
Supporting Information

Unraveling the Aflatoxin-FAPY Conundrum: Structural Basis for Differential Replicative Processing of Isomeric Forms of the Formamidopyrimidine-type DNA Adduct of Aflatoxin B₁

Kyle L. Brown, James Z. Deng, Rajkumar S. Iyer, Lalitha G. Iyer, Markus W. Voehler, Michael P. Stone, Constance M. Harris and Thomas M. Harris*

Item	Page
Preparative Synthesis and Isolation of 13	S 3
Isolation of 15	S 3
NMR Studies	S 4
Table S1. ¹³ C Chemical shifts of 13	S 6
Table S2. ¹ H and ¹³ C Chemical shifts of 15	S 7
Figure S1. UV spectra of 6-A and 6-B	S 8
Figure S2. ¹ H NMR spectrum of 6-A	S 9
Figure S3. ¹ H NMR spectrum of 6-B	S 9
Figure S4. ¹ H NMR spectrum of 10	S10
Figure S5. UV spectrum of 10	S10
Figure S6. UV spectrum of 11	S11
Figure S7. ¹ H NMR spectrum of 11	S11
Figure S8. 13 C NMR spectra of AFB C6 and C8 in 11 with 6^{-16} O and 6^{-18} O	S12
Figure S9. ¹ H NMR spectrum of 13-Aab	S13
Figure S10. ¹ H NMR spectrum of 13-Bab	S13
Figure S11. ¹ H- ¹⁵ N COSY spectrum of 13	S14
Figure S12. ¹⁵ N INEPT spectrum of 13	S14
Figure S13. UV spectra of 13-A and 13-B	S15
Figure S14. UV spectrum of 15	S16
Figure S15. ¹ H NMR spectrum of 15	S16

Preparative Synthesis and Isolation of 13. The mixture containing **10** was made basic with 10 mL of pH 9.5 buffer (15 mM Na₂CO₃/30 mM NaHCO₃) and stirred overnight at ambient temperature. Neutralization using 0.1 M HCl was followed by lyophilization to remove solvents. The residue was dissolved in 4 mL of methanol and clarified by filtration through a 0.45 μ m filter. The methanolic solution was fractionated by reverse-phase HPLC (Econosil ODS, 10 μ m, 250 x 10 mm, Alltech Associates; 0-67% linear gradient of CH₃CN in water over 40 min; 3.0 mL/min; UV detection at 358 nm). The AFB-FAPY adducts described in this study eluted as a mixture of the major and minor isomers at 33 min. This fraction was collected and lyophilized to afford a mixture of FAPYs A and B in 45-50% combined yield. Separation of the FAPY isomers (**13**-FAPYs A and B) was carried out using reverse-phase HPLC (Econosphere ODS, 5 μ m, 250 x 4.6 mm, Alltech Associates; 60% CH₃OH/H₂O; 1.0 mL/min; UV detection at 360 nm). Retention times of FAPY A and FAPY B were 22.4 and 29.8 min, respectively. The isomers were collected over Dry Ice/acetone and lyophilized.

Isolation of 15. The methanolic solution was fractionated by reverse-phase HPLC (Econosil ODS, 10 x 250 mm, 10 μ m, Alltech Associates; stepwise gradient of MeOH-H₂O as follows: 20 mL 5% MeOH, 100mL 10% MeOH, 50 mL 15% MeOH, 50 mL 20% MeOH, 50 mL 22% MeOH, 100 mL 25% MeOH and finally 100% MeOH; 3.0 mL/min; UV detection at 360 nM. The poorly resolved AFB-FAPY adducts eluted as a mixture of isomers at 100 and 110 min. These fractions were collected and lyophilized to afford the adducts in a total yield of 40-50%. The 100 min peak, which was the major fraction, was dissolved in 50 mL of 10% aqueous methanol and re-fractionated on the same column with a different gradient (100 mL 10% MeOH, 100 mL 25% MeOH. Four peaks at retention

S3

times 137, 147, 154 and 156 min were obtained. The major peaks (137 (FAPY **15-A**) and 147 min (FAPY **15-B**)) were collected and lyophilized. They were characterized by NMR and MS. FAPY **15-A** was further analyzed by two-dimensional NMR. The 110 minute peak from the first fractionation was similarly separated using the above gradient; it was a mixture of components similar to the original 100 min fraction.

