Total Synthesis of Amphidinolide E

Porino Va and William R. Roush*
Departments of Chemistry and Biochemistry
Scripps Florida, Jupiter, FL 33458
e-mail: roush@scripps.edu

Supporting Information:

Part I. References to Total Syntheses of Amphidinolides A, J, K, P, T, W, X and Y (page SI-2)

Part II. Summary of Attempted Esterification Reactions of Model Substrates 22-24 (page SI-3)

Part III. Experimental Procedures for Synthesis of Amphidinolide E (pages SI-4 through SI-26).

Part I. References to Total Syntheses of Amphidinolides A, J, K, P, T, W, X and Y

Amphidinolide A: (a) Lam, H. W.; Pattenden, G., Angew. Chem., Int. Ed. Engl. 2002, 41, 508. (b) Maleczka, R. E., Jr.; Terrell, L. R.; Geng, F.; Ward, J. S., III, Org. Lett. 2002, 4, 2841. (c) Trost, B. M.; Chisholm, J. D.; Wrobleski, S. J.; Jung, M., J. Am. Chem. Soc. 2002, 124, 12420. (d) Trost, B. M.; Harrington, P. E., J. Am. Chem. Soc. 2004, 126, 5028. (e) Trost, B. M.; Wrobleski, S. T.; Chisholm, J. D.; Harrington, P. E.; Jung, M., J. Am. Chem. Soc. 2005, 127, 13589. (f) Trost, B. M.; Harrington, P. E.; Chisholm, J. D.; Wrobleski, S. T., J. Am. Chem. Soc. 2005, 127, 13598.

Amphidinolide J: Williams, D. R.; Kissel, W. S., J. Am. Chem. Soc. 1998, 120, 11198.

Amphidinolide K: Williams, D. R.; Meyer, K. G., J. Am. Chem. Soc. 2001, 123, 765.

Amphidinolide P: (a) Williams, D. R.; Myers, B. J.; Mi, L., Org. Lett. 2000, 2, 945. (b) Trost, B. M.; Papillon, J. P. N., J. Am. Chem. Soc. 2004, 126, 13618. (c) Trost, B. M.; Papillon, J. P. N.; Nussbaumer, T., J. Am. Chem. Soc. 2005, 127, 17921.

Amphidinolide T: (a) Fürstner, A.; Aissa, C.; Riveiros, R.; Ragot, J., Angew. Chem., Int. Ed. Engl. 2002, 41, 4763. (b) Aiessa, C.; Riveiros, R.; Ragot, J.; Fürstner, A., J. Am. Chem. Soc. 2003, 125, 15512. (c) Ghosh, A. K.; Liu, C., J. Am. Chem. Soc. 2003, 125, 2374. (d) Ghosh, A. K.; Liu, C., Strategies Tactics Org. Synth. 2004, 5, 255. (e) Colby, E. A.; O'Brien, K. C.; Jamison, T. F., J. Am. Chem. Soc. 2004, 126, 998. (f) Colby, E. A.; O'Brien, K. C.; Jamison, T. F., J. Am. Chem. Soc. 2005, 127, 4297. (g) O'Brien, K. C.; Colby, E. A.; Jamison, T. F., Tetrahedron 2005, 61, 6243. (h) Deng, L.-S.; Huang, X.-P.; Zhao, G., J. Org. Chem. 2006, 71, 4625.

Amphidinolide W: (a) Ghosh, A. K.; Gong, G., J. Am. Chem. Soc. 2004, 126, 3704. (b) Ghosh, A. K.; Gong, G., J. Org. Chem. 2006, 71, 1085.

Amphidinolide X: Lepage, O.; Kattnig, E.; Fürstner, A., J. Am. Chem. Soc. 2004, 126, 15970.

Amphidinolide Y: Fürstner, A.; Kattnig, E.; Lepage, O., J. Am. Chem. Soc. 2006, 128, 9194.

Part II.

Table 1. Summary of Attempted Esterification Reactions of Model Substrates 22-24

24: $\mathrm{R}=\mathrm{MOM}$
25

26

27

28

29

Many conditions were screened to esterify alcohol 22, or alcohols 23 and 24 (truncated analogs of alcohol 22) with acid 26 or 27,28 , and 29 (Table 1). No more than trace amounts of the corresponding ester could be isolated from all of the reactions in Table 1. Some of the conditions that failed were: the modified Yamaguchi conditions (entry 1), mild peptide coupling conditions (entries 2, 3 and 6), use of Otera's transesterification catalyst $\mathbf{2 5}^{\mathbf{1 - 3}}$ (entry 5), attempted coupling of the tributyltin ether of $\mathbf{2 4}$ with the acyl fluoride 28 (entry 7), and generation of the lithium alkoxide of $\mathbf{2 4}$ followed by treatment with acyl fluoride 28 (entry 8). In most cases, large quantities of the fully conjugated, diene migrated acid byproduct 30 were isolated.

