Concurrent N-H and α-C-H Bond Activations of Pyrrolidine and Piperidine under Ambient Conditions by 18e Tungsten Allyl Nitrosyl Complexes

Jenkins Y. K. Tsang, Chikako Fujita-Takayama, Miriam S. A. Buschhaus, Brian O. Patrick, and Peter Legzdins*

Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

Supporting Information

Experimental Procedures

General Methods. All reactions and subsequent manipulations involving organometallic reagents were performed under anaerobic and anhydrous conditions either under high vacuum or an inert atmosphere of prepurified dinitrogen. Purification of inert gases was achieved by passing them first through a column containing MnO and then a column of activated 4 Å molecular sieves. Conventional glovebox and vacuum-line Schlenk techniques were utilized throughout. The gloveboxes utilized were Innovative Technologies LabMaster 100 and MS-130 BG dual-station models equipped with freezers maintained at – 30 °C. Most of the reactions were performed in thickwalled glass vessels possessing Kontes greaseless stopcocks and side-arm inlets for vacuum-line attachment. Small-scale reactions and NMR spectroscopic analyses were conducted in J. Young NMR tubes which were also equipped with Kontes greaseless stopcocks. All solvents were dried with appropriate drying agents under a dinitrogen atmosphere and were distilled prior to use, or they were transferred directly under vacuum from the appropriate drying agent. Hydrocarbon solvents, diethyl ether, and tetrahydrofuran were dried and distilled from sodium benzophenone ketyl. Commercially available (CH₂=CH—CHMe)MgCl (Aldrich, 0.5 M in THF) and (CH₂=CMe—CH₂)MgCl (Aldrich, 0.5 M in THF) were transformed into the corresponding diallyImagnesium reagents in the usual manner.¹ Cp*W(NO)(CH₂CMe₂)Cl² and $Cp^*W(NO)(CH_2CMe_3)(\eta^3-3,3-Me_2C_3H_3)$ (1)³ were prepared according to published procedures. The synthesis of (CH₂=CMe—CH₂)MgCl from cinnamyl bromide (Aldrich) and magnesium (Strem) was carried out in a manner similar to that described previously for the synthesis of other allylmagnesium reagents,³ and it was converted into the

bis(allyl)magnesium reagent in the usual manner.^{1,3} The progress of most reactions was monitored by NMR spectroscopy, and the isolated yields of all new complexes have not been optimized.

All IR samples were prepared as Nujol mulls, and their spectra were recorded on a Thermo Nicolet 4700 FT-IR spectrometer. NMR spectra were recorded at room temperature on Bruker AV-300, AV-400 or AMX-500 spectrometers. All chemical shifts are reported in ppm, and all coupling constants are reported in Hz. ¹H NMR spectra are referenced to the residual protio isotopomer present in a particular solvent, and ¹³C NMR spectra are referenced to the natural-abundance carbon signal of the solvent employed. Where necessary, ¹H-¹H COSY, ¹H-¹H NOEDS, ¹H-¹³C HMQC, ¹H-¹³C HMBC, and ¹³C APT experiments were carried out to correlate and assign ¹H and ¹³C NMR signals. Low-resolution mass spectra (EI, 70 eV) were recorded by the staff of the UBC mass spectrometry facility using a Kratos MS-50 spectrometer. Elemental analyses were performed by Mr. Minaz Lakha of the UBC microanalytical facility.

Preparation of Cp*W(NO)(CH₂CMe₃)(NC₄H₇-2-Me₂CCH=CH₂) (2). Complex 2 was prepared by stirring a solution of **1** (97.1 mg, 0.199 mmol) in pyrrolidine (2 mL) for 17 h at room temperature. The final reaction mixture was taken to dryness in vacuo, and the residue was dissolved in a minimum of pentane. The pentane solution was chromatographed on a column of alumina (1 x 3 cm) with pentane as eluant to develop a single orange band that was eluted and collected. Concentration of the eluate under reduced pressure and cooling at -30 °C overnight resulted in the deposition of **2** as an orange crystalline solid (58.1 mg, 52% yield).