NMR Studies. Routine spectra were recorded on Bruker AC-300 and AM-400 instruments operating at 300.13 MHz and 400.13 MHz, respectively. Two-dimensional spectra were recorded on a Bruker AMX-500 spectrometer at 500.13 MHz. NMR samples of AFB-FAPY nucleoside were prepared as ~0.01 M solution in a mixture of MeOH- d_4 /DMSO- d_6 (9:1) except for the ROESY, which was performed in pure DMSO- d_6 to keep the exchangeable protons visible. The [¹⁵N] labeled AFB-FAPY nucleoside was prepared as ~0.01 M solution in a mixture of methanol- d_4 /DMSO- d_6 (9:1).

¹⁵N NMR spectra were recorded at 288 K in MeOD/DMSO- d_6 (9:1) mixtures at 50.9 MHz on a Bruker AMX-500 spectrometer via an INEPT pulse sequence for non-selective polarization transfer, refocused and ¹H-decoupled during acquisition. The delay between pulses was set to 16.7 ms to optimize for a ³*J*_{NH} of 15 Hz. AFB-FAPY nucleoside **13** showed four signals at δ 133.9, 133.6, 131.7, and 130.8. Proton chemical shifts are reported using the residual ¹H in MeOH- d_4 as the internal reference (δ 3.30 ppm) or DMSO- d_6 (δ 2.49 ppm) in the ROESY. Carbon shifts are referenced to the CD₃ signal of methanol- d_4 at δ 49.0. The 2D spectra were measured with natural abundance samples and at 15 °C if not described otherwise.

Homonuclear 2D studies were carried out using the following experiments: double quantum filtered COSY,¹ TOCSY 250 ms mixing time,² NOESY 800 ms mixing time and ROESY 300 ms mixing time.³ The acquisition conditions were as followed: $f_1 = f_2 =$

S4

4504 Hz, 2K in the f₂ dimension and 512 increments in f₁, 32 or 64 scans, and the data were processed as 2K x 1K matrices with a shifted sine-bell apodization. The ROESY spectrum was measured at 20 °C in anhydrous DMSO- d_6 to prevent the exchange of the NH protons. A spectral width f₁ = f₂ = 6024 Hz was chosen and all the other conditions were used as in the other experiments.

Carbon chemical shifts were obtained via HMQC (<u>H</u>eteronuclear <u>M</u>ultiple-Quantum <u>C</u>oherence) or HMBC (<u>H</u>eteronuclear <u>M</u>ultiple-<u>B</u>ond <u>C</u>oherence)experiments.⁴ 2D HMQC spectra were run using the BIRD sequence to suppress the center signal and with carbon decoupling during acquisition in the TPPI mode.⁵ The applied pulse sequence for the HMBC experiment was: relaxation delay $-90^{\circ}x(^{1}H) - D_{1} - 90^{\circ}f_{1}(^{13}C) - t_{1}/2 - 180^{\circ}x(^{1}H) - t_{1}/2 - 90^{\circ}f_{2}(^{13}C) - acquire. The HMBC spectrum was recorded using a delay time D₁ of 60 ms. Both heterocorrelation spectra were 2K covering 4504 Hz in the f₂ dimension and 22,727 Hz in the f₁ dimension and were acquired for 512 increments with 64 scans on the HMQC and 128 scans on the HMBC. The data were processed with 2K in the f₂ dimension and 1K in the f₁ dimension with a shifted sine apodization.$

Carbon	FAPY Ia	FAPY Ib	FAPY IIa	FAPY IIb
		Aflatoxin		
Сба	114.23 ^b			
C8	95.42	102.93	95.80	103.58
C5	92.13 ^b			
C9	75.45	75.22	76.27	76.07
OMe	57.30 ^b			
C9a	55.00^{b}			
C2	35.94 ^b			
C3	30.14 ^b			
		Pyrimidine		
СНО	168.0	165.47	168.12	165.68
C5	92.08	89.31	92.27	89.62
		Deoxyribose		
C1'	82.60 ^b			
C2'	37.33 ^b			
C3'	76.80 ^b			
C4'	82.70 ^b			
C5'	64.56 ^b			
		Butyrates		
CH3	13.80 ^b			
β-CH ₂	19.11 ^b			
α-CH ₂	36.52 ^b			

