SUPPORTING INFORMATION

New Synthetic Routes towards Enantiopure Nitrogen Donor Ligands

Xavier Sala,^a Anna M. Rodríguez,^a Montse Rodríguez,^a Isabel Romero,^a Antoni Llobet,^b Alexander von Zelewsky^c and Jordi Benet-Buchholz^d

^a Department of Chemistry, Universitat de Girona, Campus Montilivi, s/n. E-17071-Girona,
Spain. ^b Department of Chemistry, Universitat Autònoma de Barcelona, Cerdanyola del Vallès,
E-08193-Barcelona, Spain. ^c Department of Chemistry, University of Fribourg, Pérolles, 1700 Fribourg, Switzerland. ^d X-Ray Diffraction Manager, Institut Català D'Investigació Química,
Avda. Països Catalans, 16. E-43007-Tarragona, Spain.

antoni.llobet@uab.es

Page	Contents
S2-S3	Further experimental information
S4	Numbering scheme for NMR assignments in (-)-21.
S5	ORTEP plot for the X-ray structure of complex (-)-20
S6-S16	¹ H and ¹³ C NMR spectra for Scheme 1 compounds
S17-S25	¹ H and ¹³ C NMR spectra for Scheme 2 compounds
S26-S33	¹ H and ¹³ C NMR spectra for Scheme 3 compounds
S34-S37	1D and 2D NMR experiments for complex (-)-21.

EXPERIMENTAL SECTION

General procedures. Unless otherwise specified, materials were obtained from commercial suppliers and were used without further purification. All reactions requiring anhydrous conditions were conducted in oven-dried glassware under a dry nitrogen atmosphere. All solvents were distilled under nitrogen over appropriate drying agents (sodium or calcium hydride).

¹H and ¹³C NMR spectra were recorded in CDCl₃ on a 200 MHz NMR spectrometer. DEPT experiments were used to establish the structures and to assign the signals. Chemical Shifts (δ) for ¹H and ¹³C were referred to internal solvent resonances. The IR spectra were recorded using an ATR system. Optical rotations were recorded in CHCl₃ at 25 °C unless otherwise indicated with an error of less than ±0.1. The [α]_D values are given in 10⁻¹ deg cm² g⁻¹. Yields are given for isolated products showing one spot on a TLC plate and no impurities detectable in the NMR spectrum.

X-ray crystal structure determination: Crystals of (-)-20 were obtained by slow evaporation of a solution of the compound in acetonitrile at room temperature. Crystals were prepared under inert conditions immersed in perfluoropolyether as protecting oil for manipulation.

Data Collection: Measurements were made on a Bruker-Nonius diffractometer equipped with a APPEX 2 4K CCD area detector, a FR591 rotating anode with Mo_{Kα} radiation, Montel mirrors as monochromator and a Kryoflex low temperature device (T = -173 °C). Full-sphere data collection was used with ω and φ scans.

Programs used: Data collection Apex2 V. 1.0-22 (Bruker-Nonius 2004), data reduction Saint + Version 6.22 (Bruker-Nonius 2001) and absorption correction SADABS V. 2.10 (2003).

Structure Solution and Refinement: SHELXTL Version 6.10 (Sheldrick, 2000) was used.^[1] (-)-20 refined in a monoclinic cell ($P2_1$) with a beta angle of approximately 90° applying a twin law (1 0 0 0 -1 0 0 0 -1; BASF: 0.154). The asymmetric unit contains two independent molecules (A and B) of (-)-20 with similar conformations and two independent molecules of acetonitrile. Refinement in an orthorhombic cell ($P2_12_12_1$) leaded to R₁-values over 12 %.

Crystal data for (-)-20: C₃₀H₄₀Br₂Mn₁N₄, 671.42 g mol⁻¹, monoclinic, *P*2₁, a = 9.8452(11) Å, b = 24.338(3) Å, c = 12.7573(14) Å, β = 90.164(3)°, V = 3056.8(6) Å³, *Z* = 4, ρ_{calcd} = 1.459 Mg/m³, *R*₁ = 0.0484 (0.548), wR2 = 0.01197 (0.1239), for 19283 reflections with I>2 σ (I) (for 21282 reflections [R_{int}: 0.0547] with a total measured of 47950 reflections), Flack -0.006(6), goodness-of-fit on F² = 1.044, largest diff. peak (hole) = 1.782 (-1.360) e Å⁻³.

¹ G. M. Sheldrick (2000) *SHELXTL Crystallographic System Ver. 6.10*, Bruker AXS, Inc.: Madison, Wisconsin.

Numbering scheme for [Ru^{II}Cl((-)-10)(bpy)](BF₄)

Figure 1. An ORTEP view (ellipsoids are drawn at 50% probability level) of the molecular structure of (-)-20 (molecule A), including the atom numbering scheme.

SII

S3 I

NMR of complex (-)-21:

