Supporting Information

Remarkably Efficient Enantioselective Titanium(IV)-(R)-H $\mathbf{8}$-BINOLate
 Catalyst for Arylations to Aldehydes by Triaryl(tetrahydrofuran)aluminum Reagents

Kuo-Hui Wu and Han-Mou Gau*

Department of Chemistry, National Chung-Hsing University, Taichung, Taiwan 402
*Correspondent Author, e-mail: hmgau @dragon.nchu.edu.tw; phone: +886-4-22878615; fax:
+886-4-22862547

Experimental Section

1. Reagent and General Techniques

$(R)-\mathrm{H}_{8}$ - $\mathrm{BINOL}(\mathrm{TCI})$ was used directly. $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ and TiCl_{4} were freshly distilled prior to use. Aldehydes were dried over MgSO_{4} or molecular sieves and distilled before use. Solvents were dried by refluxing for at least 24 h over sodium/benzophenone (THF or toluene) and were freshly distilled prior to use. All syntheses and manipulations were carried out under a dry nitrogen atmosphere.

2. Synthesis of Triaryl(tetrahydrofuran)aluminum, $\operatorname{AlAr}_{3}(\mathbf{T H F}):{ }^{\mathbf{1}}$.

Aluminum trichloride (1 eq) in dried THF was added to a THF solution of arylmagnesium bromide (3 eq) at $0{ }^{\circ} \mathrm{C}$. This mixture was stirred at room temperature for 12 h and the solvent was removed under reduced pressure to afford a residue which was extracted with toluene or hexane ($2 \times 50 \mathrm{~mL}$). The aluminum reagent was obtained from removing solvent completely or from crystallization.

Triphenyl(tetrahydrofuran)aluminum, $\mathbf{A I P h}_{\mathbf{3}}(\mathbf{T H F})$. Extraction and crystallization from toluene, $7.84 \mathrm{~g}(72.0 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81-7.77(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph})$, 7.34-7.31 (m, 9H, Ph), $4.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.03\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) \mathrm{ppm}$.
$\mathbf{T r i}\left(\boldsymbol{p}\right.$-tolyl)(tetrahydrofuran)aluminum, $\mathbf{A l}(\boldsymbol{p} \text { - } \mathbf{T o l y l})_{\mathbf{3}}(\mathbf{T H F})$. Extraction with hot hexane and cool to room temperature, $2.27 \mathrm{~g}(61.0 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68$ (d, $J=8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$), $7.16\left(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}_{6} H_{4} \mathrm{Me}\right), 4.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.36(\mathrm{~s}, 9 \mathrm{H}$, Me), 2.00 (m, $4 \mathrm{H}, \mathrm{CH}_{2}$) ppm.

Tri(4-methoxyphenyl)(tetrahydrofuran)aluminum, $\quad \mathbf{A l}\left(\mathbf{4}-\mathbf{M e O C}_{6} \mathbf{H}_{4}\right)_{\mathbf{3}}(\mathbf{T H F}) . \quad$ Pale yellow oil after removing toluene. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, $6.90\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 4.13\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.82(\mathrm{~s}, 9 \mathrm{H}, \mathrm{MeO}), 2.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) \mathrm{ppm}$.
$\mathbf{T r i}(4-t r i m e t h y l s i l a n y l p h e n y l)(t e t r a h y d r o f u r a n) a l u m i n u m, ~ \quad \mathbf{A l}\left(4-\mathbf{M e}_{3} \mathbf{S i C}_{6} \mathbf{H}_{4}\right)_{\mathbf{3}}(\mathbf{T H F})$. White solid after removing hexane. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}$, $\mathrm{C}_{6} H_{4} \mathrm{TMS}$), $7.47\left(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}_{6} H_{4} \mathrm{TMS}\right), 4.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.02\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, 0.26 (s, 9H, SiMe ${ }_{3}$) ppm.

