1H); 4.89 (s, 1H); 7.17 (m, 1H); 7.20-7.30 (m, 2H); 7.41-7.44 (m, 2H). ¹³C-NMR (δ): 17.5 (CH₃); 22.2 (CH₃); 22.3 (CH₃) 24.9 (CH₂); 25.4 (CH₃); 26.0 (CH₃); 31.3 (CH); 32.5 (CH₃); 35.1 (CH₂); 40.8 (CH₂); 41.5 (CH₂); 45.0 (CH); 57.0 (C); 74.9 (C); 77.4 (CH); 90.3 (CH); 125.3 (2 CH); 125.6 (CH); 126.3 (C); 127.0 (2 CH); 128.9 (CH); 145.0 (C). IR (Film): 3500; 1590; 745; 690; 645 cm⁻¹. Anal. Calcd. for C₂₄H₃₇NO₂: C, 77.58; H, 10.04; N, 3.77. Found: C, 77.66; H, 9.97; N, 3.86.

General Procedure for Reductive Deselenylation of Compounds 5a-d, 5f, 5g, 6a-e, 6g, 6h, 7e, 7h and 8h. A mixture of AIBN (33 mg, 0.2 mmol), triphenyltin hydride (0.9 g, 2.6 mmol) and degassed toluene (15 mL) was added dropwise to a refluxing solution of the appropriated selenylated compound (1.7 mmol) in degassed toluene (15 mL) under argon atmosphere. The mixture was refluxed until disappearance of the starting product (TLC, 1-5 h). The solvent was removed *in vacuo* and the residue was chromatographed on silica gel using hexanes/AcOEt as eluent.

(1S,3S,6aS,9R,10aR,11aS)-1-Phenyl-3,6,6,9-tetramethyl-decahydro-3H,7H-

[1,4]oxazino[3,4-*b*][1,3]benzoxazine (9a). Yield: 95%. Colorless oil. $[\alpha]_D^{25} = -45.2$ (c = 0.5, CH₂Cl₂). ¹H-NMR (δ): 0.87-1.03 (m, 2H); 0.91 (d, 3H, *J* = 6.5 Hz); 1.12 (s, 3H); 1.16 (s, 3H); 1.21 (d, 3H, *J* = 6.4 Hz); 1.32-1.56 (m, 3H); 1.61 (m, 1H); 1.72 (m, 1H); 1.90 (m, 1H); 2.63 (dd, 1H, *J*₁ = 10.9 Hz, *J*₂ = 3.0 Hz); 2.87 (dd, 1H, *J*₁ = 10.9 Hz, *J*₂ = 7.7 Hz); 3.45 (td, 1H, *J*₁ = 10.5 Hz, *J*₂ = 4.2 Hz); 3.82 (dqd, 1H, *J*₁ = 7.7 Hz, *J*₂ = 6.4 Hz, *J*₃ = 3.0 Hz); 4.71 (s, 2H); 7.21-7.31 (m, 3H); 7.50-7.54 (m, 2H). ¹³C-NMR (δ):

18.2 (CH₃); 18.3 (CH₃); 22.2 (CH₃); 25.1 (CH₂); 26.2 (CH₃); 31.3 (CH); 34.9 (CH₂); 41.2 (CH₂); 45.3 (CH); 46.5 (CH₂); 55.5 (C); 66.4 (CH); 75.7 (CH); 76.1 (CH); 82 8 (CH); 127.3 (CH); 127.9 (2 CH); 128.2 (2 CH); 139.2 (C). IR (Film): 3040, 3020, 1590, 730, 700, 690 cm⁻¹. Anal. Calcd. for $C_{21}H_{31}NO_2$: C, 76.55; H, 9.48; N, 4.25. Found: C, 76.68; H, 9.32; N, 4.37.

(1S,3S,6aS,9R,10aR,11aS)-1-Phenyl-3-ethyl-6,6,9-trimethyl-decahydro-3H,7H-

[1,4]oxazino[3,4-*b***][1,3]benzoxazine (9b).** Yield: 92%. Colorless oil. $[α]_D^{25} = -5.4$ (c = 1.3, CH₂Cl₂). ¹H-NMR (δ): 0.88 (t, 3H, *J* = 7.5 Hz); 0.86-1.01 (m, 2H); 0.90 (d, 3H, *J* = 6.5 Hz); 1.11 (s, 3H); 1.15 (s, 3H); 1.20-1.83 (7H, m); 1.88 (m, 1H); 2.64 (dd, 1H, *J*₁ = 11.0 Hz, *J*₂ = 3.1 Hz); 2.90 (dd, 1H, *J*₁ = 11.0 Hz, *J*₂ = 7.2 Hz); 3.43 (td, 1H, *J*₁ = 10.6 Hz, *J*₂ = 4.1 Hz); 3.54 (m, 1H); 4.67 (s, 2H); 7.15-7.38 (m, 3H); 7.49-7.53 (m, 2H). ¹³C-NMR (δ): 10.0 (CH₃); 17.6 (CH₃); 22.2 (CH₃), 24.9 (CH₂); 25.0 (CH₂); 26.2 (CH₃); 31.3 (CH); 34.9 (CH₂); 41.2 (CH₂); 44.8 (CH₂); 45.7 (CH); 55.5 (C); 72.1 (CH); 75.6 (CH); 75.7 (CH); 83.3 (CH); 127.3 (CH); 127.9 (2 CH); 128 (2 CH); 139.5 (C). IR (Film): 3040, 3060, 1595, 755,725, 695 cm⁻¹. Anal. Calcd. for C₂₂H₃₃NO₂: C, 76.92; H, 9.68; N, 4.08. Found: C, 77.06; H, 9.79; N, 3.94.

(1S,6aS,9R,10aR,11aS)-1-Phenyl-3,3,6,6,9-pentamethyl-decahydro-3H,7H-

[1,4]oxazino[3,4-*b***][1,3]benzoxazine (9c).** Yield: 96% from **5c**, 93% from **6c**. Colorless solid. Mp:115-116 °C (from ethanol). $[\alpha]_D^{25} = -11.5$ (c = 1.6, CH₂Cl₂). ¹H-NMR (δ): 0.83-0.99 (m, 2H); 0.85 (d, 3H, J = 6.5 Hz); 0.85 (s, 3H); 1.02 (m, 1H); 1.11 (s, 3H); 1.26 (s, 3H); 1.27-1.45 (m, 2H); 1.48 (s, 3H); 1.61-1.70 (m, 2H); 1.78 (m, 1H); 2.35 (d, 1H, J = 11.5 Hz); 2.69 (d, 1H, J = 11.5 Hz); 3.12 (dt, 1H, $J_1 = 10.6$ Hz, $J_2 = 4.2$ Hz); 3.75 (d, 1H, J = 7.8 Hz); 4.46 (d, 1H, J = 7.8 Hz); 7.24-7.32 (m, 3H); 7.43-7.46 (m, 2H). ¹³C-NMR (δ): 11.4 (CH₃); 21.7 (CH₃); 22.1 (CH₃); 25.0 (CH₂); 25.8 (CH₃); 28.3 (CH₃); 31.0 (CH); 34.6 (CH₂); 40.9 (CH₂); 49.7 (CH); 52.3 (CH₂); 54.9 (C); 71.9 (C);

73.7 (CH); 75.8 (CH); 87.6 (CH); 127.4 (CH); 127.6 (2 CH); 128.0 (2 CH); 140.2 (C). IR (Nujol): 3020, 1595, 745, 690 cm⁻¹. Anal. Calcd. for C₂₂H₃₃NO₂: C, 76.92; H, 9.68; N, 4.08. Found: C, 76.83; H, 9.57; N, 4.18.