Characterization data for **2**: IR (cm⁻¹) 1561 (s, v_{NO}). MS (LREI, *m/z*, probe temperature 120 °C) 558 [P⁺, ¹⁸⁴W], 489 [P-allyl⁺, ¹⁸⁴W]. ¹H NMR (500 MHz, C₆D₆) δ 0.67 (d, ²J_{HH} = 14.09, 1H, CH₂CMe₃), 1.06 (s, 3H, Me₂C), 1.17 (s, 3H, Me₂C), 1.18 (d, ²J_{HH} = 14.09, 1H, CH₂CMe₃), 1.36 (s, 9H, CMe₃), 1.48-1.61 (m, 3H, pyrrolidine H), 1.67 (s, 15H, C₅Me₅), 1.80-1.89 (m, 1H, pyrrolidine H), 3.00 (m, 1H, pyrrolidine NCH₂), 3.20 (m, 1H, pyrrolidine NCH₂), 4.89-5.00 (m, 3H, pyrrolidine NCH and H₂C=CH). 5.81 (dd, ³J_{HH} = 17.5, ³J_{HH} = 10, 1H, H₂C=CH). ¹³C{¹H} NMR (125 MHz, C₆D₆) δ 10.0 (C₅Me₅), 23.6 (Me₂C) 23.8 (pyrrolidine CH₂), 24.0 (*Me*₂C) 24.5 (*Me*₂C), 28.0 (pyrrolidine CH₂), 34.4 (CH₂CMe₃), 37.1 (CH₂CMe₃), 54.4 (CH₂CMe₃), 58.9 (pyrrolidine NCH₂), 85.0 (pyrrolidine NCH), 110.2 (C₅Me₅), 111.8 (CH₂=CH), 146.4 (CH₂=CH). Anal. Calcd. for C₂₄H₄₂N₂OW: C, 51.62; H, 7.58; N, 5.02. Found: C, 51.93; H, 7.90; N, 5.01.

Preparation of Cp*W(NO)(CH₂CMe₃)(NC₅H₉-2-Me₂CCH=CH₂) (3). Complex 3 was prepared by stirring a solution of **1** (90.3 mg, 0.185 mmol) in piperidine (2 mL) for 1 week at room temperature. The final reaction mixture was taken to dryness, and the residue was dissolved in a minimum amount of pentane. This solution was then chromatographed on a column of alumina (1 x 3 cm) with pentane as eluant to obtain an orange eluate that was collected. Concentration of the eluate under reduced pressure and cooling to -30 °C overnight resulted in the deposition of **3** as orange crystals.

Characterization data for **3**: IR (cm⁻¹) 1564 (s, v_{NO}). MS (LREI, *m/z*, probe temperature 120 °C) 572 [P⁺, ¹⁸⁴W], 503 [P-allyl⁺, ¹⁸⁴W]. ¹H NMR (500 MHz, C₆D₆) δ 1.10 (s, 3H, Me₂C), 1.20 (m, 1H, piperidine H), 1.23 (s, 3H, Me₂C), 1.29 (d, ²J_{HH} = 5.92, 1H, CH_2CMe_3), 1.36 (m, 1H, piperidine H), 1.41 (s, 9H, CMe₃), 1.50 (m, 1H, piperidine H), 1.69 (d, ${}^2J_{HH}$ = 5.92, 1H, CH_2CMe_3), 1.69 (s, 15H, C_5Me_5), 1.72-1.75 (m, 2H, piperidine H), 2.03-2.05 (m, 1H, piperidine H), 3.01 (br d, 1H, piperidine NCH₂), 3.63 (td, ${}^3J_{HH}$ = 12, ${}^4J_{HH}$ = 3.2, 1H, piperidine NCH₂), 4.91 (d, ${}^3J_{HH}$ = 10.7, 1H, H_2C =CH), 4.96 (d, ${}^3J_{HH}$ = 17.4, 1H, H_2C =CH) 5.09-5.11 (br ,1H, piperidine NCH). 6.05 (dd, ${}^3J_{HH}$ = 17.46, ${}^3J_{HH}$ = 10.7, 1H, CH_2 =CH). ${}^{13}C{}^{1}H{}$ NMR (125 MHz, C_6D_6) δ 10.0 (C_5Me_5), 20.4 (piperidine CH₂), 23.5 (Me_2C), 26.4 (piperidine CH₂), 26.6 (Me_2C), 27.6 (piperidine CH₂), 34.6 (CH_2CMe_3), 37.0 (CH_2CMe_3), 49.4 (CH_2CMe_3), 56.0 (piperidine NCH₂), 81.4 (piperidine NCH), 110.3 (C_5Me_5), 110.8 (CH_2 =CH), 148.9 (CH_2 =CH). The signal for CH₂=CH-CMe₂ is probably obscured. Anal. Calcd. for $C_{25}H_{44}N_2OW$: C,52.45; H, 7.75; N, 4.89. Found: C, 52.18; H, 7.74; N, 5.29.