Tri(2-naphthyl)(tetrahydrofuran)aluminum, $\mathbf{A l}(2-n a p h t h y l))_{3}(\mathbf{T H F})$. White solid after removing toluene. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.36-7.43(\mathrm{~m}, 21 \mathrm{H}), 4.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 1.99 (m, $4 \mathrm{H}, \mathrm{CH}_{2}$) ppm.

Tri(1-naphthyl)(tetrahydrofuran)aluminum, $\left.\mathbf{A l (1 - n a p h t h y l)})_{\mathbf{3}} \mathbf{(T H F}\right)$. White solid after removing toluene. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.08-7.16(\mathrm{~m}, 21 \mathrm{H}), 4.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 1.99 (m, $4 \mathrm{H}, \mathrm{CH}_{2}$) ppm.

3. Synthesis of $\left[\left\{(R)-\mathrm{H}_{8}-\mathrm{BINOLate}\right\} \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{2}\right]_{\mathrm{x}}(\mathbf{1})^{\mathbf{2}}$

To a solution of $(R)-\mathrm{H}_{8}-\mathrm{BINOL}(4.0 \mathrm{mmol})$ in 60 mL dried toluene, $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(4.0$
$\mathrm{mmol}, 1.2 \mathrm{ml}$) was added slowly and the resulting solution was stirred at room temperature for 1 h . The reaction mixture was distilled azeotropically until the volume of the solution reached $\sim 3 \mathrm{~mL}$. The solution was then dried completely under reduced pressure to furnish an orange-red solid which was used as a catalyst precursor directly without further purification.

4. Reaction of $\mathrm{AlPh}_{3}(\mathrm{THF})$ and $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}{ }^{3}$

To a solution of $\mathrm{AlPh}_{3}(\mathrm{THF})(0.66 \mathrm{~g}, 2.0 \mathrm{mmol})$ in 20 mL dried toluene, $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.60$ $\mathrm{ml}, 2.0 \mathrm{mmol}$) was added slowly. The resulting solution was stirred at room temperature for $10 \sim 20 \mathrm{~min}$, and then the solvent was removed completely under reduced pressure to afford a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90-7.87(\mathrm{~m}, 4 \mathrm{H}, \operatorname{PhAl}), 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}$, $P h \mathrm{Ti}), 7.36-7.31(\mathrm{~m}, 6 \mathrm{H}, ~ P h A l), 7.16-7.10(\mathrm{~m}, 3 \mathrm{H}, ~ P h \mathrm{Ti}), 4.91$ (sept, $J=6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mu_{2}-\mathrm{OCHMe} 2$), 4.38 (sept, $\left.J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{TiOCHMe} 2\right), 1.35\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 6 \mathrm{H}, \mu_{2}-\mathrm{OCHMe} e_{2}\right)$, $1.33\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 6 \mathrm{H}, \mu_{2}-\mathrm{OCHMe} e_{2}\right), 1.10\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, \mathrm{TiOCH} M e_{2}\right) \mathrm{ppm}$.

5. General Procedure for the Addition of AlAr_{3} (THF) to Aldehydes

$\left[\left\{(R)-\mathrm{H}_{8}-\mathrm{BINOLate}\right\} \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{2}\right]_{\mathrm{x}}(0.023 \mathrm{~g}, 0.05 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ were mixed in 2 mL of dry THF at room temperature. After stirring for $5 \mathrm{~min}, \mathrm{AlAr}_{3}(\mathrm{THF})$ was added, and the mixture was stirred another 10 min . The resulted solution was cooled to $0{ }^{\circ} \mathrm{C}$, treated with an aldehyde, allowed to react at this temperature for 10 min , and then quenched with 2 M NaOH . The aqueous phase was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated. Chromatography of the residue on silica gel (elution with 10:1 hexane-EA) gave the alcohols. Enantiomeric purities of products were determined by HPLC using suitable chiral columns from Daicel.