(1'S,6'aS,9'R,10'aR,11'aS)-1'-Phenyl-6',6',9'-trimethyl-decahydro-3'H,7'H-

spiro[cyclohexane-1,3'-[1,4]oxazino[3,4-*b*][1,3]benzoxazine] (9d). Yield: 90% from 5d, 88% from 6d. Colorless oil. $[\alpha]_D^{25} = -8.7$ (c = 0.6, CH₂Cl₂). ¹H-NMR (δ): 0.80-1.08 (m, 3H); 0.86 (d, 3H, *J* = 6.4 Hz); 0.87 (s, 3H); 1.11 (s, 3H); 1.25-1.82 (m, 14H); 2.16 (m, 1H); 2.20 (d, 1H, *J* = 10.7 Hz); 2.88 (d, 1H, *J* = 10.7 Hz); 3.12 (td, 1H, *J*₁ = 10.5 Hz, *J*₂ = 4.5 Hz); 3.75 (d, 1H, *J* = 7.8 Hz); 4.45 (d, 1H, *J* = 7.8 Hz); 7.21-7.34 (m, 3H); 7.42-7.50 (m, 2H). ¹³C-NMR (δ): 11.4 (CH₃); 21.8 (CH₂); 22.1 (CH₂, CH₃); 25.0 (CH₂); 25.8 (CH₃); 26.3 (CH₂); 29.6 (CH₂); 30.9 (CH); 34.6 (CH₂); 37.2 (CH₂); 40.9 (CH₂); 49.7 (CH); 50.5 (CH₂); 54.9 (C); 72.6 (C); 73.8 (CH); 74.3 (CH); 87.8 (CH); 127.2 (CH); 127.5 (2 CH); 127.9 (2 CH); 140.6 (C). IR (Film): 3020, 750, 740, 690 cm⁻¹. Anal. Calcd. for C₂₅H₃₇NO₂: C, 78.28; H, 9.72; N, 3.65. Found: C, 78.39; H, 9.65; N, 3.80.

(1S,3S,6aS,9R,10aR,11aS)-3-Isopropyl-1-phenyl-1,6,6,9-tetramethyl-decahydro-

3H,7H-[1,4]oxazino[3,4-*b***][1,3]benzoxazine (9f).** Yield: 91%. Colorless oil. $[\alpha]_D^{25} = -144.1$ (c = 0.5, CH₂Cl₂). ¹H-NMR (δ): 0.79 (d, 3H, J = 6.7 Hz); 0.86-1.08 (m, 2H); 0.93 (d, 3H, J = 6.5 Hz); 1.06 (d, 3H, J = 6.1 Hz); 1.07 (s, 3H); 1.19 (m, 1H); 1.31 (s, 3H); 1.39 (s, 3H); 1.45-1.62 (m, 3H); 1.64-1.80 (m, 2H); 1.98 (m, 1H); 2.58 (dd, 1H, $J_1 = 10.4$ Hz, $J_2 = 2.5$ Hz); 2.84 (t, 1H, J = 10.4 Hz); 3.05 (ddd, 1H, $J_1 = 10.8$ Hz, $J_2 = 10.4$ Hz, $J_3 = 2.5$ Hz); 3.58 (td, 1H, $J_1 = 10.5$ Hz, $J_2 = 4.0$ Hz); 5.10 (s, 1H); 7.21 (m, 1H); 7.24-7.32 (m, 2H); 7.33-7.42 (m, 2H). ¹³C-NMR (δ): 18.6 (CH₃); 19.4 (CH₃); 21.4 (CH₃); 22.3 (CH₃); 25.2 (CH₂); 26.4 (CH₃); 29.3 (CH₃); 31.5 (CH); 31.7 (CH); 35.1 (CH₂); 41.3 (CH₂); 42.5 (CH₂); 43.4 (CH); 56.3 (C); 75.5 (CH); 77.2 (CH); 77.3 (C); 82.5 (CH); 125.9 (2 CH); 126.3 (CH); 128.0 (2 CH); 145.5 (C). IR (Film): 3040, 3060,

1600, 1370, 770, 700, 670 cm⁻¹. Anal. Calcd. for C₂₄H₃₇NO₂: C, 77.58; H, 10.04; N, 3.77. Found: C, 77.71; H, 10.18; N, 3.65.

(3S,6aS,9R,10aR,11aS)-3,6,6,9-tetramethyl-decahydro-3H,7H-[1,4]oxazino[3,4-

b][1,3]benzoxazine (9g). Yield: 92%. Colorless solid. Mp: 104-105 °C (from ethanol). $[\alpha]_{D}^{25} = -62.8 (c = 0.8, CH_{2}Cl_{2}).$ ¹H-NMR (δ): 0.79-0.92 (m, 2H); 0.84 (d, 3H, J = 6.5Hz); 1.02 (s, 3H); 1.13 (m, 1H); 1.10 (s, 3H); 1.11 (d, 3H, J = 6.2 Hz); 1.33-1.53 (m, 3H); 1.62 (m, 1H); 1.86 (m, 1H); 2.50 (dd, 1H, $J_{1} = 10.5$ Hz, $J_{2} = 2.3$ Hz); 2.76 (t, 1H, J = 10.5 Hz); 3.41 (td, 1H, $J_{1} = 10.5$ Hz, $J_{2} = 4.0$ Hz); 3.54 (dd, 1H, $J_{1} = 11.8$ Hz, $J_{2} = 1.6$ Hz); 3.55 (m, 1H); 3.80 (dd, 1H, $J_{1} = 11.8$ Hz, $J_{2} = 1.6$ Hz); 4.44 (t, 1H, J = 1.6 Hz). ¹³C-NMR (δ): 19.2 (CH₃); 21.2 (CH₃); 22.2 (CH₃); 25.0 (CH₂); 26.2 (CH₃); 31.3 (CH); 34.9 (CH₂); 41.2 (CH₂); 43.1 (CH); 46.7 (CH₂); 55.5 (C); 69.9 (CH₂); 72.3 (CH); 76.1 (CH); 79.5 (CH). IR (Nujol): 920, 880, 780, 735, 680 cm⁻¹. Anal. Calcd. for C₁₅H₂₇NO₂: C, 71.10; H, 10.74; N, 5.53. Found: C, 71.24; H, 10.66; N, 5.60.

