N-Heterocyclic Carbene Catalyzed [8+3] Annulation of Tropone and Enals via Homoenolate

Vijay Nair, ${ }^{*}{ }^{\text {a }}$ Manojkumar Poonoth ${ }^{\text {a }}$ Sreekumar Vellalath ${ }^{\text {a }}$ Eringathodi Suresh ${ }^{\text {b }}$ and Rajasekaran Thirumalai ${ }^{\text {a }}$
${ }^{a}$ Regional Research Laboratory (CSIR), Trivandrum 695 019, India.
${ }^{b}$ Central Salt and Marine Chemicals Research Institute (CSIR), Bhavnagar 364 002, India.
E-mail: vijaynair_2001@yahoo.com
\section*{Contents}
(1) General remarks S1
(2) General experimental procedures $\mathbf{S 1}$
(3) Characterization data for compounds $\mathbf{S} 2$

(1) General remarks: All reactions were carried out in oven-dried glassware. Progress of the reaction was monitored by Thin Layer Chromatography while purification was effected by column chromatography, using silica gel (60-120 mesh). Melting points were recorded on a Buchi melting point apparatus and are uncorrected. NMR spectra were recorded at $300\left({ }^{1} \mathrm{H}\right)$ and $75\left({ }^{13} \mathrm{C}\right) \mathrm{MHz}$ respectively on a Brucker Advance DPX-300 MHz. Chemical shifts are reported in $\delta(\mathrm{ppm})$ relative to TMS $\left({ }^{1} \mathrm{H}\right)$ or $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}\right)$ as internal standards. IR spectra were recorded on Bomem MB series FT-IR spectrometer, absorbencies are reported in cm^{-1}

(2) General experimental procedures:

Typical procedure for the synthesis of bicylic δ-lactone derivative (4):- $\mathrm{KO}^{t} \mathrm{Bu}(12 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added to a suspension of the 1,3-dimesityl imidazolium chloride $\mathbf{3}(25 \mathrm{mg}, 7 \mathrm{~mol} \%)$ in 5 ml dry THF under argon atmosphere. This was followed by the addition of enals $2(0.74 \mathrm{mmol})$ and tropone $1(46 \mathrm{mg}, 0.43 \mathrm{mmol})$ and the resulting solution was stirred for 12 h at room temperature $\left(30^{\circ} \mathrm{C}\right)$. Initial yellow colour of the reaction mixture gradually changed into dark brown on completion of the reaction. The reaction mixture was then passed through a short pad of Celite ${ }^{\circledR}$. After the removal of the solvent, the residue was subjected to chromatography on a silica gel (60120 mesh) column using 95:5 hexane-ethyl acetate solvent mixture as eluent to afford 4.
(3) Characterization data

Compound 4b:

	White solid Mp. $92-93^{\circ} \mathrm{C}$. IR (KBr) $\mathrm{v}_{\text {max }} \mathbf{3 0 1 2 , 2 8 3 6 , 2 0 9 5 , 1 7 7 3 ,}$ 1649, 1606, 1512, 1249, 1177, 1125, 1027, 876, $759 \mathrm{~cm}^{-1}$. ${ }^{1}$ H NMR: $\delta 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.42-6.36(\mathrm{~m}, 1 \mathrm{H}), 6.21-6.16(\mathrm{~m}, 2 \mathrm{H}), 5.60-5.52(\mathrm{~m}, 1 \mathrm{H}), 3.79-$ $3.78(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.02-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.64(\mathrm{~m}, 3 \mathrm{H})$, ${ }^{13}$ CNMR: $\delta 167.5,158.8,139.7,132.6,129.0,128.7,128.0,127.6$,121.1, 114.3,113.7, 96.1, 55.1, 40.2, 37.1, 30.5 . HRMS for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$: calcd. $\left(\mathrm{M}^{+}\right): 268.11$, found: 268.21 .