Preparation of Cp*W(NO)(CH₂CMe₃)(\eta^3-CH₂CMeCH₂) (4). Complexes 4, 6 and 8 were synthesized and isolated in a similar manner, and the preparation of complex 4 is described here as a representative example. In a glovebox a 100-mL Schlenk tube was charged with a magnetic stir bar and Cp*W(NO)(CH₂CMe₃)Cl (1.00g, 2.20 mmol). A 350-mL Schlenk tube was then charged with a magnetic stir bar and (CH₂CMeCH₂)₂Mg x(dioxane) (titre = 113.0 g / mol R, 0.25g, 0.5 equiv). On a vacuum line, Et₂O (approx. 40 mL and 60 mL) was vacuum-transferred onto the Cp*W(NO)(CH₂CMe₃)Cl and the diallyImagnesium reagents, respectively. The Et₂O above the Cp*W(NO)(CH₂CMe₃)Cl was allowed to melt, and this resulted in the formation of a purple solution which was kept cold with a dry ice/acetone bath. This purple solution was then cannulated dropwise into the 350-mL Schlenk tube containing the magnesium reagent that was kept in a liquid N₂ bath. The rate of addition was slow enough to allow the added solution to freeze upon contact with the frozen Et₂O. Additional Et₂O (2 x 10 mL) was used to wash the 100 mL-Schlenk tube to ensure quantitative transfer of the Cp*W(NO)(CH₂CMe₃)Cl reactant. After the addition of the Cp*W(NO)(CH₂CMe₃)Cl solution was finished, the mixture was stirred for 45 min while being maintained in the dry ice/acetone bath. The solution gradually turned brown, with the concomitant formation of a brown suspension of Mg salts. The dry ice/acetone bath was then removed, and the solvent was evaporated from the final mixture in vacuo. The residue was extracted with hexanes (4 x 100 mL), and the combined extracts were transferred to the top of a neutral activated alumina (I) column (2 x 5 cm) made up in hexanes and supported on a medium or high porosity frit. The column was eluted with 1:1 hexanes/Et₂O, and the resulting yellow band was collected. Solvent was removed from the eluate in vacuo to obtain a light yellow microcrystalline powder which was recrystallized from 3:1 pentane/Et₂O at -30 °C in multiple crops to obtain light yellow, long needles of **4**. The crystals were washed with small amounts of cold pentane (-30 °C, 2 x 5 mL) and dried in vacuo. Yield 0.65 g (62%).