(3S,6aS,9R,10aR,11aS)-3-Isopropyl-6,6,9-trimethyl-decahydro-3H,7H-

[1,4]oxazino[3,4-*b*][1,3]benzoxazine (9h). Yield: 90%. Colorless oil. $[\alpha]_D^{25} = -13.3$ (c = 0.9, CH₂Cl₂). ¹H-NMR (δ): 0.86-1.01 (m, 2H); 0.90 (d, 3H, J = 6.5 Hz); 0.96 (d, 3H, J = 6.7 Hz); 1.01 (d, 3H, J = 6.7 Hz); 1.11 (s, 3H); 1.12 (m, 1H); 1.20 (s, 3H); 1.39-1.59 (m, 3H); 1.62-1.81 (m, 2H); 1.90 (m, 1H); 2.70 (dd, 1H J₁ = 10.7 Hz, J₂ = 2.5 Hz); 2.84 (dd, 1H, J₁ = 10.7 Hz, J₂ = 10.1 Hz); 3.13 (ddd, 1H, J₁ = 10.1 Hz, J₂ = 7.6 Hz, J₃ = 2.5 Hz); 3.50 (td, 1H, J₁ = 10.3 Hz, J₂ = 4.0 Hz); 3.59 (dd, 1H, J₁ = 11.9 Hz, J₂ = 2.0 Hz); 3.90 (dd, 1H, J₁ = 11.9 Hz, J₂ = 1.6 Hz); 4.52 (dd, 1H, J₁ = 2.0 Hz, J₂ = 1.6 Hz). ¹³C-NMR (δ): 18.6 (CH₃); 18.9 (CH₃); 21.2 (CH₃); 22.2 (CH₃); 25.1 (CH₂); 26.2 (CH₃); 31.3 (2 CH); 35.0 (CH₂); 41.3 (CH₂); 43.1 (CH₂); 43.2 (CH); 55.7 (C); 70.0 (CH₂); 76.1 (CH); 79.8 (CH); 81.5 (CH). IR (Film): 2910, 2820, 1445, 720 cm⁻¹. Anal. Calcd. for C₁₇H₃₁NO₂: C, 72.55; H, 11.10; N, 4.98. Found: C, 72. 67; H, 11.23; N, 5.14.

(1S,3R,6aS,9R,10aR,11aS)-1-phenyl-3,6,6,9-tetramethyl-decahydro-3H,7H-

[1,4]oxazino[3,4-*b*][1,3]benzoxazine (10a). Yield: 94%. Colorless oil. $[\alpha]_D^{25} = -33.8$ (c= 0.7, CH₂Cl₂). ¹H-NMR (δ): 0.82-0.98 (m, 2H); 0.85 (d, 3H, *J* = 6.4 Hz); 0.92 (s, 3H); 1.00 (m, 1H); 1.16 (s, 3H); 1.22 (d, 3H, *J* = 6.2 Hz); 1.23-1.41 (m, 2H); 1.51-1.78 (m, 3H); 2.28 (dd, 1H, *J*₁ = 11.5 Hz, *J*₂ = 10.3 Hz); 2.91 (dd, 1H, *J*₁ = 11.5 Hz, *J*₂ = 1.9 Hz); 3.15 (td, 1H, *J*₁ = 10.5 Hz, *J*₂ = 4.1 Hz); 3.83 (d, 1H, *J* = 7.7 Hz); 3.91 (dqd, 1H, *J*₁ = 10.3 Hz, *J*₂ = 6.2 Hz, *J*₃ = 1.9 Hz); 4.29 (d, 1H, *J* = 7.7 Hz); 7.20-7.32 (m, 3H); 7.40-7.47 (m, 2H). ¹³C-NMR (δ): 11.3 (CH₃); 19.1 (CH₃); 22.1 (CH₃); 25.0 (CH₂); 25.6 (CH₃); 31.1 (CH); 34.7 (CH₂); 41.0 (CH₂); 49.2 (CH₂); 50.0 (CH); 55.6 (C); 72.3 (CH); 74.3 (CH); 81.1 (CH); 86.3 (CH); 127.6 (CH); 127.7 (2 CH); 127.9 (2 CH); 139.6 (C). IR (Film): 3020, 3040, 750, 690 cm⁻¹. Anal. Calcd. for C₂₁H₃₁NO₂: C, 76.55; H, 9.48; N, 4.25. Found: C, 76.66; H, 9.39; N, 4.40.

(1S,3R,6aS,9R,10aR,11aS)-1-phenyl-3-ethyl-6,6,9-trimethyl-decahydro-3H,7H-

[1,4]oxazino[3,4-*b***][1,3]benzoxazine (10b).** Yield: 90%. Colorless solid. Mp: 69-70 °C (from ethanol). $[α]_{D}^{25} = -3.4$ (c = 1.5, CH₂Cl₂). ¹H-NMR (δ): 0.85-1.05 (m, 3H); 0.86 (d, 3H, J = 6.5 Hz); 0.92 (s, 3H); 0.96 (t, 3H, J = 7.3 Hz); 1.17 (s, 3H); 1.19-1.70 (m, 7H); 2.27 (t, 1H, J = 10.3 Hz); 2.94 (dd, 1H, $J_1 = 10.3$ Hz, $J_2 = 2.5$ Hz); 3.16 (td, 1H, $J_1 = 10.5$ Hz, $J_2 = 3.9$ Hz); 3.65 (m, 1H); 3.82 (d, 1H, J = 7.8 Hz); 4.27 (d, 1H, J = 7.8 Hz); 7.14-7.28 (m, 3H); 7.38-7.42 (m, 2H). ¹³C-NMR (δ): 10.0 (CH₃); 11.3 (CH₃); 22.1 (CH₃); 24.9 (CH₂); 25.6 (CH₃); 26.6 (CH₂); 31.0 (CH); 34.6 (CH₂); 41.0 (CH₂); 47.3 (CH₂); 50.0 (CH); 55.6 (C); 74.2 (CH); 77.3 (CH); 80.8 (CH); 86.6 (CH); 127.4 (CH); 127.5 (2 CH); 127.8 (2 CH); 139.7 (C). IR (Nujol): 3040, 3020, 1600, 760, 730, 690 cm⁻¹. Anal. Calcd. for C₂₂H₃₃NO₂: C, 76.92; H, 9.68; N, 4.08. Found: C, 76.89; H, 9.80; N, 4.20.

(1S,3R,6aS,9R,10aR,11aS)-3-Isopropyl-1-phenyl-3-6,6,9-trimethyl-decahydro-

3H,7*H*-[1,4]oxazino[3,4-*b*][1,3]benzoxazine (10e). Yield: 89%. Colorless solid. Mp: 78-79 °C. (from ethanol). [α]_D²⁵ = -16.1 (c = 1.0; CH₂Cl₂). ¹H-NMR (δ): 0.87-1.10 (m, 3H); 0.92 (d, 3H, J = 6.5 Hz); 0.97 (s, 3H); 1.01 (d, 3H, J = 6.9 Hz); 1.04 (d, 3H, J = 6.9 Hz); 1.22 (s, 3H); 1.28-1.46 (m, 3H); 1.62-1.85 (m, 3H); 2.31 (dd, 1H, $J_1 = 11.0$ Hz, $J_2 = 10.6$ Hz); 2.96 (dd, 1H, $J_1 = 11.0$ Hz, $J_2 = 1.8$ Hz); 3.16 (td, 1H, $J_1 = 10.6$ Hz, $J_2 = 4.1$ Hz); 3.48 (ddd, 1H, $J_1 = 10.6$ Hz, $J_2 = 6.1$ Hz, $J_3 = 1.8$ Hz); 3.77 (d, 1H, J = 7.8 Hz); 4.26 (d, 1H, J = 7.8 Hz); 7.26-7.34 (m, 3H); 7.43-7.51 (m, 2H). ¹³C-NMR (δ): 11.3 (CH₃); 18.7 (2 CH₃); 22.1 (CH₃); 25.0 (CH₂); 25.5 (CH₃); 31.0 (CH); 31.4 (CH); 34.6 (CH₂); 41.0 (CH₂); 44.8 (CH₂); 50.0 (CH); 55.8 (C); 74.2 (CH); 80.5 (CH); 80.6 (CH); 86.7 (CH); 127.3 (CH); 127.5 (2 CH); 127.8 (2 CH); 140.0 (C). IR (Nujol): 3020, 3040, 1595, 750, 730, 695 cm⁻¹. Anal. Calcd. for C₂₃H₃₅NO₂: C, 77.27; H, 9.87; N, 3.92. Found: C, 77.40; H, 10.0; N, 3.81.