Compound 4c:

Viscous liquid. IR (neat) \mathbf{v}.max: 3021, 2929, 2851, 1772, 1682,
$1542,1421,1338,1216,1338,1216,1138,963,876,764 \mathrm{~cm}^{-1}$.
$\mathbf{1} \mathbf{H}$ NMR: $\delta 6.43-6.38(\mathrm{~m}, 1 \mathrm{H}), 6.25-6.13(\mathrm{~m}, 2 \mathrm{H}), 5.52-5.36(\mathrm{~m}$,
$1 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 3.05-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 4 \mathrm{H}), 1.96(\mathrm{~s}$,
$2 \mathrm{H}), 1.85-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 4 \mathrm{H})$,
${ }^{\mathbf{3}} \mathbf{C N M R : ~} \delta 168.3,139.5,136.0,129.3,128.4,127.5,125.3,124$. $3,120.9,112.9,96.1,42.9,33.8,30.5,29.7,25.5$. HRMS for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}:$ calcd. $\left(\mathrm{M}^{+}\right): 242.13$, found: 242.12.

Compound 4d:

	Viscous liquid. IR (neat) $v_{\text {max }}$: 3002, 2929, 2832, 1771, 1650, $1514,1464,1344,1258,1141,1026,878,763 \mathrm{~cm}^{-1}$. ${ }^{1}$ H NMR: $\delta 6.84-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{dd}, J=2.01 \mathrm{~Hz}, J=8.22$ $\mathrm{Hz}, 1 \mathrm{H})$, 6.48-6.47 (m, 1H), 6.44-6.38 (m, 1H), 6.22-6.17 (m, 2H), 5.61-5.53 (m, 1H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.08-2.94(\mathrm{~m}, 1 \mathrm{H})$, 2.85-2.72 (m, 2H), 2.67-2.55 (m, 1H) ${ }^{13}$ CNMR: $\delta 167.7,149.5,148.5,139.9,133.3,129.3,128.9,127$. 8, 119.9, 117.2, 113.7, 111.8, 110.8, 96.3, 56.0, 40.8, 37.3, 30.7 . HRMS for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$: calcd. (M^{+}): 298.12, found: 298.01.

Compound 4e:

	Viscous liquid. IR (neat) $v_{\text {max }}$: 3021, 2946, 2862, 1772, 1686, $1548,1436,1342,1219,1143,1026,946,865,746 \mathrm{~cm}^{-1}$. ${ }^{1}$ H NMR: $\delta 7.25-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 1 \mathrm{H}), ~ 6.41-6.35(\mathrm{~m}$, $1 \mathrm{H}), 6.22-6.17(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{q}, J=6.93 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.05(\mathrm{~m}$, $1 \mathrm{H}), 2.96-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, ${ }^{13}$ CNMR: $\delta 176.3,156.2,140.6,137.0,136.0,133.8,131.0,128$. $6,127.5,124.6,119.6,117.0,96.1,38.4,36.5,35.9,19.6$. HRMS for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}$: calcd. $\left(\mathrm{M}^{+}\right): 252.12$, found: 253.07 .

Compound 4f:

	Viscous liquid. IR (neat) $v_{\text {max }}$: 3047, 2931, 2862, 1773, 1678, $1554,1448,1336,1214,1136,1024,946,862,745 \mathrm{~cm}^{-1}$. ${ }^{1}$ H NMR: $\delta 7.07(\mathrm{~d}, J=7.88 \mathrm{~Hz}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=8.04 \mathrm{~Hz}, 2 \mathrm{H})$, 6.43-6.35 (m, 1H), $6.20-6.15(\mathrm{~m}, 2 \mathrm{H}), 5.58-5.51(\mathrm{~m}, 1 \mathrm{H}), 3.79-$ $3.75(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$ ${ }^{13}$ CNMR: $\delta 167.5,139.7,137.6,136.9,129.6,129.0,128.6,127$. 6, 126.8, 121.1, 113.5, 96.1, 40.6, 37.0, 30.5, 21.0 . HRMS for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}$: calcd. $\left(\mathrm{M}^{+}\right): 252.12$, found: 253.07 .

