Text S1. Determination of Rate Law The rate expression for the reaction of Fe(VI) with sulfonamide can be expressed as $$-d[Fe(VI)]/dt = k[Fe(VI)]_{tot}^{m}[S]_{tot}^{n}$$ (1) where [Fe(VI)] and $[S]_t$ are the concentrations of Fe(VI) and sulfonamide, m and n are the orders of the reaction, and k is the overall reaction rate constant. The kinetic studies were carried out under pseudo-order conditions with sulfonamide in excess i.e. $[S]_{ttot}>> [Fe(VI)]_{tot}$. The Fe(VI) concentrations were ranged from 0.50 to 0.75 x 10^{-4} M while sulfonamide concentrations were at least ten times of Fe(VI) concentration. Equation (1) can thus be re-written under pseudo-order conditions as: $$-d[Fe(VI)]/dt = k_1[Fe(VI)]^m$$ (2) where $$k_1 = k[S]_{tot}^n$$ (3) The rate law measurements were determined at pH 9.1 and 25 $^{\circ}$ C. Reactions were monitored by measuring the absorbance of Fe(VI) at 510 nm wavelength as a function of time. The reactions were followed for at least two half-lives. A successive integration model using the Global kinetic software for the absorbance of Fe(VI) as a function of time gave the best fit for an exponential value of 1, indicating the reaction is first-order with respect to Fe(VI). The k_1 values for the reaction were determined at various concentrations of sulfonamide under same conditions. The k_1 values were corrected for the spontaneous Fe(VI) decay in buffer solutions. The plots of k_1 values versus [S]_{tot} were linear (24), which suggests that the rate law for this reaction is first-order with respect to sulfonamide. ## Text S2 The observed activation enthalpy, $\Delta H^{\ddagger}_{obs}$, comprises enthalpy of the reaction, ΔH^{\ddagger} , and enthalpies of dissociations of HFeO₄⁻ and SH, $\Delta H^{\ddagger}_{HFeO4}$ and ΔH^{\ddagger}_{SH} , respectively. The $\Delta H^{\ddagger}_{obs}$ interms of individual enthalpy can be written as $$\Delta H^{\ddagger}_{obs} = \Delta H^{\ddagger} - \Delta H^{\ddagger}_{HFeO4} - \Delta H^{\ddagger}_{SH} \qquad (pH 7.0)$$ (4) The values of pK_{a,SH}, except sulfamethazine are 3-4 orders of magnitude apart from pH 9.1. It is therefore possible that the contribution of $\Delta H^{\ddagger}_{obs}$ at pH 9.1 would be only from ΔH^{\ddagger} and $\Delta H^{\ddagger}_{HFeO4}$ (eq 5). $$\Delta H^{\dagger}_{obs} = \Delta H^{\dagger} - \Delta H^{\dagger}_{HFeO4} \qquad (pH 9.1)$$ Thus, the differences of observed enthalpies at pH 9.1 and 7.0 give values of ΔH^{\ddagger}_{SH} for sulfamethazine. The values of ΔH^{\ddagger}_{SH} were determined as 21.3±1.1, 39.4±2.4 and 36.9±3.0 kJ mol⁻¹ for sulfisoxazole, sulfamethizole, and sulfamethoxazole, respectively. The value of ΔH^{\ddagger}_{SH} for sulfamethoxazole given in the literature (34) using solubility measurement is 33.76±0.25 kJ mol⁻¹ and is in reasonable agreement with the value obtained in our study. A similar calculation could not be performed for sulfadimethoxine because it was not possible to perform temperature dependence measurements of its rates with Fe(VI) at pH 7.0. A solution of its powder could not be dissolved at this pH because of its low solubility. The values of pK_{SH} and pK_{HFeO4} for sulfamethazine are similar (Table 1) and the difference in $\Delta H^{\ddagger}_{obs}$ at pH 7.0 and 9.1 is most likely related to the difference in rate constants for the reactions of Fe(VI) species with sulfamethazine species (eqs 