Part III. Experimental Procedures for Total Synthesis of Amphidinolide E

General Experimental Details. All reaction solvents were purified before use. Tetrahydrofuran, dichloromethane, diethyl ether, and toluene were purified by passing through a solvent column composed of activated A-1 alumina. Unless indicated otherwise, all reactions were conducted under an atmosphere of argon using flame-dried or oven-dried $\left(170{ }^{\circ} \mathrm{C}\right)$ glassware. Four \AA molecular sieves were activated under high vacuum with heat $\left(180^{\circ} \mathrm{C}\right)$ for 12 h and re-activated by thorough flamedrying immediately prior to use.

Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded on commercial instruments at 400 or 500 MHz . Carbon-13 nuclear magnetic resonance $\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$ spectra were recorded at 100 and 125 MHz , respectively. The proton signal for residual non-deuterated solvent ($\square 7.26$ for CHCl_{3}) was used as an internal reference for ${ }^{1} \mathrm{H}$ NMR spectra. For ${ }^{13} \mathrm{C}$ NMR spectra, chemical shifts are reported relative to the $\square 77.2$ resonance of CHCl_{3}. Coupling constants are reported in Hz. Infrared (IR) spectra were recorded as films on a Perkin-Elmer Spectrum One FTIR. Opitcal rotations were measured on a Rudolph Autopol IV polarimeter using a quartz cell with 1 mL capacity and a 10 cm path length. Mass spectra were recorded on a ZVG 70-250-S spectrometer manufactured by Micromass Corp. (Manchester, UK).

Analytical thin layer chromatography (TLC) was performed on Kieselgel $60 \mathrm{~F}_{254}$ glass plates precoated with a 0.25 mm thickness of silica gel. The TLC plates were visualized with UV light and/or by staining with Hanessian solution (ceric sulfate and ammonium molybdate in aqueous sulfuric acid). Column chromatography was generally performed using Kieselgel 60 (230-400 mesh) silica gel, typically using a 50-100:1 weight ratio of silica gel to crude product.

HPLC purifications were performed by using a HPLC system composed of two Varian Prostar pumps (model 210) connected to normal phase columns. Samples were loaded into the system with a 2 mL Rheodyne 7125 injector and were detected using a Varian Prostar UV and a Varian RI dectector.

(E)-5-((4R,5R)-2,2-Dimethyl-5-vinyl-[1,3]dioxolan-4-yl)-pent-4-enoic acid methyl ester (6) To a $-78^{\circ} \mathrm{C}$ solution of $(\mathrm{COCl})_{2}(3.45 \mathrm{~mL}, 39.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ was added DMSO $(3.50 \mathrm{~mL}$, $49.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction was stirred at $-7{ }^{\circ} \mathrm{C}$ for 15 min , then alcohol $5^{4}(3.12 \mathrm{~g}$, $19.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added. The reaction was stirred for 20 minutes at $-78^{\circ} \mathrm{C}$ followed by the addition of triethylamine $(16.4 \mathrm{~mL}, 118 \mathrm{mmol})$. The mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$. After 30
minutes, the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$, upon which a white precipitate forms (triethylamine hydrochloride). The slurry was filtered through a 1 inch pad of Celite and concentrated to afford the aldehyde, a yellow oil, which was immediately used in the next reaction.

To a $0{ }^{\circ} \mathrm{C}$ solution of the crude aldehyde in THF (60 mL) was added vinylmagnesium bromide (60 mL of a 1.0 M THF solution, 60 mmol). The reaction was stirred for 2.5 h , and then quenched with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and extract with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL}$ x 3$)$. The organic phase was washed with brine (50 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated to afford a mixture of diastereomeric allylic alcohols as a yellow oil. This oil was used immediately in the next reaction.

To the mixture of diastereomeric allylic alcohols, from the preceeding step, in toluene (66 mL) was added trimethyl orthoacetate $(12.5 \mathrm{~mL}, 98.5 \mathrm{mmol})$ and propionoic acid ($0.3 \mathrm{~mL}, 3.94 \mathrm{mmol}$). The reaction was fitted with a condenser and placed in a $110{ }^{\circ} \mathrm{C}$ oil bath for 18 h . The solution was then quenched with 3 mL of triethylamine and concentrated. The crude product was purified by flash column chromatography to yield methyl ester $6(2.83 \mathrm{~g}, 60 \%$ over 3 steps $)$ as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}=-132^{\circ}(c$ $\left.0.99, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 5.74-5.83(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{dd}, J=6.4,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J$ $=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\operatorname{appq}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.44(\mathrm{~m}, 4 \mathrm{H})$, $1.44(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right) \square 172.8,134.0,133.7,126.9,118.3,108.7,82.0$, 81.6, 51.3, 33.1, 27.3, 26.8, 26.7; IR (neat) 2987, 2874, 1740, 1437, $1371 \mathrm{~cm}^{-1} ; \operatorname{HRMS}(\mathrm{ES}+$) m / z for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 263.1259, found 263.1255.

