Text S1. Determination of Rate Law

The rate expression for the reaction of Fe(VI) with sulfonamide can be expressed as

$$-d[Fe(VI)]/dt = k[Fe(VI)]_{tot}^{m}[S]_{tot}^{n}$$
(1)

where [Fe(VI)] and $[S]_t$ are the concentrations of Fe(VI) and sulfonamide, m and n are the orders of the reaction, and k is the overall reaction rate constant. The kinetic studies were carried out under pseudo-order conditions with sulfonamide in excess i.e. $[S]_{ttot}>> [Fe(VI)]_{tot}$. The Fe(VI) concentrations were ranged from 0.50 to 0.75 x 10^{-4} M while sulfonamide concentrations were at least ten times of Fe(VI) concentration. Equation (1) can thus be re-written under pseudo-order conditions as:

$$-d[Fe(VI)]/dt = k_1[Fe(VI)]^m$$
(2)

where
$$k_1 = k[S]_{tot}^n$$
 (3)

The rate law measurements were determined at pH 9.1 and 25 $^{\circ}$ C. Reactions were monitored by measuring the absorbance of Fe(VI) at 510 nm wavelength as a function of time. The reactions were followed for at least two half-lives. A successive integration model using the Global kinetic software for the absorbance of Fe(VI) as a function of time gave the best fit for an exponential value of 1, indicating the reaction is first-order with respect to Fe(VI). The k_1 values for the reaction were determined at various concentrations of sulfonamide under same conditions. The k_1 values were corrected for the spontaneous Fe(VI) decay in buffer solutions. The plots of k_1 values versus [S]_{tot} were linear (24), which suggests that the rate law for this reaction is first-order with respect to sulfonamide.

Text S2

The observed activation enthalpy, $\Delta H^{\ddagger}_{obs}$, comprises enthalpy of the reaction, ΔH^{\ddagger} , and enthalpies of dissociations of HFeO₄⁻ and SH, $\Delta H^{\ddagger}_{HFeO4}$ and ΔH^{\ddagger}_{SH} , respectively. The $\Delta H^{\ddagger}_{obs}$ interms of individual enthalpy can be written as

$$\Delta H^{\ddagger}_{obs} = \Delta H^{\ddagger} - \Delta H^{\ddagger}_{HFeO4} - \Delta H^{\ddagger}_{SH} \qquad (pH 7.0)$$
 (4)

The values of pK_{a,SH}, except sulfamethazine are 3-4 orders of magnitude apart from pH 9.1. It is therefore possible that the contribution of $\Delta H^{\ddagger}_{obs}$ at pH 9.1 would be only from ΔH^{\ddagger} and $\Delta H^{\ddagger}_{HFeO4}$ (eq 5).

$$\Delta H^{\dagger}_{obs} = \Delta H^{\dagger} - \Delta H^{\dagger}_{HFeO4} \qquad (pH 9.1)$$

Thus, the differences of observed enthalpies at pH 9.1 and 7.0 give values of ΔH^{\ddagger}_{SH} for sulfamethazine. The values of ΔH^{\ddagger}_{SH} were determined as 21.3±1.1, 39.4±2.4 and 36.9±3.0 kJ mol⁻¹ for sulfisoxazole, sulfamethizole, and sulfamethoxazole, respectively. The value of ΔH^{\ddagger}_{SH} for sulfamethoxazole given in the literature (34) using solubility measurement is 33.76±0.25 kJ mol⁻¹ and is in reasonable agreement with the value obtained in our study. A similar calculation could not be performed for sulfadimethoxine because it was not possible to perform temperature dependence measurements of its rates with Fe(VI) at pH 7.0. A solution of its powder could not be dissolved at this pH because of its low solubility. The values of pK_{SH} and pK_{HFeO4} for sulfamethazine are similar (Table 1) and the difference in $\Delta H^{\ddagger}_{obs}$ at pH 7.0 and 9.1 is most likely related to the difference in rate constants for the reactions of Fe(VI) species with sulfamethazine species (eqs 2-4 in manuscript). The pH dependence of the rates for the reaction of sulfamethazine with Fe(VI) at different temperature is needed to unravel the difference in $\Delta H^{\ddagger}_{obs}$ at the two pH conditions.

