Supporting Information

An Amphiphilic Molecular Basket with Conformation Sensitive to Both Solvent Changes and UV Irradiation

Eui-Hyun Ryu and Yan Zhao*

Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA

Table of Contents

General Method	S2
Synthetic Schemes	S2
Syntheses of compounds 1, 13, 7, and 4	S3
Figure 1S	S4
Figure 2S	S4
Figure 3S	S5
¹ H NMR spectra of key compounds	S5–8

General Method

Anhydrous tetrahydrofuran (THF) and methylene chloride were dried by passage through a column of activated alumina under compressed nitrogen. Cholic acid was crystallized from 95% ethanol and dried at 90 °C under vacuum. All other reagents and solvents were of A.C.S. certified grade or higher, and were used as received from commercial suppliers. All glassware and syringes were dried in an oven at least overnight prior to use.

Synthesis

(a) NaNO₂, HCl, H₂O, THF; (b) phenol, pyridine, THF; (c) 7, K₂CO₃, Bu₄NI, DMF

Compound 1. Synthesis of compound **1** was reported previously.¹

Compound 13. Compound **13** was synthesized according to literature procedures.² mp 221-223 °C. ¹H NMR (300 MHz, CD₃OD, δ): 3.96 (s, 1H), 3.80 (m, 1H), 3.51 (t, 2H, J=6.3 Hz), 3.37 (m, 1H), 2.34-0.91 (m, 30H), 0.72 (s, 3H).

Compound 7. Compound 7 was synthesized according to modified literature procedures.² Compound **13** (1.10 g, 2.79 mmol) and Ph₃P (0.89 g, 3.38 mmol) were dissolved in anhydrous DMF (15 mL). CBr₄ (1.12 g, 3.38 mmol) was added slowly under N₂ flush. After 6 h at rt, the reaction mixture was poured into H₂O (100 mL). The precipitate formed was collected by suction filtration and washed with water (2 × 5 mL). The final product was purified by column chromatography over silica gel using CH₂Cl₂/acetone as the eluents to give a white powder (511 mg, 40% yield). mp 120-122 °C. ¹H NMR (300 MHz, CD₃OD, δ): 3.95 (s, 1H), 3.79 (m, 1H), 3.41 (m, 3H), 2.23-0.91 (m, 30H), 0.72 (s, 3H).

Compound 4. Compound 4 was synthesized according to literature procedures.³ ¹H NMR (300 MHz, CDCl₃, δ): 6.07 (s, 8H), 4.29 (d, 4H, J = 13.2 Hz), 3.74 (t, 8H, J = 7.6 Hz), 2.90 (d, 4H, J = 13.2 Hz), 1.90-1.80 (m, 8H), 1.45-1.13 (m, 24H), 0.89 (t, 12H, J = 7.2 Hz).

¹ Zhao, Y.; Ryu, E.-H. J. Org. Chem. 2005, 70, 7585–7591.

² Kihira, K.; Mikami, T.; Ikawa, S.; Okamoto, A.; Yoshii, M.; Miki, S.; Mosbach, E. H.; Hoshita, T. *Steroids* **1992**, *57*, 193–8.

³ Jakobi, R. A.; Bohmer, V.; Grutter, C.; Kraft, D.; Vogt, W. New J. Chem. 1996, 20, 493-501.

Figure 1S. Plot of the chemical shift of the *para* phenyl proton in 10 as a function of concentration of 2 in 95/5 of CCl_4/CD_3OD (vol/vol). Theoretical curve is nonlinear least-square fitting to a 1:1 binding isotherm.

Figure 2S. Plot of the chemical shift of selected aromatic proton in 11 as a function of concentration of 2 in 95/5 of CCl_4/CD_3OD (vol/vol). Theoretical curve is nonlinear least-square fitting to a 1:1 binding isotherm.

Figure 3S. ¹H NMR spectra of compound **2** a) before, b) immediately after, and c) 24 h in dark after irradiation. The peaks at between 3.3–4.1 ppm are from protons adjacent to OH and O in **2**. The large peaks at 3.3 and 4.8 ppm come from undeuterated solvents. Solvent = 5% CD₃CD/CCl₄.

Figure 4S. ¹H NMR (400 MHz) spectra of compound 1 in DMSO-d₆.

Figure 5S. ¹H NMR (400 MHz) spectra of compound 7 in CD₃OD.

Figure 6S. ¹H NMR (400 MHz) spectra of compound 6 in CD₃OD.

Figure 7S. ¹H NMR (400 MHz) spectra of compound 2 in CD₃OD.

Figure 8S. ¹H NMR (400 MHz) spectra of compound 14 in CD₃OD.

Figure 9S. ¹H NMR (400 MHz) spectra of compound **3** in CD₃OD.