Characterization data for **4**: IR (cm⁻¹) 1563 (s, v_{NO}). MS (LREI, *m/z*, probe temperature 120 °C) 475 [P⁺, ¹⁸⁴W]. ¹H NMR (400 MHz, C₆D₆) δ 0.56 (br d, ²J_{HH} = 2.7, 1H, allyl CH₂), 1.06 (d, ²J_{HH} = 13.0, 1H, CH₂CMe₃), 1.35 (s, 9H, CMe₃), 1.50 (s, 15H, C₅Me₅), 1.73 (d, ²J_{HH} = 13.0, 1H, CH₂CMe₃), 1.79 (br s, 1H, allyl CH₂), 2.02 (dd, ²J_{HH} = 2.7, ⁴J_{HH} = 4.2, 1H, allyl CH₂), 2.28 (s, 3H, allyl Me), 3.52 (br d, ⁴J_{HH} = 4.2, 1H, allyl CH₂). ¹³C{¹H} NMR (100 MHz, C₆D₆) δ 9.9 (C₅Me₅), 21.8 (allyl Me), 27.4 (CH₂CMe₃), 35.0 (CH₂CMe₃) 37.4 (CH₂CMe₃), 43.5 (allyl CH₂), 74.5 (allyl CH₂), 106.5 (C₅Me₅), 129.5 (allyl CMe). Anal. Calcd. for C₁₉H₃₃NOW: C, 48.01; H, 7.00; N, 2.95. Found: C, 48.13; H, 7.12; N, 3.17.

Preparation of Cp*W(NO)(CH₂CMe₃)(NC₄H₇-2-CH₂CMe=CH₂) (5). Complex **5** was synthesized and purified in a manner similar to that described for **2** (vide supra). Complex **4** (95.0 mg, 0.200 mmol) was dissolved in pyrrolidine (2 mL), and the mixture was stirred under a gentle flow of N₂ for 64 h, after which time the volatiles were removed in vacuo. The orange-yellow residue was redissolved in a minimum of pentane and chromatographed on alumina using 3:1 pentane/Et₂O as eluant. The orange band that developed was eluted from the column and collected, and the solvent was removed in vacuo. NMR spectroscopy revealed that the residue was an approx. 60:40 mixture of **4** (starting material) and **5**. The yellow-orange solid was extracted with cold pentane (-30 °C, 2 x 3 mL), and the extracts were reduced in volume. Complex **5** was fractionally crystallized as fine yellow-orange rods (18 mg, 16%). Longer reaction times led to the decomposition of **5** into an intractable white solid.

Characterization data for **5**: IR (cm⁻¹) 1563 (s, v_{NO}). MS (LREI, *m*/*z*, probe temperature 120 °C) 544 [P⁺, ¹⁸⁴W], 489 [P-allyl⁺, ¹⁸⁴W]. ¹H NMR (400 MHz, C₆D₆) δ 0.79 (d, ²J_{HH} = 14.0, 1H, CH₂CMe₃), 0.97 (d, ²J_{HH} = 14.0, 1H, CH₂CMe₃), 1.39 (s, 9H, CH₂CMe₃), 1.47 (m, 1H, pyrrolidine CH₂), 1.65 (s, 15H, C₅Me₅), 1.70 (m, 1H, pyrrolidine CH₂), 1.95 (t, ³J_{HH} = 11.6, 1H, H₂C=CMe—CH₂), 1.96 (s, 3H, H₂C=CMe), 2.74 (dd, ³J_{HH} = 4.0, ³J_{HH} = 11.6, 1H, H₂C=CMe—CH₂), 3.03 (m, 2H, pyrrolidine NCH₂), 4.80-4.83 (overlapping br s, 2H, H₂C=CMe), 5.14 (m, 1H, pyrrolidine NCH). Other pyrrolidine CH₂ signals are obscured. ¹³C{¹H} NMR (100 MHz, C₆D₆) δ 9.6 (C₅Me₅), 22.2 (H₂C=CMe), 26.0 (pyrrolidine CH₂), 31.0 (pyrrolidine CH₂), 34.6 (CH₂C*Me*₃), 37.3 (CH₂CMe₃), 50.1 (H₂C=CMe—CH₂), 57.9 (pyrrolidine NCH₂), 58.4 (CH₂CMe₃), 75.0 (pyrrolidine NCH), 109.7 (*C*₅Me₅), 112.2 (H₂C=CMe), 144.5 (H₂C=CMe). Anal. Calcd. for C₂₃H₄₀N₂OW: C, 50.74; H, 7.41; N, 5.15. Found: C, 50.63; H, 7.38; N, 5.03.

The reaction was also performed in a sealed vessel in order to detect the H₂ being evolved. A 250-mL bomb was charged with complex **4** (approx 35.0 mg) and a small stir bar. Pyrrolidine (approx 5 mL) was added via vacuum transfer, and the contents were stirred for 1 day. The volatiles, including an appropriate amount of pyrrolidine (approx. 0.75 mL), were then vacuum-transferred into a J-Young NMR tube equipped with a C₆D₆ capillary. The presence of H₂ was indicated by a singlet at 4.79 ppm in the ¹H NMR spectrum. This chemical shift was confirmed by recording the ¹H NMR spectrum of a separately prepared sample of H₂ in pyrrolidine in a J-Young NMR tube equipped with a C₆D₆ capillary.

Preparation of Cp*W(NO)(CH₂**CMe**₃)(h³-CH₂**CHCHMe) (6).** Complex **6** was synthesized from Cp*W(NO)(CH₂CMe₃)Cl (1.00g, 2.20 mmol) and $(CH_2CHCHMe)_2Mg \times (dioxane) (0.5 equiv)$ in a manner similar to that described for **4** above. Since complex **6** is thermally unstable, cold solvents (-30 °C) had to be employed throughout its extraction and subsequent chromatography in order to minimize its decomposition. Thus, the crude product was extracted with pentane (4 x 50 mL), and the alumina column was washed with 3:1 pentane/Et₂O. The orange eluate was collected, the solvent was removed in vacuo, and the residue was crystallized from 5:1 pentane/Et₂O at -30 °C overnight to obtain **6** as orange-yellow crystalline clusters.

The solids were washed with small amounts of cold pentane (-30 $^{\circ}$ C, 2 x 5 mL) and then dried in vacuo. Yield 0.45 g (43%).

Characterization data for **6**: IR (cm⁻¹) 1594 (s, v_{NO}). MS (LREI, *m/z*, probe temperature 120 °C) 475 [P⁺, ¹⁸⁴W]. ¹H NMR (400 MHz, C₆D₆) δ 0.89 (d, ²J_{HH} = 13.2, 1H, CH₂CMe₃), 1.01 (m, 1H, allyl CHMe), 1.32 (s, 9H, CMe₃), 1.48 (s, 15H, C₅Me₅), 1.56 (d, ³J_{HH} = 14.0, 1H, allyl CH₂), 1.59 (d, ²J_{HH} = 13.2, 1H, CH₂CMe₃), 1.89 (d, ³J_{HH} = 6.0, 3H, allyl Me), 3.67 (d, ³J_{HH} = 7.2 1H, allyl CH₂), 4.97 (ddd, ³J_{HH} = 7.2, ³J_{HH} = 9.4, ³J_{HH} = 14.0, 1H, allyl CH). ¹³C{¹H} NMR (100 MHz, C₆D₆) δ 9.5 (C₅*Me*₅), 16.9 (allyl Me), 27.9 (CH₂CMe₃), 34.6 (CH₂C*Me*₃), 39.3 (CH₂CMe₃), 52.4 (allyl CHMe), 74.3 (allyl CH₂), 106.0 (C₅Me₅), 114.6 (allyl CH). Anal. Calcd. for C₁₉H₃₃NOW: C, 48.01; H, 7.00; N, 2.95. Found: C, 47.88; H, 7.32; N, 3.24.

Preparation of Cp*W(NO)(CH₂CMe₃)(NC₄H₇-2-CHMeCH=CH₂) (7). Complex 7 was synthesized in a manner similar to that described above for the preparation of complex 5. Thus, complex 6 (71.0 mg, 0.149 mmol) was dissolved in pyrrolidine (2 mL), and the mixture was stirred under a gentle flow of N₂ for 1 day, after which time the volatiles were removed in vacuo. The orange-yellow residue was redissolved in a minimum of pentane and chromatographed on alumina using 3:1 pentane/Et₂O as eluant. The orange band that developed was eluted from the column and collected, and the solvent was removed in vacuo. Complex 7 was recrystallized from pentane at –30 °C overnight to obtain orange-yellow microcrystals (18 mg, 22%).