6. Optimization of Asymmetric Catalytic AlPh_{3} (THF) Additions to 2-Chlorobenzaldehyde ${ }^{\mathrm{a}}$

$$
1.0 \text { eq. } \quad 1.2 \mathrm{eq} .
$$

entry	$\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ (eq.)	${\text { Conversion }(\%)^{\mathrm{b}}}$	${\text { Yield }(\%)^{\mathrm{b}}}$	$\mathrm{Ee}(\%)^{\mathrm{c}}$
1	-	80	70	0
2	0.25	100	74	25
3	0.50	100	79	58

4	0.75	100	88	80
5	1.00	100	97	89
6	1.25	100	100	93
7	1.50	100	100	93

${ }^{\text {a }} 2$-Chlorobenzaldehyde $/ \mathrm{AlPh}_{3}(\mathrm{THF}) / \mathbf{1}=0.5 / 0.6 / 0.05 \mathrm{mmol}$. ${ }^{\mathrm{b}}$ Conversions and yields were based on ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{\text {c }}$ Enantioselectivities were determined by HPLC.
7. Asymmetric $\mathrm{Al}(\text { p-tolyl })_{3}(\mathbf{T H F})$ Additions to Aldehydes Catalyzed by the in situ Formed 1/Ti(O-i-Pr)4 Catalyst ${ }^{\text {a }}$

entry	RCHO	Product	Yield (\%)	Ee (\%) $)^{\mathrm{c}}$
1	2-furyl aldehyde		p-Tol	86

2 (E)- $\mathrm{PhCH}=\mathrm{CHCHO}$

91
$91(S)^{\mathrm{d}}$

3
$\mathrm{PhC} \equiv \mathrm{CCHO}$

96
94 (R)
${ }^{\text {a }}$ Substrate $/ \mathrm{Al}(p \text {-tolyl })_{3}(\mathrm{THF}) / \mathbf{1}=0.5 / 0.6 / 0.05 \mathrm{mmol} ; \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}, 0.625 \mathrm{mmol}$, reaction time $=10 \mathrm{~min} .{ }^{\mathrm{b}}$ Isolated yields. ${ }^{\mathrm{c}}$ Enantioselectivities were determined by HPLC using suitable chiral column from Daicel. ${ }^{\mathrm{d}} \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}, 0.75 \mathrm{mmol}$.

8. HPLC Analytic Conditions of Alcohol Products

Entry	Product	column	Hexane/IPA	(R)	(S)
1^{4}	2	Chiralcel OJ	$80 / 20$	10.2	13.4
2^{5}		Chiralcel OD-H	$98 / 2$	19.7	18.3

Entry	Product	column	Hexane/IPA	(R)	(S)
3^{6}		Chiralcel OB-H	90/10	9.5	15.6
4^{4}		Chiralcel OB-H	94/6	9.1	11.6
5^{4}		Chiralcel OB-H	90/10	9.7	21.2
6^{6}		Chiralcel OB-H	95/5	9.6	12.1
7^{4}		Chiralcel OJ	90/10	13.7	15.8
8^{7}		Chiralcel OD	90/10	18.7	13.1
9^{6}		Chiralcel OJ	90/10	24.9	27.7
10^{8}		Chiralcel OB-H	94/6	7.1	11.4
11^{8}		Chiralcel OJ	80/20	16.9	11.9

Entry	Product	column	Hexane/IPA	(R)	(S)
12^{6}		Chiralcel OD	95/5	30.1	24.9
13^{6}		Chiralcel OD	99.5/0.5	24.5	29.5
14^{9}		Chiralcel OD-H	98/2	6.7	6.1
15^{6}		Chiralcel OD	98/2	13.2	8.9
16^{10}		Chiralcel OD	95/5	17.2	14.5
17^{11}		Chiralcel OD	88/12	13.4	10.6
18^{12}		Chiralcel OD	99/1	22.3	26.2
19^{13}		Chiralcel OD	80/20	6.9	9.7
20^{14}		Chiralcel OD	99/1	29.6	10.3
21^{15}		Chiralcel OD	98/2	26.5	24.1

Entry	Product	column	Hexane/IPA	(R)	(S)
22^{16}		Chiralcel OD	90/10	10.8	15.4
23^{13}		Chiralcel OD	90/10	9.0	17.5
24^{6}		Chiralcel OB-H	90/10	8.7	12.6

Other conditions: flow rate $1 \mathrm{~mL} / \mathrm{min}$, detector UV, 254 nm

9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Phenyl-(4-trimethylsilanylphenyl)-methanol

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.24(\mathrm{~m}, 9 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$
NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.28,143.67,139.74,133.54,128.48,127.56 .126 .48,125.82$, 76.26, -1.16 ppm.