2-4 in manuscript). The pH dependence of the rates for the reaction of sulfamethazine with Fe(VI) at different temperature is needed to unravel the difference in $\Delta H^{\ddagger}_{obs}$ at the two pH conditions. Table S1. Temperature Dependence of Rate Constants $(k, M^{-1}s^{-1})$ for oxidation of Sulfonamide Antimicrobials by Fe(VI) at pH 7.0 and 9.1. | Compound | pН | 15 °C | Temperature 25 °C | 35 °C | 45 °C | |------------------|-----|------------------|-------------------|------------------|-----------------| | Sulfisoxazole | 7.0 | 1296±31.6 | 1504±32.0 | 1763±47.4 | 1981±37.0 | | | 9.1 | 22.8±1.10 | 33.6±5.77 | 52.0 ± 1.02 | 81.6±2.21 | | Sulfamethazine | 7.0 | 736±19.6 | 869±33.3 | 892 ± 23.3 | 1143±45.8 | | | 9.1 | 7.79 ± 0.79 | 14.7 ± 0.61 | 20.3 ± 0.75 | 28.9 ± 0.94 | | Sulfamethiazole | 7.0 | $672 \pm 10.1^*$ | 640 ± 24.1 | 552 ± 13.2 | 468±13.3 | | | 9.1 | 1.84 ± 0.08 | 3.13 ± 0.57 | 3.75 ± 0.57 | 5.89 ± 0.21 | | Sulfadimethoxine | 9.1 | 4.25 ± 0.39 | 6.12 ± 0.41 | 8.58 ± 0.74 | $14.01 \pm .83$ | | Sulfamethoxazole | 7.0 | 828 ± 65.1 | 846 ± 38.2 | 857±38.0 | 895 ± 41.5 | | | 9.1 | 7.68 ± 0.10 | 13.54 ± 0.80 | 20.71 ± 0.10 | - | ^{*20 °}C Table S2. IR peaks of various functional groups present in SMX, A, B and C. | | SMX | A | В | С | |---|----------|----------|----------|----------| | CH ₃ , (2959, 2926 cm ⁻¹) | √ | √ | √ | √ | | C=C-H (1600 cm ⁻¹) | ✓ | ✓ | ✓ | ✓ | | N-H amide, (1528 cm ⁻¹) | ✓ | ✓ | ✓ | ✓ | | SO ₂ amide, (1348, 1398 cm ⁻¹) | ✓ | ✓ | ✓ | ✓ | | SO ₂ NH, (1116 cm ⁻¹) | ✓ | ✓ | ✓ | ✓ | | C=N, (1644 cm ⁻¹) | ✓ | | | | | N-H amine, stretch, (3392 cm ⁻¹) | ✓ | ✓ | | | | N=O, (1592 cm ⁻¹) | | ✓ | ✓ | ✓ | | C=O stretch, (1720 cm ⁻¹) | | ✓ | ✓ | ✓ | FIGURE S1. The temperature dependence of the observed second-order rate constants for the reaction between Fe(VI) and sulfonamides at different pH. \circ - sulfamethazine, \Box -sulfamethoxazole (data at pH 7.0 were taken from (24)), Δ - sulfadimethoxine \bullet -sulfamethizole, \Diamond -sulfisoxazole) FIGURE S2. A plot of SMX decrease and formation of oxygen in the reaction of sulfamethoxazole with Fe(VI) under anoxic conditions (sulfamethoxazole (Δ -pH 7.0, \Box - pH 9.0), \bullet -oxygen (pH 9.0)) ## FIGURE S3. Various sub-structural models of SMX. Figure S4. Plots of pseudo-first-order, k_1 , s^{-1} versus concentrations of substructure compounds at pH 9.0 and 25 °C. A- sulfanilamide; B- 3-amino-5-methyl isoxazole (AMI) ([Fe(VI)]= 1.5×10^{-4} M). ## Figure S5. Chemical shifts of the non-exchangeable protons of SMX and the products from NMR spectra taken in CD_3OD . SMX: Product A: $$H_{3}C$$ 5.5 7.8 7.7 Product B: Product C: Figure S6. The three spectra are direct ESI measurements of (a) the SMX in aqueous solution at pH 9 (at 10 μ M), (b) the addition of 5 equivalents of Fe(VI) at pH 9 after 7 min, and (c) an injection after 58 min of reaction time. Some minimal decrease in the SMX peak is observed in (b), and a substantial decrease of the SMX peak is observed in (c) with the appearance of a peak at 292.039 depicting product A+Na. Please note that the peaks with non-zero in the first decimal place (e.g. 288.312) do not correspond to SMX or any of its products. The AccuTOF instrument was calibrated for high resolution mass, and therefore 3 in the first decimal place corresponds to other impurities that are present at low concentrations (in the range of our SMX study).