Characterization data for **7**: IR (cm⁻¹) 1563 (s, v_{NO}). MS (LREI, *m*/*z*, probe temperature 120 °C) 544 [P⁺, ¹⁸⁴W], 489 [P-allyl⁺, ¹⁸⁴W]. ¹H NMR (400 MHz, C₆D₆) δ 0.72 (d, ²J_{HH} = 14.4, 1H, CH₂CMe₃), 0.88 (d, ³J_{HH} = 6.8, 3H, H₂C=CH—CH*M*e), 1.10 (d, ²J_{HH} = 14.4, 1H, CH₂CMe₃), 1.35 (obscured, 2H, pyrrolidine CH₂), 1.37 (s, 9H, CMe₃), 1.48 (m, 1H, pyrrolidine CH₂), 1.67 (s, 15H, C₅Me₅), 1.70 (obscured, 1H, pyrrolidine CH₂), 2.79 (m, 1H, H₂C=CH—C*H*Me), 3.02 (m, 2H, pyrrolidine NCH₂), 5.01-5.03 (m, 2H, pyrrolidine NCH and H₂C=CH), 5.16 (d, ³J_{HH} = 17.2, 1H, H₂C=CH), 5.99 (ddd, ³J_{HH} = 7.2, ³J_{HH} = 10.4, ³J_{HH} = 17.2, 1H, H₂C=C*H*). ¹³C{¹H} NMR (100 MHz, C₆D₆) δ 9.8 (C₅*M*e₅), 14.6 (H₂C=CH—CH*M*e), 25.5 (pyrrolidine CH₂), 28.7 (pyrrolidine CH₂), 34.5 (CH₂C*M*e₃), 37.1 (CH₂CMe₃), 45.6 (H₂C=CH—CHMe), 55.1 (CH₂CMe₃), 58.6 (pyrrolidine NCH₂), 80.6 (pyrrolidine NCH), 109.9 (C₅Me₅), 114.1 (H₂C=CH), 142.9 (H₂C=CH). Anal. Calcd. for C₂₃H₄₀N₂OW: C, 50.74; H, 7.41; N, 5.15. Found: C, 51.03; H, 7.50; N, 4.94.

Preparation of Cp*W(NO)(CH₂**CMe**₃)(η^3 -CH₂**CHCHPh) (8).** Complex 8 was synthesized from Cp*W(NO)(CH₂CMe₃)Cl (0.50g, 1.10 mmol) and (CH₂CHCHPh)₂Mg'x(dioxane) (0.5 equiv) in a manner similar to that described for 4 above. The crude product was extracted with pentane (3 x 30 mL), and the alumina column was washed with 3:1 pentane/Et₂O. The orange eluate was collected, the solvent was removed in vacuo, and the residue was crystallized from pentane at –30 °C overnight to obtain 8 as orange rods. The crystals were washed with small amounts of cold pentane (-30 °C, 2 x 2 mL) and then dried in vacuo. Yield 0.25 g (43%).

Characterization data for **8**: IR (cm⁻¹) 1578 (s, v_{NO}). MS (LREI, *m/z*, probe temperature 120 °C) 537 [P⁺, ¹⁸⁴W]. ¹H NMR (400 MHz, C₆D₆) δ 0.93 (br s, 1H, CH₂CMe₃), 1.24 (obscured, 1H, allyl H), 1.32 (br s, 9H, CMe₃), 1.43 (br s, 15H, C₅Me₅), 1.60 (br s, 1H, CH₂CMe₃), 2.11 (br s, 1H, allyl H), 3.74 (br s, 1H, allyl H), 5.53 (br s, 1H, allyl CH), 7.07-7.36 (br m, 5H, aryl H). ¹³C{¹H} NMR (100 MHz, C₆D₆) δ 9.5 (C₅*Me*₅), 29.1 (CH₂CMe₃), 34.8 (CH₂C*Me*₃), 39.0 (CH₂CMe₃), 61.1 (allyl CHPh), 72.0 (allyl CH₂), 106.3 (C₅Me₅), 109.1 (allyl CH), 126.4 (aryl C), 127.2 (aryl C), 128.7 (aryl C), 137.4 (ipso C). Anal. Calcd. for C₁₉H₃₃NOW: C, 53.64; H, 6.56; N, 2.61. Found: C, 53.58; H, 6.32; N, 2.64.