References:

1 (a) Srini, V.; Mel, J. D., Oliver, J. P. Organometallics,; 1989, 8, 827. (b) Belgardt, T.; Storre, J.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G. Inorg. Chem. 1995, 34, 3821.
267. (b) Waltz, K. M.; Carroll, P. J.; Walsh, P. J. Organometallics, 2004, 23, 127
(a) Tudyka, S.; Pflanz, K.; Aldinger, F.; Borrmann, H.; Fisher, P.; Brunner, H. Z. Anorg. Allg. Chem. 1997, 623, 1163. (b) Blandy, C.; Sadani M. T.; Gervais, D. Synth. React. Inorg. Met.-Org. Chem. 1978, 8, 381. (c) Krüger, C.; Mynott, R.; Siedenbiedel, C.; Stehling, L.; Wilke, G. Angew. Chem. Int. Ed. Engl. 1991, 30, 1668. (d) Janas, Z.; Jerzykiewicz, L. B.; Sobota, P.; Szczegot, K.; Wioniewska, D. Organometallics 2005, 24, 3987. (e) Rodriguez-Delgado, A.; Chen, E. Y.-X. Inorg. Chim. Acta. 2004, 357, 3911.

4 Ji, J.-X.; Wu, J.; Au-Yeung, T. T.-L.; Yip, C.-W.; Haynes, R. K.; Chen, A. S. C. J. Org. Chem. 2005, 70, 1093.
5 Wang, J.-T.; Fan, X.; Feng, X.; Qian, Y.-M. Synthesis 1989, 291.
6 Qin, Y.-C.; Pu, L. Angew. Chem. Int. Ed. 2006, 45, 273.
7 (a) Bolm, C.; Kesselgruber, M.; Hermanns, N.; Hildebrand, J. P.; Raabe, G. Angew. Chem. Int. Ed 2001, 40, 1488. (b) Uchiyama, M.; Kameda, M.; Mishima, O.; Yokohama, N.; Koike, M.; Kondo, Y.; Sakamoto, T. J. Am. Chem. Soc. 1998, 120, 4934
8 Wu, X.; Liu, X.; Zhao, G. Tetrahedron: Asymmetry 2005, 16, 2299.
9 Hayes, A. M.; Morris, D. J.; Clarkson, G. J.; Wills, M. J. Am. Chem. Soc. 2005, 127, 7318.

10 D'Auria, M. Heterocycles 2000, 52, 185.

11 Fontes, M.; Verdaguer, X.; Solà, L.; Pericàs, M. A.; Riera, A. J. Org. Chem. 2004, 69, 2532.
${ }^{12}$ Ozeki, M.; Nishide, K.; Teraoka, F.; Node, M. Tetrahedron: Asymmetry 2004, 15, 895. ${ }^{3}$ Fang, T.; Du, D.-M.; Lu, S.-F.; Xu, J. Org. Lett. 2005, 7, 2081.
4 (a) Dahmen, S. Org. Lett. 2004, 6, 2113. (b) Lettan II, R. B.; K. A. Scheidt Org. Lett. 2005, 7, 3227.
15 Cho, W.-S.; Kim, H.-J.; Littler, B. J.; Miller, M. A.; Lee, C.-H.; Lindsey, J. S. J. Org. Chem. 1999, 64, 7890.
16 Matt, P. v.; Lloyd-Jones, G. C.; Minidis, A. B. E.; Pfaltz, A.; Macko, L.; Macko, L.; Neuburger, M.; Zehnder, M. Helv. Chim. Acta 1995, 78, 265.