(3R,6aS,9R,10aR,11aS)-3,6,6,9-Tetramethyl-decahydro-3H,7H-[1,4]oxazino[3,4-

b][1,3]benzoxazine (10g). Yield: 92%. Colorless oil. $[\alpha]_D^{25} = +7.3$ (c = 0.9; CH₂Cl₂). ¹H-NMR (δ): 0.84-1.12 (m, 3H); 0.92 (d, 3H, J = 6.6 Hz); 0.93 (s, 3H); 1.12 (s, 3H); 1.15 (d, 3H, J = 6.2 Hz); 1.40 (m, 1H); 1.52 (m, 1H); 1.64-1.78 (m, 2H); 1.91 (m, 1H); 2.11 (dd, 1H, $J_1 = 11.5$ Hz, $J_2 = 10.0$ Hz); 2.82 (dd, 1H, $J_1 = 11.5$ Hz, $J_2 = 2.0$ Hz); 3.33 (dd, 1H, $J_1 = 10.8$ Hz, $J_2 = 8.8$ Hz); 3.38 (td, 1H, $J_1 = 10.6$ Hz, $J_2 = 4.2$ Hz); 3.69 (dqd, 1H, $J_1 = 10.0$ Hz, $J_2 = 6.2$ Hz, $J_3 = 2.0$ Hz); 3.83 (dd, 1H, $J_1 = 10.8$ Hz, $J_2 = 3.8$ Hz); 4.06 (dd, 1H $J_1 = 8.8$ Hz, $J_2 = 3.8$ Hz). ¹³C-NMR (δ): 11.1 (CH₃); 18.8 (CH₃); 22.0 (CH₃); 24.8 (CH₂); 25.2 (CH₃); 31.0 (CH); 34.5 (CH₂); 41.0 (CH₂); 48.8 (CH₂); 50.0 (CH); 55.1 (C); 69.6 (CH₂); 72.5 (CH); 74.3 (CH); 81.2 (CH). IR (Film): 2930, 2665, 1455, 770, 730 cm⁻¹. Anal. Calcd. for C₁₅H₂₇NO₂: C, 71.10; H, 10.74; N, 5.53. Found: C, 71.23; H, 10.60; N, 5.45.

(,3R,6aS,9R,10aR,11aS)-3-Isopropyl-6,6,9-trimethyl-decahydro-3H,7H-

[1,4]oxazino[3,4-*b***][1,3]benzoxazine (10h).** Yield: 85%. Colorless oil. $[α]_D^{25} = +12.3$ (c = 1.0, CH₂Cl₂). ¹H-NMR (δ): 0.82-1.06 (m, 3H); 0.86 (d, 3H, *J* = 6.6 Hz); 0.88 (d, 3H, *J* = 6.7 Hz); 0.89 (s, 3H); 0.91 (d, 3H, J = 6.7 H); 1.08 (s, 3H); 1.25-1.47 (m, 2H); 1.57-1.71 (m, 3H); 1.87 (m, 1H); 2.10 (dd, 1H, J₁ = 11.3 Hz, J₂ = 10.3 Hz); 2.84 (dd, 1H, J₁ = 11.3 Hz, J₂ = 2.0 Hz); 3.19 (m,1H); 3.23 (dd, 1H, J₁ = 10.7 Hz, J₂ = 8.8 Hz); 3.33 (td, 1H, J₁ = 10.4 Hz, J₂ = 4.1 Hz); 3.81 (dd, 1H J₁ = 10.7 Hz, J₂ = 3.7 Hz); 3.99 (dd, 1H J₁ = 8.8 Hz, J₂ = 3.7 Hz). ¹³C-NMR (δ): 11.2 (CH₃); 18.6 (CH₃); 18.8 (CH₃); 22.0 (CH₃); 24.8 (CH₂); 25.2 (CH₃); 31.0 (CH); 31.1 (CH); 34.5 (CH₂); 41.1 (CH₂); 44.7 (CH₂); 50.1 (CH); 55.2 (C); 69.7 (CH₂); 74.2 (CH); 81.4 (CH); 81.5 (CH). IR (Film): 2920, 1450, 725 cm⁻¹. Anal. Calcd. for C₁₇H₃₁NO₂: C, 72.55; H, 11.10; N, 4.98. Found: C, 72.46; H, 11.23; N, 5.12.

(1S,7aS,10R,11aR,12aS)-1-Phenyl-3,3,7,7,10-pentamethyl-decahydro-3H,7H-

[1,4]oxazepino[3,4-*b*][1,3]benzoxazine (11e). Yield: 40%. Colorless oil. $[\alpha]_D^{25} = -28.5$ (c = 0.8, CH₂Cl₂). ¹H-NMR (δ): 0.80-0.96 (m, 3H); 0.81 (d, 3H, *J* = 6.5 Hz, CH₃); 0.98 (s, 3H, CH₃); 1.17 (s, 3H, CH₃); 1.18 (s, 3H, CH₃); 1.20-1.33 (m, 3H); 1.22 (s, 3H, CH₃); 1.51-1.68 (m, 2H); 1.82 (dd, 1H, *J*₁ = 14.9 Hz, *J*₂ = 8.1 Hz); 2.00 (dd, 1H, *J*₁ = 14.9 Hz, *J*₂ = 8.6 Hz); 2.63 (dd, 1H, *J*₁ = 13.2 Hz, *J*₂ = 8.6 Hz); 2.94 (dd, 1H, *J*₁ = 13.2 Hz, *J*₂ = 8.1 Hz); 3.12 (td, 1H, *J*₁ = 10.6 Hz, *J*₂ = 4.2 Hz); 4.10 (d, 1H, *J* = 7.7 Hz); 4.50 (d, 1H, *J* = 7.7 Hz); 7.18-7.30 (m, 3H); 7.32-7.39 (m, 2H). ¹³C-NMR (δ): 13.3 (CH₃); 22.0 (CH₃); 25.3 (CH₂); 26.0 (CH₃); 26.8 (CH₃); 29.2 (CH₃); 31.0 (CH); 34.8 (CH₂); 37.6 (CH₂); 40.8 (CH₂); 42.1 (CH₂); 49.6 (CH); 57.4 (C); 74.4 (CH); 75.2 (CH); 76.0 (C); 89.7 (CH); 126.6 (CH); 127.4 (2 CH); 127.5 (2 CH); 142.1 (C). IR (Film): 3020, 3040, 1590, 750, 725, 700, 690 cm⁻¹. Anal. Calcd. for C₂₃H₃₅NO₂: C, 77.27; H, 9.87; N, 3.92. Found: C, 77.36; H, 9.72; N, 4.04.