Preparation of Cp*W(NO)(CH₂**CMe**₃)(NC₄H₇-2-CHPhCH=CH₂) (9). In a Schlenk tube, complex 8 (30.0 mg, 0.558 mmol) was dissolved in pyrrolidine (2 mL), and the mixture was stirred under a gentle flow of N₂ overnight (16 h), after which time the volatiles were removed in vacuo. Complex 9 was isolated from the crude reaction mixture by crystallization from pentane at -30 °C overnight to obtain a yellow-orange, microcrystalline solid (24 mg, 71%).

Characterization data for **9**: IR (cm⁻¹) 1562 (s, v_{NO}). MS (LREI, *m*/*z*, probe temperature 120 °C) 606 [P⁺, ¹⁸⁴W]. ¹H NMR (400 MHz, C₆D₆) δ 0.86 (d, ²J_{HH} = 14.0, 1H, CH₂CMe₃), 1.07 (d, ²J_{HH} = 14.0, 1H, CH₂CMe₃), 1.39 (s, 9H, CMe₃), 1.71 (s, 15H, C₅Me₅), 3.00-3.15 (m, 3H, PhC*H* and pyrrolidine NCH₂), 4.89 (dd, ²J_{HH} = 1.4, ³J_{HH} = 16.9, 1H, H₂C=CH), 5.02 (dd, ²J_{HH} = 1.4, ³J_{HH} = 10.0, 1H, H₂C=CH), 5.59 (m, 1H, pyrrolidine NCH), 6.78 (dt, ³J_{HH} = 10.0, ³J_{HH} = 16.9, 1H, H₂C=C*H*), 7.01 (m, 1H para CH), 7.11 (m, 2H, meta CH), 7.32 (m, 2H, ortho CH). Other pyrrolidine CH₂ signals are obscured. ¹³C{¹H} NMR (100 MHz, C₆D₆) δ 10.0 (C₅*Me*₅), 23.3 (pyrrolidine CH₂), 29.2 (pyrrolidine CH₂), 34.5 (CH₂C*Me*₃), 37.0 (CH₂CMe₃), 53.2 (CH₂CMe₃), 55.8 (pyrrolidine NCH₂), 56.1 (CHPh), 82.8 (pyrrolidine NCH), 110.3 (C₅Me₅), 115.2 (H₂C=CH), 126.6 (Ar C), 128.5 (Ar C), 129.1 (Ar C), 143.0 (H₂C=CH), 144.3 (Ar ipso C). Anal. Calcd. for C₂₈H₄₂N₂OW: C, 55.44; H, 6.98; N, 4.62. Found: C, 55.23; H, 7.20; N, 4.77.

X-ray Crystallography. Data collection for each compound was carried out at – 100 \pm 1 °C on a Bruker X8 APEX diffractometer, using graphite-monochromated Mo K α radiation.

Data for **2** were collected to a maximum 2θ value of 55.6° in 0.5° oscillations with 10.0 s exposures. The structure was solved by direct methods⁴ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included in fixed positions. The final cycle of full-matrix least-squares analysis was based on 12520 observed reflections and 264 variable parameters.

Data for **3** were collected to a maximum 2θ value of 55.6° in 0.5° oscillations with 6.0 s exposures. The structure was solved by direct methods⁴ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included in fixed positions. The final cycle of full-matrix least-squares analysis was based on 6277 observed reflections and 272 variable parameters.

Data for **5** were collected to a maximum 2θ value of 55.6° in 0.5° oscillations with 10.0 s exposures. The structure was solved by direct methods⁴ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included in fixed positions. The final cycle of full-matrix least-squares analysis was based on 5392 observed reflections and 248 variable parameters.