Compound 4g:

	Viscous liquid. IR (neat) $v_{\text {max }}$: 3065, 2924, 2854, 1772, 1651, 1552, 1491, 1335, 1268, 1222, 1197, 1092, 968, 888, $737 \mathrm{~cm}^{-1}$. ${ }^{1}$ H NMR: $\delta 7.32-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.34-6.26(\mathrm{~m}, 1 \mathrm{H}), 6.05-6.02(\mathrm{~m}$, $2 \mathrm{H}), 5.92-5.90(\mathrm{~m}, 1 \mathrm{H}), 4.84-4.80(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=4.32$ $\mathrm{Hz}, J=13.77 \mathrm{~Hz}, 1 \mathrm{H}) 3.14-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.87(\mathrm{~m}, 2 \mathrm{H})$ ${ }^{13}$ CNMR: $\delta 167.8,140.5,136.1,132.4,129.9,128.8,125.9,122$. 2, 113.1, 101.8, 96.1, 48.4, 41.4, 38.1, 35.9, 29.7, 28.2 . HRMS for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClO}_{2}$: calcd. (M^{+}): 272.06, found: 270.92.

Compound 4h:

	Viscous liquid. IR (neat) $\mathrm{v}_{\mathrm{max}}$: 3016, 2939, 2836, 1773, 1649, 1600, 1491, 1344, 1263, 1121, 1047, 878, $784 \mathrm{~cm}^{-1}$. ${ }^{1}$ H NMR: $\delta 7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{dd}, J=2.31 \mathrm{~Hz}, J=8.01 \mathrm{~Hz}$ $2 \mathrm{H}), 6.67-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.43-6.37(\mathrm{~m}, 1 \mathrm{H}), 6.21-6.17(\mathrm{~m}, 2 \mathrm{H})$, $5.60-5.52(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.96-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.81(\mathrm{~m}$, $1 \mathrm{H}), 2.77-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.67(\mathrm{~m}, 1 \mathrm{H})$ ${ }^{13}$ CNMR: $\delta 160.0,142.3,139.9,130.0,129.0,128.8,127.7,121$. $2,119.8,118.5,113.2,112.8,96.1,55.0,41.0,36.9,30.6$. HRMS for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$: calcd. (M^{+}): 268.11, found: 267.97 .

NMR Studies on Homoenol Formation

A solution of the enal 1 (1.0 equiv.) and IMes-Cl 2 (1 equiv.) in CDCl_{3} was taken in an NMR tube and the ${ }^{1} \mathrm{H}$ NMR spectrum was measured (see page S 5). After the addition of 1 equiv. of DBU to the mixture, the NMR measurements were repeated at regular intervals of time (15 min), to monitor the formation of homoenol intermediate. A progressive decrease in the intensity of the signal at $\delta 9.61$ corresponding H_{a} was indicative of the consumption of enal and the formation of homoenol. (Page S6).

Compound 4a

Compound 4a

\qquad
$\angle \angle 9 \cdot 0 \varepsilon-$

$626 . \nabla 5-$

wdd

틈

Compound 4b

Compound 4b

Compound 4c

Compound 4c

\qquad

991'95

G6E.89I———

Compound 4d

Compound 4d

Compound 4e

Compound 4e

口口п

Compound $4 f$

Compound 4f

$960^{\circ} 0 \quad$

850＇12
ISS OE
810 $\angle E=$
IS9＊ 0 \qquad
$8 \angle 5^{\circ} 9 \angle$
$200^{\circ} \angle L$
$92 \nabla^{\circ} \angle L$

OLSEL
$\begin{aligned} & \text { SロI•IてI } \\ & \text { S88．92！}\end{aligned} 7-$
$\left.\begin{array}{l}6 \triangleright 9 . \angle 己 \downarrow \\ 9 \angle 9.82 \downarrow \\ 670.62!\end{array}\right]$
569 ．62よ
296．9と
听 $\angle E I-$
टEL＇6E！－

LOS $\angle 91$－
udd

Compound 4g

Compound 4g

Compound 4h

Compound 4h

$$
\text { 20I0 } 0
$$

009.0 0 _
006.98
โ90洛——
LDO G9——

LOL L己た

จ \angle b．$^{\circ} \mathrm{E}$ 「
6ટを＇こっ！
G $\angle 0.09$－
wod

