SUPPORTING INFORMATION

Single Molecule Detection of Transcription Factor Binding to DNA in Real Time: Specificity, Equilibrium and Kinetic Parameters

Eric A. Nalefski, Eugene Nebelitsky, Janice A. Lloyd, Steven R. Gullans

U.S. Genomics, 12 Gill St., Suite 4700, Woburn, MA 01801 USA

CONTENTS:

Supporting Materials and Methods

SUPPORTING MATERIALS AND METHODS

Coincident event counting and cross-correlation analysis- In coincident event counting, the following were tabulated directly from the trace files:

RedOnly \equiv fraction of bins containing ≥ 1 photon count in the Red (DNA) channel but containing 0

in the Blue (protein) channel

BlueOnly \equiv fraction of bins containing ≥ 1 photon count in the Blue channel but containing 0 in the Red channel

Blank \equiv fraction of bins containing 0 in both Red and Blue channels

CoincidentBins \equiv number of bins containing ≥ 1 photon count in both Red and Blue channels

As described (17), the number of random coincident events (RandomCoinBins) was estimated from these values as:

RandomCoincidentBins = N × RedOnly × BlueOnly / Blank

where N represents the total number of bins in the trace files. The number of non-random coincident bins (Non-RandomCoincidentBins), which represents the number of protein-DNA complexes detected, was estimated as:

Non-RandomCoincidentBins = CoincidentBins – RandomCoincidentBins

Results were normalized for run time and presented as the number of bins per second (bins/s).

Spatial cross-correlation coefficients (Φ) of data trace files were determined using a standard formula for the normalized product:

$$\boldsymbol{\Phi}(\mathbf{m}) = \frac{\sum_{i} (x_{i} - \overline{x}) (y_{i+m} - \overline{y})}{\sqrt{\sum_{i} (x_{i} - \overline{x})^{2} \sum_{i} (y_{i+m} - \overline{y})^{2}}}$$

where x_i represents the fluorescence intensity in the ith bin of the Red channel, \overline{x} the average, y_i the intensity in the ith bin of the Blue channel offset by m bins, and \overline{y} the average.