For each structure neutral-atom scattering factors were taken from Cromer and Waber.⁵ Anomalous dispersion effects were included in F_{calc} ;⁶ the values for Δf and $\Delta f'$, were those of Creagh and McAuley.⁷ The values for mass attenuation coefficients are those of Creagh and Hubbell.⁸ All calculations were performed using SHELXL-97.⁹ X-ray crystallographic data for all three structures are presented in Table 1.

 Table 1. X-ray Crystallographic Data for Complexes 2, 3 and 5.

Complex	2	3	5
Crystal Data			
Empirical formula	$C_{24}H_{42}N_2OW$	$C_{25}H_{44}N_2OW$	$C_{23}H_{40}N_2OW$
Crystal Habit, color	Needle, orange	Prism, yellow	Prism, yellow
Crystal size (mm)	$0.20\times0.10\times0.05$	$0.35 \times 0.30 \times 0.25$	0.40 imes 0.175 imes
			0.075
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P2 ₁ /n	<i>P</i> 2 ₁ / <i>n</i>	P2 ₁ /c
Volume (Å ³)	2418.6(8)	2597.4(4)	2347.98(14)
<i>a</i> (Å)	11.732(3)	10.776(1)	12.6452(4)
b (Å)	13.594(2)	18.681(2)	8.1081(3)
<i>c</i> (Å)	15.641(3)	13.048(1)	22.9995(8)
α(°)	90	90	90
β(°)	104.161(8)	98.560(5)	95.311(2)
γ(°)	90	90	90
Z	4	4	4
Density (calculated) (mg/m ³)	1.534	1.464	1.540
Absorption coefficient (cm ⁻¹)	47.92	44.64	49.34
F ₀₀₀	1128	1160	1096
Data Collection and Refinement			
Measured Reflections: Total	159755	60650	36666
Measured Reflections: Unique	12520	6277	5392
Final R Indices ^a	R1 = 0.0262, wR2	R1 = 0.0201, wR2	R1 = 0.0200, wR2
	= 0.0665	= 0.0502	= 0.0500
Goodness-of-fit on F ^{2b}	0.938	1.065	1.061
Largest diff. peak and hole (e ⁻ Å ⁻³)	1.869 and -1.156	1.909 and -1.093	1.731 and -0.674
^a R1 on $F = \Sigma (F_0 - F_c) / \Sigma F_0 , (I_0 > 2\sigma(I_0)); wR2 = [(\Sigma (F_0^2 - F_c^2)^2) / \Sigma w(F_0^2)^2]^{1/2}$ (all data); $w = [\sigma^2 F_0^2]^{-1}; {}^{b} \text{ GOF} = [\Sigma (w (F_0 - F_c)^2) / degrees of freedom]^{1/2}.$			

References

- Dryden, N. H.; Legzdins, P.; Trotter, J.; Yee, V. C. Organometallics 1991, 10, 2857.
- (2) Debad, J. D.; Legzdins, P.; Batchelor, R. J.; Einstein, F. W. B. Organometallics
 1993, *12*, 2094.
- (3) Ng, S. H. K.; Adams, C. S.; Legzdins, P. J. Am. Chem. Soc. 2002, 124, 9380.
- (4) SIR92: Altomare, A.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A. J. Appl.
 Cryst. 1993, 26, 343.
- (5) Cromer, D. T.; Waber, J. T. *International Tables for X-ray Crystallography*;Kynoch Press: Birmingham, 1974; Vol. IV.
- (6) Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. **1964**, *17*, 781.
- (7) Creagh, D. C.; McAuley, W. J. International Tables of X-ray Crystallography;
 Kluwer Academic Publishers: Boston, 1992; Vol. C.
- (8) Creagh, D. C.; Hubbell, J. H. International Tables for X-ray Crystallography;
 Kluwer Academic Publishers: Boston, 1992; Vol. C.
- (9) SHELXL97: Sheldrick, G. M. University of Göttingen, Germany, 1997.