(7aS,10R,11aR,12aS)-3,3,7,7,10-Pentamethyl-decahydro-3H,7H-

[1,4]oxazepino[3,4-*b***][1,3]benzoxazine** (**11h**). Yield: 72% from **7h**, 82% from **8h**. Colorless oil. $[\alpha]_D^{25} = -2.9$ (c = 0.9, CH₂Cl₂). ¹H-NMR (δ): 0.80-0.95 (m, 2H); 0.91 (d, 3H, *J* = 6.5 Hz); 0.95 (s, 3H); 1.04 (m, 1H); 1.13 (s, 3H); 1.16 (s, 3H); 1.17 (s, 3H); 1.24-1.49 (m, 2H); 1.68-1.79 (m, 3H); 1.88-1.96 (m, 2H); 2.39 (dd, 1H, *J*₁ = 13.3 Hz, *J*₂ = 8.7 Hz); 2.84 (dd, 1H, *J*₁ = 13.3 Hz, *J*₂ = 8.3 Hz); 3.37 (dt, 1H, *J*₁ = 10.4 Hz, *J*₂ = 4.2 Hz); 3.53 (dd, 1H, *J*₁ = 13.2 Hz, *J*₂ = 3.1 Hz); 3.60 (dd, 1H, *J*₁ = 13.2 Hz, *J*₂ = 7.5 Hz); 4.13 (dd, 1H, *J*₁ = 7.5Hz, *J*₂ = 3.1 Hz). ¹³C-NMR (δ): 12.9 (CH₃); 22.0 (CH₃); 25.1 (CH₂); 26.4 (CH₃); 26.6 (CH₃); 28.3 (CH₃); 31.0 (CH); 34.6 (CH₂); 37.2 (CH₂); 41.1 (CH₂); 41.5 (CH₂); 49.4 (CH); 56.5 (C); 66.2 (CH₂); 74.3 (C); 75.2 (CH); 86.3 (CH). IR (Film): 2905, 1450, 880, 735 cm⁻¹. Anal. Calcd. for C₁₇H₃₁NO₂: C, 72.55; H, 11.10; N, 4.98. Found: C, 72.99; H, 10.99; N,5.09 .

General Method for 1,3-Oxazine Ring Opening by Aluminum Hydride. To a suspension of LiAlH₄ (0.57 g, 15.0 mmol) in anhydrous THF (25 mL) cooled to -10 °C and under nitrogen atmosphere was added, in portions, dry AlCl₃ (0.67 g, 5.0 mmol). The mixture was stirred for 15 min at -15 °C and a solution of the corresponding benzoxazine (1.5 mmol) in dry THF (15 mL) was slowly added. The reaction mixture was stirred for 30-60 min at 0 °C (TLC) and quenched by addition of 10 % aqueous solution of NaOH (1.5 mL). The resulting mixture was filtered, the solid was washed with hot EtOAc, an the organic layer was dried over anhydrous MgSO₄. The solvent was eliminated under reduced pressure, and the residue was chromatographed on silica gel using hexanes/EtOAc as eluent. Additional reflux for 25 min was necessary for reduction of oxazine **5d**.

(2S,6S)-7,7-Dimethyl-4-(8-mentholyl)-2-phenyl-6-phenylselenyl-1,4-oxazepane (12). Yield: 90%. Colorless solid. Mp: 138-139 °C (from hexane-ethyl acetate). $[\alpha]_D^{25} =$ +41.5 (c = 0.9, CH₂Cl₂). ¹H-NMR (333 K) (δ): 0.68-0.97 (m, 3H); 0.72 (s, 3H); 0.80 (s, 3H); 0.84 (d, 3H, *J* = 6.5 Hz); 1.28-1.47 (m, 2H); 1.31 (s, 3H); 1.53-1.60 (m, 2H); 1.61 (s, 3H); 1.91 (m, 1H); 2.75 (dd, 1H, *J*₁ = 11.3 Hz, *J*₂ = 4.4 Hz); 3.10 (dd, 1H, *J*₁ = 14.8 Hz, *J*₂ = 10.8 Hz); 3.17 (dd, 1H, *J*₁ = 11.3 Hz, *J*₂ = 10.1 Hz); 3.27 (dd, 1H, *J*₁ = 14.8 Hz, *J*₂ = 2.7 Hz); 3.40 (dd, 1H, *J*₁ = 10.8 Hz, *J*₂ = 2.7 Hz); 3.48 (td, 1H, *J*₁ = 10.4 Hz, *J*₂ = 4.0 Hz); 4.87 (dd, 1H, *J*₁ = 10.1 Hz, *J*₂ = 4.4 Hz); 7.165 (broad s, 1H); 7.21-7.41 (m, 8H); 7.63-7.67 (m, 2H). ¹³C-NMR (333 K) (δ): 19.7 (CH₃); 20.9 (CH₃); 21.4 (CH₃); 21.9 (CH₃); 26.1 (CH₂); 31.0 (CH₃); 31.2 (CH); 35.0 (CH₂); 44.2 (CH₂); 46.7 (CH); 48.9 (CH₂); 54.8 (CH₂); 58.4 (CH); 61.7 (C); 71.9 (CH); 72.6 (CH); 77.1 (C); 126.0 (2 CH); 127.1 (CH); 127.8 (CH); 128.1 (2 CH); 129.0 (2 CH); 129.3 (C); 135.5 (2 CH); 142.8 (C). IR (Nujol): 3200 (broad), 3020, 1595 cm⁻¹. Anal. Calcd. for C₂₉H₄₁NO₂Se: C, 67.69; H, 8.03; N, 2.72. Found: C, 67.83; H, 7.90; N, 2.80.

(2S,6S)-4-(8-MentholyI)-6-methyl-2-phenyl-morpholine (13a). Yield: 87%. Colorless solid. Mp: 162-163 °C (from hexane). $[\alpha]_D^{25} = -33.8$ (c = 0.7, CH₂Cl₂). ¹H-NMR (δ): 0.87-1.039 (m, 3H); 0.92 (d, 3H, *J* = 6.5 Hz); 0.93 (s, 3H); 1.15 (s, 3H); 1.41 (m, 1H); 1.42 (d, 3H, *J* = 6.8 Hz); 1.54-1.60 (m, 2H); 1.69 (m, 1H); 1.96 (m, 1H); 2.39 (m, 1H); 2.62 (dd, 1H, *J*₁ = 11.5 Hz, *J*₂ = 4.0 Hz); 2.88 (m, 1H); 2.99 (m, 1H); 3.60 (td, 1H, *J*₁ = 10.0 Hz, *J*₂ = 4.0 Hz); 4.23 (m, 1H); 4.84 (dd, 1H, *J*₁ = 9.7 Hz, *J*₂ = 2.5 Hz); 7.212-7.40 (m, 5H); 7.64 (broad s, 1H). ¹³C-NMR (δ): 16.9 (CH₃); 17.8 (CH₃); 20.6 (CH₃); 21.9 (CH₃); 25.9 (CH₂); 30.9 (CH); 35.1 (CH₂); 44.8 (CH₂); 46.7 (CH); 49.4 (CH₂); 52.2 (CH₂); 60.7 (C); 69.0 (CH); 71.8 (CH); 72.5 (CH); 126.2 (2 CH); 127.5 (CH); 128.2 (2 CH); 140.6 (C). IR (Film): 3140 (broad), 1595, 750, 690 cm⁻¹. Anal. Calcd. for C₂₁H₃₃NO₂: C, 76.09; H, 10.03; N, 4.23. Found: C, 76.22; H, 10.12; N, 4.14.