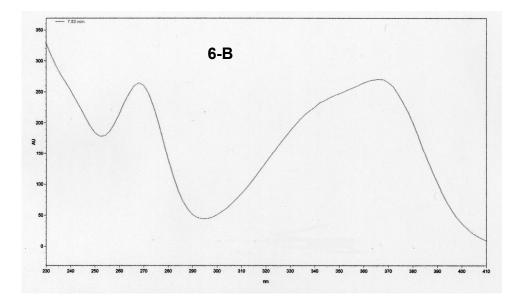
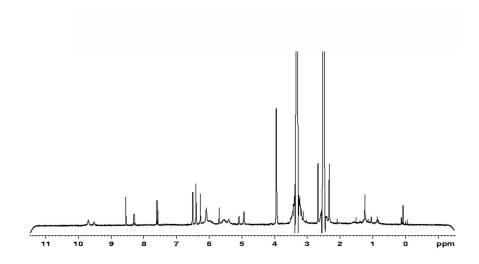
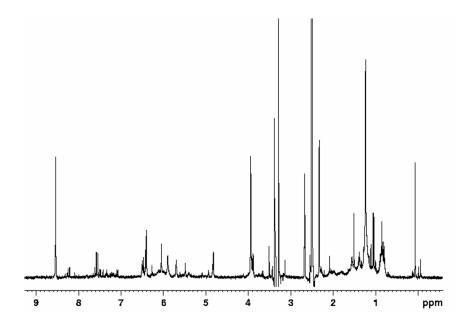

 Table S1.
 ¹³C Chemical Shifts of AFB1-FAPY Nucleoside Dibutyrate 13^a

^{*a*} Chemical shifts for ¹³C signals were determined from HMQC or HMBC 2D spectra recorded in MeOH- d_4 /DMSO- d_6 . (9:1) mixtures at 290 K. Chemical shifts are in ppm relative to TMS. The chemical shifts are derived from the two-dimensional experiments rather than from a 1-D spectrum. Consequently, their accuracy is subject to data point limitations and signals separated by only a few Hz are not resolved from one another. ^{*b*} Only one signal seen for the four FAPY species.

Proton	FAPY Aa	FAPY Ab	Carbon	FAPY Aa	FAPY Ab
	major			major	minor
			Aflatoxin		
Н5	6.39	6.35	C5	91 ^c	
H6a	6.45	6.45	C6a	112.9	112.6
OHe	6.08	6.07			
H8	6.27		C8	94.6	102.1
Н9	4.92	5.08	C9	74.0	73.9
OMe	3.93	3.93	OMe	56.7	
H9a					
			Pyrimidine Pyrimidine		
NH1	9.84 ^e	9.64 ^e			
formyl	7.57	8.33	C5	90.2^{d}	87.7 ^d
NH2	6.6 ^e	6.6 ^e			
NH4	6.49 ^e	6.52^{e}			
H1'	5.12 ^e	5.08 ^e	C1'	74.6 ^c	
H2'	1.89 ^c		C2'	33.6 ^c	
H3'	3.82^{c}		C3'	67.1 ^c	
OH3'	4.79 ^e	4.72 ^e			
H4'	3.43 ^c		C4'	66.6 ^c	
OH4'	4.53 ^{<i>c</i>,<i>e</i>}				
H5'	3.18 ^c		C5'	47.7 ^{<i>c,d</i>}	
H5"	3.53^{d}	3.49^{d}			

Table S2. ¹H and ¹³C Chemical Shifts of formyl isomers of FAPY Nucleoside $15^{a,b}$

^{*a*} Spectra were recorded in 4:1 mixtures of DMSO- d_6 /MeOH- d_4 . Chemical shifts are in ppm relative to TMS. ^{*b*}Unless otherwise specified, values for proton and carbon chemical shifts were determined from HMQC 2D spectra. ^{*c*}Only one signal was seen for both FAPY species. ^{*d*}Values determined from HMBC 2D spectra. ^{*e*}Values obtained from spectra recorded in DMSO- d_6 . AFB H2 and H3 are not tabulated.