Table S1. Temperature Dependence of Rate Constants $(k, M^{-1}s^{-1})$ for oxidation of Sulfonamide Antimicrobials by Fe(VI) at pH 7.0 and 9.1.

Compound	pН	15 °C	Temperature 25 °C	35 °C	45 °C
Sulfisoxazole	7.0	1296±31.6	1504±32.0	1763±47.4	1981±37.0
	9.1	22.8±1.10	33.6±5.77	52.0 ± 1.02	81.6±2.21
Sulfamethazine	7.0	736±19.6	869±33.3	892 ± 23.3	1143±45.8
	9.1	7.79 ± 0.79	14.7 ± 0.61	20.3 ± 0.75	28.9 ± 0.94
Sulfamethiazole	7.0	$672 \pm 10.1^*$	640 ± 24.1	552 ± 13.2	468±13.3
	9.1	1.84 ± 0.08	3.13 ± 0.57	3.75 ± 0.57	5.89 ± 0.21
Sulfadimethoxine	9.1	4.25 ± 0.39	6.12 ± 0.41	8.58 ± 0.74	$14.01 \pm .83$
Sulfamethoxazole	7.0	828 ± 65.1	846 ± 38.2	857±38.0	895 ± 41.5
	9.1	7.68 ± 0.10	13.54 ± 0.80	20.71 ± 0.10	-

^{*20 °}C

Table S2. IR peaks of various functional groups present in SMX, A, B and C.

	SMX	A	В	С
CH ₃ , (2959, 2926 cm ⁻¹)	√	√	√	√
C=C-H (1600 cm ⁻¹)	✓	✓	✓	✓
N-H amide, (1528 cm ⁻¹)	✓	✓	✓	✓
SO ₂ amide, (1348, 1398 cm ⁻¹)	✓	✓	✓	✓
SO ₂ NH, (1116 cm ⁻¹)	✓	✓	✓	✓
C=N, (1644 cm ⁻¹)	✓			
N-H amine, stretch, (3392 cm ⁻¹)	✓	✓		
N=O, (1592 cm ⁻¹)		✓	✓	✓
C=O stretch, (1720 cm ⁻¹)		✓	✓	✓

FIGURE S1. The temperature dependence of the observed second-order rate constants for the reaction between Fe(VI) and sulfonamides at different pH. \circ - sulfamethazine, \Box -sulfamethoxazole (data at pH 7.0 were taken from (24)), Δ - sulfadimethoxine \bullet -sulfamethizole, \Diamond -sulfisoxazole)

FIGURE S2. A plot of SMX decrease and formation of oxygen in the reaction of sulfamethoxazole with Fe(VI) under anoxic conditions (sulfamethoxazole (Δ -pH 7.0, \Box - pH 9.0), \bullet -oxygen (pH 9.0))

FIGURE S3. Various sub-structural models of SMX.

Figure S4. Plots of pseudo-first-order, k_1 , s^{-1} versus concentrations of substructure compounds at pH 9.0 and 25 °C. A- sulfanilamide; B- 3-amino-5-methyl isoxazole (AMI) ([Fe(VI)]= 1.5×10^{-4} M).

Figure S5. Chemical shifts of the non-exchangeable protons of SMX and the products from NMR spectra taken in CD_3OD .

SMX:

Product A:

$$H_{3}C$$
 5.5
 7.8
 7.7

Product B:

Product C:

Figure S6. The three spectra are direct ESI measurements of (a) the SMX in aqueous solution at pH 9 (at 10 μ M), (b) the addition of 5 equivalents of Fe(VI) at pH 9 after 7 min, and (c) an injection after 58 min of reaction time. Some minimal decrease in the SMX peak is observed in (b), and a substantial decrease of the SMX peak is observed in (c) with the appearance of a peak at 292.039 depicting product A+Na. Please note that the peaks with non-zero in the first decimal place (e.g. 288.312) do not correspond to SMX or any of its products. The AccuTOF instrument was calibrated for high resolution mass, and therefore 3 in the first decimal place corresponds to other impurities that are present at low concentrations (in the range of our SMX study).