(2S)-6,6-Dimethyl-4-(8-mentholyl)-2-phenyl-morpholine (13c). Yield: 95%. Colorless solid. Mp: 138-139 °C (from hexane). $[\alpha]_{D}^{25} = -9.5$ (c = 1.1, CH₂Cl₂). ¹H- NMR (δ): 0.88 (s, 3H); 0.89-1.09 (m, 3H); 0.92 (d, 3H, J = 6.4 Hz); 1.15 (s, 3H); 1.30 (s, 3H); 1.40 (s, 3H); 1.42 (m, 1H); 1.510-1.73 (m, 3H); 1.98 (m, 1H); 2.07-2.20 (m, 2H); 2.92 (d, 1H, J = 11.3 Hz); 3.01 (d, 1H, J = 11.3 Hz); 3.62 (m, 1H); 4.75 (dd, 1H, $J_1 = 9.1$ Hz, $J_2 = 2.0$ Hz); 7.18-7.38 (m, 5H); 7.78 (broad s, 1H). ¹³C-NMR (δ): 17.7 (CH₃); 20.8 (CH₃); 21.8 (CH₃); 22.1 (CH₃); 25.9 (CH₂); 29.2 (CH₃); 30.8 (CH); 35.1 (CH₂); 44.8 (CH₂); 46.5 (CH); 52.5 (CH₂); 55.1 (CH₂); 60.7 (C); 71.9 (C); 72.5 (CH); 72.8 (CH); 126.3 (2 CH); 127.5 (CH); 128.1 (2 CH); 140.9 (C). IR (Nujol): 3170 (broad), 1595, 745, 740, 690 cm⁻¹. Anal. Calcd. for C₂₂H₃₅NO₂: C, 76.47; H, 10.21; N, 4.05. Found: C, 76.56; H, 10.09; N, 4.14.

(2S,6S)-6-Isopropyl-4-(8-mentholyl)-2-methyl-2-phenyl-morpholine

(13f). Yield: 87%. Colorless solid. Mp: 121-122 °C (from hexane). $[\alpha]_{D}^{25} = -108.8$ (c = 0.4, CH₂Cl₂). ¹H-NMR (δ): 0.86-1.1 (m, 3H); 0.91 (d, 3H, *J* = 6.8 Hz); 0.93 (d, 3H, *J* = 6.8 Hz); 0.94 (s, 3H); 1.03 (d, 3H, *J* = 6.8 Hz); 1.08 (s, 3H); 1.33 (s, 3H); 1.40 (m, 1H); 1.60-1.80 (m, 4H); 1.85 (m, 1H); 2.09 (t, 1H, *J* = 10.5 Hz); 2.27 (d, 1H, *J* = 12.1 Hz); 2.82 (ddd, 1H, *J*₁ = 10.5 Hz, *J*₂ = 2.5 Hz, *J*₃ = 1.6 Hz); 3.26 (ddd, 1H, *J*₁ = 10.5 Hz, *J*₂ = 6.5 Hz, *J*₃ = 2.5 Hz); 3.37 (td, 1H, *J*₁ = 10.4 Hz, *J*₂ = 3.9 Hz); 3.62 (dd, 1H, *J*₁ = 12.1 Hz, *J*₂ = 1.6 Hz); 6.30 (broad s, 1H); 7.14-7.38 (m, 5H). ¹³C-NMR (δ): 18.1 (CH₃); 18.4 (CH₃); 18.5 (CH₃); 20.7 (CH₃); 21.9 (CH₃); 25.8 (CH₂); 30.6 (CH); 31.6 (CH); 32.1 (CH₃); 35.0 (CH₂); 44.8 (CH₂); 46.4 (CH); 47.7 (CH₂); 52.8 (CH₂); 60.1 (C); 72.1 (CH); 75.1 (CH); 75.7 (C); 125.8 (2 CH); 126.4 (CH); 127.9 (2 CH); 142.8 (C). IR (Nujol): 3180 (broad), 1595, 780, 750, 690 cm⁻¹. Anal. Calcd. for C₂₄H₃₉NO₂: C, 77.16; H, 10.52; N, 3.75. Found: C, 77.02; H, 10.68; N, 3.84.

(2S)-4-(8-Mentholyl)-2-methyl-morpholine (13g). Yield: 90%. Colorless solid. Mp: 93-94 °C (from hexane). $[\alpha]_D^{25} = -20.4$ (c = 1.2, CH₂Cl₂). ¹H-NMR (333 K) (δ): 0.83-1.09 (m, 3H); 0.90 (d, 3H, J = 6.3 Hz); 0.91 (s, 3H); 1.12 (d, 3H, J = 6.2 Hz); 1.13 (s, 3H); 1.40 (m, 1H); 1.53-1.64 (m, 2H); 1.70 (m, 1H); 1.91 (m, 1H); 2.04 (dd, 1H, $J_1 = 11.0$ Hz, $J_2 = 10.0$ Hz); 2.28 (td, 1H, $J_1 = 11.5$ Hz, $J_2 = 3.0$ Hz); 2.85 (dd, 1H, $J_1 = 11.0$ Hz, $J_2 = 3.0$ Hz); 2.99 (m, 1H); 3.45-3.62 (m, 3H); 3.84 (dt, 1H, $J_1 = 11.5$ Hz, $J_2 = 3.0$ Hz); 7.94 (broad s, 1H). ¹³C-NMR (333 K) (δ): 18.0 (CH₃); 19.1 (CH₃); 20.4 (CH₃); 21.9 (CH₃); 25.9 (CH₂); 30.9 (CH); 35.1 (CH₂); 44.6 (CH₂); 45.3 (CH₂); 46.7 (CH); 51.8 (CH₂); 60.4 (C); 66.7 (CH₂); 72.4 (CH); 72.6 (CH). IR (Nujol): 3200 (broad), 2920, 1455 cm⁻¹. Anal. Calcd. for C₁₅H₂₉NO₂: C, 70.54; H, 11.45; N, 5.48. Found: C, 70.62; H, 11.55; N, 5.54.