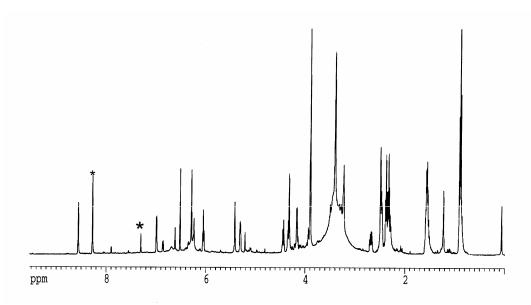

Figure S1. UV spectra (MeOH) of AFB FAPY bases 6-A (top) and 6-B (bottom).

Figure S2. ¹H NMR (DMSO- d_6) of FAPY base 6-A.

Figure S3. ¹H NMR (DMSO- d_6) of FAPY base **6-B**.

Figure S4. ¹H NMR (DMSO- d_6) spectrum of AFB-dGuo N7 adduct **10**. Asterisks indicate impurities.

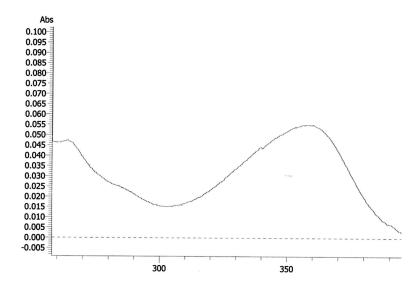


Figure S5. UV (MeOH) spectrum of AFB-dGuo N7 adduct 10.

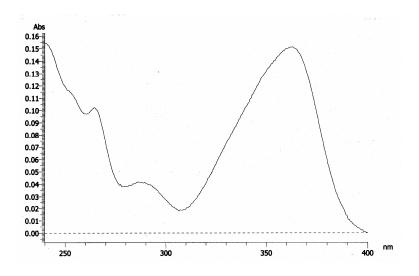


Figure S6. UV spectrum (MeOH) of AFB- O^6 dG 3',5' dibutyrate 11.

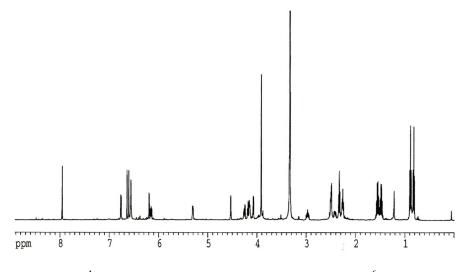
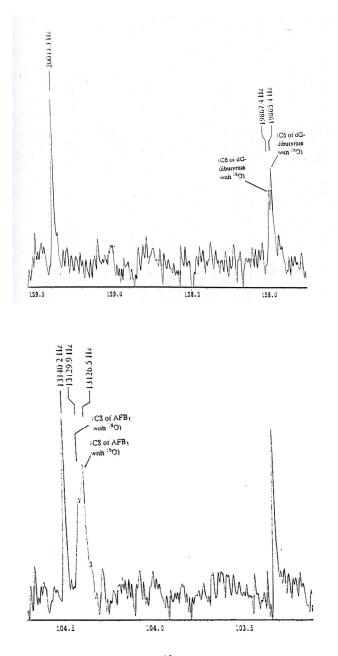
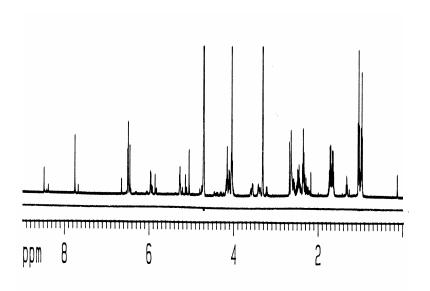




Figure S7.¹H NMR spectrum (DMSO- d_6) of AFB- O^6 dG

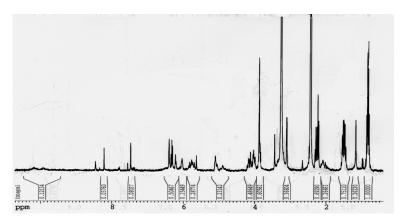

3',5' dibutyrate **11.**

Figure S8. Comparison of the ¹³C chemical shifts of aflatoxin C6 (upper spectrum) and C8 (lower spectrum) in AFB- O^6 dGuo 3', 5' dibutyrate (**11**) with 6-¹⁶O and 6-¹⁸O.

Figure S9. ¹H NMR (MeOH- d_4 /DMSO- d_6) of AFB-FAPY dibutyrate **13-Aab** with minor amounts of **13-Bab**.