(2S,6R)-4-(8-Mentholyl)-6-methyl-2-phenyl-morpholine (14a). Yield: 90%. Colorless oil. $[\alpha]_D^{25} = -40.6$ (c = 0.7, CH₂Cl₂). ¹H-NMR (333 K) (δ): 0.85-1.09 (m, 3H); 0.91 (s, 3H); 0.92 (d, 3H, J = 6.6 Hz); 1.14 (s, 3H); 1.25 (d, 3H, J = 6.2 Hz); 1.41 (m, 1H); 1.57-1.73 (m, 3H); 1.96 (m, 1H); 2.01 (dd, 1H, $J_1 = 11.3$ Hz, $J_2 = 10.4$ Hz); 2.21 (dd, 1H, $J_1 = 11.3$ Hz, $J_2 = 10.4$ Hz); 3.03 (dt, 1H, $J_1 = 11.3$ Hz, $J_2 = 2.1$ Hz); 3.10 (dt, 1H, $J_1 = 11.3$ Hz, $J_2 = 2.1$ Hz); 3.65 (1H, td, $J_1 = 10.4$ Hz, $J_2 = 4.0$ Hz); 3.79 (dqd, 1H, $J_1 = 10.4$ Hz, $J_2 = 6.2$ Hz, $J_3 = 2.1$ Hz); 4.51 (dd, 1H, $J_1 = 10.4$ Hz, $J_2 = 2.1$ Hz); 7.23-7.39 (m, 5H); 8.02 (broad s, 1H). ¹³C-NMR (333 K) (δ): 18.1 (CH₃); 19.1 (CH₃); 20.6 (CH₃); 21.8 (CH₃); 25.9 (CH₂); 30.9 (CH); 35.1 (CH₂); 44.5 (CH₂); 46.6 (CH); 51.8 (2 CH₂); 60.6 (C); 72,0 (CH); 72.5 (CH); 76.4 (CH); 126.2 (2 CH); 127.6 (CH); 128.2 (2 CH); 140.5 (C). IR (Film): 3180 (broad), 1595, 730 cm⁻¹. Anal. Calcd. for C₂₁H₃₃NO₂: C, 76.09; H, 10.03; N, 4.23. Found: C, 76.22; H, 10.04; N, 4.31.

(2S,6R)-6-Ethyl-4-(8-mentholyl)-2-phenyl-morpholine (14b). Yield: 92%. Colorless solid Mp: 124-125 °C (from hexane). $[\alpha]_D^{25} = -2.9$ (c = 0.2, CH₂Cl₂). ¹H-NMR (333 K) (δ): 0.86-1.08 (m, 3H); 0.91 (s, 3H); 0.92 (d, 3H, *J* = 6.5 Hz); 1.00 (t, 3H, *J* = 7.5 Hz); 1.14 (s, 3H); 1.38-1.71 (m, 6H); 1.94 (m, 1H); 2.03 (dd, 1H, *J*₁ = 11.0 Hz, *J*₂ = 10.4 Hz, Hz); 2.19 (dd, 1H, *J*₁ = 11.0 Hz, *J*₂ = 10.4 Hz, Hz); 3.05 (ddd, 1H, *J*₁ = 11.0 Hz, *J*₂ = 2.4

Hz, $J_3 = 1.8$ Hz); 3.10 (ddd, 1H, $J_1 = 11.0$ Hz, $J_2 = 2.4$ Hz, $J_3 = 1.8$ Hz); 3.54 (m, 1H); 3.65 (td, 1H, $J_1 = 10.3$ Hz, $J_2 = 4.2$ Hz); 4.50 (dd, 1H, $J_1 = 10.4$ Hz, $J_2 = 2.4$ Hz); 7.19-7.35 (m, 5H), 8.37 (broad s,1H). ¹³C-NMR (333 K) (δ): 9.8 (CH₃); 18.2 (CH₃); 20.7 (CH₃); 22.0 (CH₃); 25.7 (CH₂); 26.7 (CH₂); 30.9 (CH); 35.0 (CH₂); 44.4 (CH₂); 46.3 (CH); 49.9 (CH₂); 52.1 (CH₂); 60.6 (C); 72.5 (CH); 76.5 (CH); 78.6 (CH); 126.1 (2 CH); 127.6 (CH); 128.2 (2 CH); 140.5(C). IR (Nujol): 3150 (broad), 760, 750, 700, 690 cm⁻¹. Anal. Calcd. for C₂₂H₃₅NO₂: C, 76.47; H, 10.21; N, 4.05. Found: C, 76.56; H, 10.32; N, 3.92.

(2S,6R)-6-Isopropyl-4-(8-mentholyl)-2-phenyl-morpholine (14e). Yield: 87%. Colorless solid. Mp: 101-102 °C (from hexane). $[\alpha]_{D}^{25} = +1.5$ (c = 0.4, CH₂Cl₂). ¹H-NMR (333 K) (δ): 0.86-1.07 (m, 3H); 0.90 (s, 3H); 0.92 (d, 3H, J = 6.5 Hz); 1.00 (d, 3H, J = 6.7 Hz; 1.02 (d, 3H, J = 6.7 Hz); 1.15 (s, 3H); 1.38-1.68 (m, 4H); 1.80 (m, 1H); 1.97 (m, 1H), 2.07 (dd, 1H, $J_1 = 11.0$ Hz, $J_2 = 10.4$ Hz, Hz); 2.15 (dd, 1H, $J_1 = 11.0$ Hz, $J_2 = 10.4$ Hz, Hz); 3.04 (dt, 1H, $J_1 = 11.0$ Hz, $J_2 = 2.3$ Hz); 3.09 (dt, 1H, $J_1 = 11.0$ Hz, $J_2 =$ = 2.3 Hz); 3.41 (ddd, 1H, J_1 = 10.4 Hz, J_2 = 5.8 Hz, J_3 = 2.3 Hz); 3.65 (td, 1H, J_1 = 10.2 Hz, $J_2 = 3.9$ Hz); 4.50 (1H, dd, $J_1 = 10.4$ Hz, $J_2 = 2.3$ Hz); 7.24-7.40 (m, 5H); 8.43 (broad s, 1H). ¹³C-NMR (333 K) (δ): 18.2 (CH₃); 18.3 (CH₃); 18.8 (CH₃); 20.8 (CH₃); 22.0 (CH₃); 25.8 (CH₂); 30.9 (CH); 31.5 (CH); 35.0 (CH₂); 44.4 (CH₂); 46.3 (CH); 47.7 (CH₂); 52.3 (CH₂); 60.7 (C); 72.5 (CH); 78.4 (CH); 80.1 (CH); 126.0 (2 CH); 127.6 (CH); 128.2 (2 CH); 140.8 (C). IR (Nujol): 3410 (broad), 1595, 735, 690 cm⁻¹. Anal. Calcd. for C₂₃H₃₇NO₂: C, 76.83; H, 10.37; N, 3.90. Found: C, 76.80; H, 10.52; N, 3.79. (2R)-4-(8-Mentholyl)-2-methyl-morpholine (14g). Yield: 90%. Cololess oil. $\left[\alpha\right]_{D}^{25} = -$ 4.9 (c = 1.4, CH₂Cl₂). ¹H-NMR (333 K) (δ): 0.78-1.05 (m, 3H); 0.84 (d, 3H, *J* = 6.5 Hz); 0.87 (s, 3H); 1.09 (d, 3H, J = 6.0 Hz); 1.10 (s, 3H); 1.31 (m, 1H); 1.49-1.72 (m, 3H); 1.85 (m, 1H); 1.92 (dd, 1H, $J_1 = 11.1$ Hz, $J_2 = 10.2$ Hz); 2.33 (td, 1H, $J_1 = 11.3$ Hz}; 2.33 (td, 1H, J_2 = 10.2 Hz); 2.33 (td, 1H, J_2 = 10.2 Hz); 2.33 (td, 1H, J_2 = 10.2 Hz); 2.33 (td, 2H, J_2 = 10.2 3.0 Hz); 2.78 (m, 1H); 2.99 (m, 1H); 3.48-3.69 (m, 3H); 3.83 (ddd 1H, $J_1 = 11.6$ Hz, $J_2 = 3.0$ Hz, $J_3 = 1.6$ Hz); 8.08 (broad s, 1H). ¹³C-NMR (333 K) (δ): 18.1 (CH₃); 19.0 (CH₃); 20.4 (CH₃); 21.8 (CH₃); 25.9 (CH₂); 30.9 (CH); 35.0 (CH₂); 44.5 (CH₂); 44.7 (CH₂); 46.4 (CH); 52.2 (CH₂); 61.0 (C); 67.1 (CH₂); 71.7 (CH); 72.3 (CH). IR (Film): 3165 (broad), 2950, 2920, 2850, 1455, 825 cm⁻¹. Anal. Calcd. for C₁₅H₂₉NO₂: C, 70.54; H, 11.45; N, 5.48. Found: C, 70.46; H, 11.60; N, 5.39.

(2R)-2-Isopropyl-4-(8-mentholyl)-morpholine (14h). Yield: 88%. Cololess oil. $[\alpha]_{D}^{25}$ = -2.5 (c = 1.0, CH₂Cl₂). ¹H-NMR (δ): 0.78-1.08 (m, 3H); 0.90 (d, 3H, *J* = 6.3 Hz); 0.91 (s, 3H); 0.93 (d, 3H, *J* = 6.6 Hz); 0.95 (d, 3H, *J* = 6.6 Hz); 1.14 (s, 3H); 1.40 (m, 1H); 1.52-1.73 (m, 4H); 1.88-2.06 (m, 2H); 2.37 (td, 1H, td, 1H, *J*₁ = 10.8 Hz, *J*₂ = 2.8 Hz); 2.80 (m, 1H); 3.06 (m, 1H); 3.17 (m, 1H); 3.41-3.65 (m, 2H); 3.92 (ddd, 1H, *J*₁ = 11.3 Hz, *J*₂ = 2.8 Hz, *J*₃ = 1.5 Hz); 8.33 (s, 1H). ¹³C-NMR (δ): 18.0 (2 CH₃); 18.6 (CH₃); 20.6 (CH₃); 21.9 (CH₃); 25.8 (CH₂); 30.9 (CH); 31.2 (CH); 35.1 (CH₂); 44.6 (CH₂); 45.1 (CH₂); 46.4 (CH); 48.5 (CH₂); 60.4 (C); 67.3 (CH₂); 72.4 (CH); 80.5 (CH). IR (Film): 3185 (broad), 1450, 750 cm⁻¹. Anal. Calcd. for C₁₇H₃₃NO₂: C, 72.03; H, 11.73; N, 4.94. Found: C, 69.90; H, 11.64; N, 5.08.

(1R,2S,6'S)-4'-(8-Mentholyl)-6'-phenyl-2-phenylselenenyl-spiro[cyclohexane-1,2'morpholine] (17). Yield: 68%. Colorless oil. $[\alpha]_D^{25} = +3.2$ (c = 0.7, CH₂Cl₂). ¹H-NMR (δ): 0.85 (d, 3H, J = 6.5 Hz); 0.87-0.98 (m, 2H); 0.90 (s, 3H); 1.12-1.46 (m, 5H); 1.20 (s, 3H); 1.51-1.90 (m, 8H); 1.98 (m, 1H); 2.07 (d, 1H, J = 11.1 Hz); 2.15 (dd, 1H, $J_1 =$ 11.1 Hz, $J_2 = 10.5$ Hz); 3.13 (ddd, 1H, $J_1 = 11.1$ Hz, $J_2 = 2.4$ Hz, $J_3 = 1.4$ Hz); 3.48 (dd, 1H, $J_1 = 11.1$ Hz, $J_2 = 1.4$ Hz); 3.65 (td, 1H, $J_1 = 10.3$ Hz, $J_2 = 3.8$ Hz); 4.33 (m, 1H); 4.74 (dd, 1H, $J_1 = 10.5$ Hz, $J_2 = 2.4$ Hz); 7.25-7.43 (m, 8H); 7.90-7.98 (m, 2H); 8.10 (s, 1H). ¹³C-NMR (δ): 18.6 (CH₃); 20.0 (CH₂); 20.5 (CH₂); 21.0 (CH₃); 22.1 (CH₃); 23.9 (CH₂); 26.0 (CH₅); 31.1 (CH); 34.2 (CH₂); 35 1 (CH₂); 44.0 (CH₂); 44.9 (CH); 46.0 (CH); 52.9 (CH₂); 54.9 (CH₂); 60.6 (C); 71.6 (CH); 73.7 (CH); 74.3 (C); 126.1 (2 CH); 127.4 (CH); 127.6 (CH); 128.2 (2 CH); 128.8 (2 CH); 129.1 (C); 135.5 (2 CH); 140.8 (C). IR (Film): 3250 (broad), 3040, 1600, 1595, 745,690 cm⁻¹. Anal. Calcd. for $C_{31}H_{43}NO_2Se: C, 68.87; H, 8.02; N, 2.59$. Found: C, 68.99; H, 8.15; N, 2.51.

(2S,6S)-4-(8-Mentholyl)-2-(1-methyl-1-phenylselenenylethy)-6-phenyl-morpholine (18). Yield: 85%. Colorless oil. $[\alpha]_D^{25} = -5.0$ (c = 0.3, CH₂Cl₂). ¹H-NMR (δ): 0.87-1.18 (m, 3H); 0.93 (s, 3H); 0.95 (d, 3H, J = 6.6 Hz); 1.18 (s, 3H); 1.40 (s, 3H); 1.48 (m, 1H); 1.50 (s, 3H); 1.59-1.78 (m, 3H); 2.02 (m, 1H); 2.17 (dd, 1H, $J_1 = 11.0$ Hz, $J_2 = 10.5$ Hz); 2.31 (dd, 1H, $J_1 = 11.0$ Hz, $J_2 = 10.5$ Hz); 3.05 (m, 1H); 3.58 (dd, 1H, $J_1 = 11.0$ Hz, $J_2 =$ 1.7 Hz); 3.67-3.74 (m, 2H); 4.51 (dd,1H, $J_1 = 10.5$ Hz, $J_2 = 2.4$ Hz); 7.23-7.40 (m, 8H); 7.73-7.76 (m, 2H); 8.25 (broad s, 1H). ¹³C-NMR (δ): 18.4 (CH₃); 20.9 (CH₃); 22.1 (CH₃); 25.7 (CH₃); 25.8 (CH₂); 27.5 (CH₃); 30.9 (CH); 35.1 (CH₂); 44.6 (CH₂); 46.6 (CH); 46.8 (CH₂); 48.4 (C); 52.4 (CH₂); 60.9 (C); 72.6 (CH); 78.7 (CH); 82.1 (CH); 126.0 (2 CH); 127.2 (C); 127.6 (CH); 128.2 (2 CH); 128.6 (CH); 128.7 (2 CH); 138.6 (2 CH), 140.5 (C). IR (Film): 3120 (broad), 3040, 1600, 1570, 750, 730, 695 cm⁻¹. Anal. Calcd. for C₂₉H₄₁NO₂Se: C, 67.69; H, 8.03; N, 2.72. Found: C, 67.80; H, 8.15; N, 2.59.