Figure S10. ¹H NMR ((MeOH-*d*₄/DMSO-*d*₆) of AFB-FAPY dibutyrate

13-Bab with minor amounts of 13-Aab

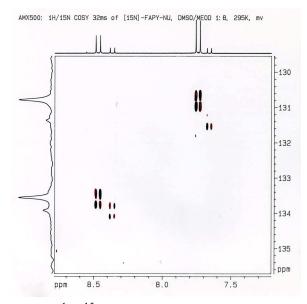


Figure S11. ¹H-¹⁵N COSY of AFB-FAPY dG dibutyrates

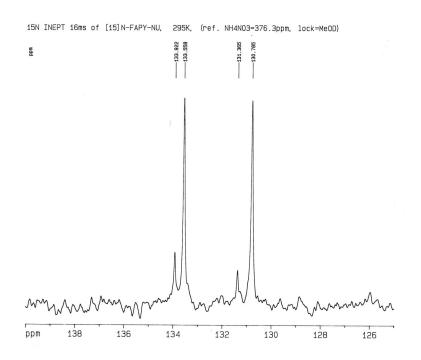


Figure S12.¹⁵N INEPT spectrum of AFB-FAPY dGuo dibutyrates 13.

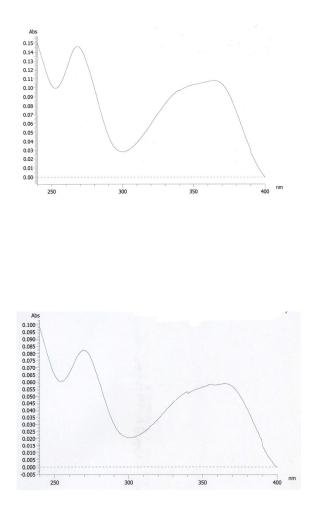


Fig. S13. UV spectra (MeOH) of AFB-FAPY dibutyrates 13-A (top) and 13-B (bottom).

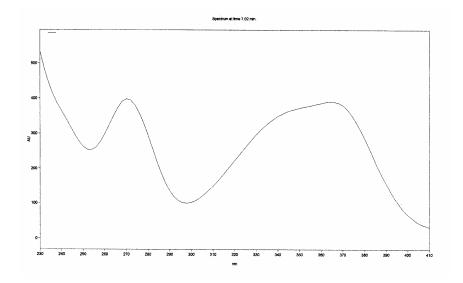
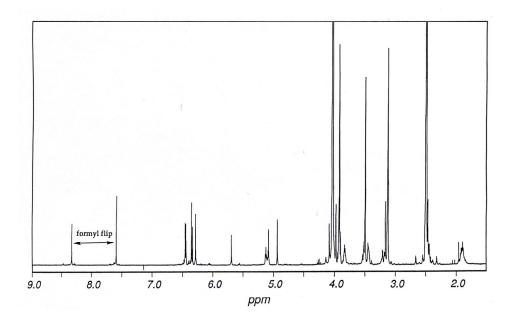



Fig. S14. UV spectrum of AFB-FAPY nucleoside 15.

Fig. S15. ¹H NMR of deprotected AFB-FAPY nucleoside **15**.

References

- Rance, M.; Sorensen, O. W.; Leupin, W.; Kogler, H.; Wuthrich, K.; Ernst, R. R.
 J. Mag. Res. 1985, *61*, 67-80.
- 2. Bax, A.; Davis, D. G. J. Mag. Res. 1985, 65, 355-360.
- 3. Bax, A.; Davis, D. G. J. Mag. Res. 1985, 63, 207-213.
- 4. Bax, A.; Griffey, R. H.; Hawkins, B. L. J. Mag. Res. 1983, 55, 301-315.
- 5. Bax, A.; Subramanian, S. J. Mag. Res. 1986, 67, 565-569.

Full text of reference 53 in the article:

- 53. Cho, Y. J.; Kim, H. Y.; Huang, H.; Slutsky, A.; Minko, I. G.; Wang, H.; Nechev,
- L. V.; Kozekov, I. D.; Kozekova, A.; Tamura, P.; Jacob, J.; Voehler, M.; Harris, T. M.;

Lloyd, R. S.; Rizzo, C. J.; Stone, M. P. J. Am. Chem. Soc. 2005, 127, 17686-17696.