(E)-5-((4R,5R)-2,2-Dimethyl-5-vinyl-[1,3]dioxolan-4-yl)-pent-4-enal (3) To a $-78{ }^{\circ} \mathrm{C}$ solution of methyl ester $6(2.25 \mathrm{~g}, 9.36 \mathrm{mmol})$ in toluene (31 mL) was added DIBAL $(9.36 \mathrm{~mL}$ of a 1.0 M hexane solution, 9.36 mmol) dropwise such that the internal temperature was below $-70{ }^{\circ} \mathrm{C}$. After being stirred for 30 min , the reaction was quenched with saturated aqueous sodium potassium tartrate (Rochelle's salt) $(40 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixure was stirred at room temperature for 3 h and extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$. The organic phase was washed with brine (50 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated. The crude product was purified by flash column chromatography to afford aldehyde $3\left(1.59 \mathrm{~g}, 81 \%\right.$) as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}=-28.7^{\circ}\left(c \quad 1.41, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\square 9.73(\mathrm{bs}, 1 \mathrm{H}), 5.70-5.85(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{bdd}, J=6.0,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J$ $=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-4.10(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}) $\square 201.3,134.1,133.8,127.2,118.8,109.0,82.2,81.8,42.8,27.0,27.0,24.7$; IR
(neat) $3085,2987,2875,1726,1379,1371,1239 \mathrm{~cm}^{-1}$; HRMS (ES +) m / z for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 233.1154, found 233.1245.

(S)-2,2-Diethyl-4-[(1R,2R)-1-(4-methoxy-benzyloxy)-2-methyl-but-3-enyl]-[1,3]dioxolane

(SI-1) To a $0{ }^{\circ} \mathrm{C}$ slurry of $\mathrm{NaH}(1.69 \mathrm{~g}, 70.6 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NI}(1.7 \mathrm{~g}, 4.7 \mathrm{mmol})$ in THF $(157 \mathrm{~mL})$ was added homoallylic alcohol $7^{5}(10.1 \mathrm{~g}, 47.0 \mathrm{mmol})$ followed by $\mathrm{PMBCl}(6.38 \mathrm{~mL}, 47.0 \mathrm{mmol})$. The reaction was fitted with a condenser and refluxed for 16 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and water (50 mL) and extracted with EtOAc (25 mL x 3). The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The crude product was purified by flash column chromatography to afford SI-1 $(15.15 \mathrm{~g}, 96 \%)$ as a colorless oil: [C$]^{25}{ }_{\mathrm{D}}=-41^{\circ}(\mathrm{c}$ $1.53, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.86$ (ddd, $J=8.0,10.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\operatorname{app} \mathrm{t}, J=17.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{AB}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{AB}, J$ $=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=6.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.52(\mathrm{dd}, J=3.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.54(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{dt}, J$ $=9.6,7.6 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 159.1,140.1,130.1,129.3,115.0,113.7,112.1,83.1$, $77.3,74.0,66.9,55.2,40.8,29.7,29.0,17.0,8.2,8.1$; IR (neat) $3073,2972,1613,1514,1249 \mathrm{~cm}^{-1}$; HRMS (ES +) m / z for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 357.2042, found 357.2044

(3R,4R)-4-((S)-2,2-Diethyl-[1,3]dioxolan-4-yl)-4-(4-methoxy-benzyloxy)-3-methyl-butan-1-ol
(8) To a solution of SI-1 ($15.1 \mathrm{~g}, 45.3 \mathrm{mmol}$) in THF (181 mL) was added 9-BBN (272 mL of a 0.5 M THF solution, 136 mmol). The reaction was fitted with a condenser, refluxed for 3 h , cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with water (25 mL). The mixure was then treated with 2 N NaOH aq. $(227 \mathrm{~mL})$ followed by $30 \%(\mathrm{w} / \mathrm{w}) \mathrm{H}_{2} \mathrm{O}_{2}(46.3 \mathrm{~mL})$ and the biphasic mixture was stirred at room temperature for 17 h . The aqueous phase was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The crude product was purified by flash column chromatography to afford $\mathbf{8}(15.1 \mathrm{~g}, 94 \%)$ as a colorless oil: $[\square]_{\mathrm{D}}^{25}=-27^{\circ}\left(c 0.63, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.16(\operatorname{app} \mathrm{q}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=6.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{app} \mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.76(\mathrm{~m}, 1 \mathrm{H})$, $3.60-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=4.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=4.5,6.0 \mathrm{~Hz}, 1 \mathrm{H})$,
1.73-1.79 (m, 1H), 1.58-1.67 (m, 4H), $1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{dt}, J=7.0,5.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 159.2,130.3,129.3,113.7,112.6,83.3,77.3,76.3,67.7,60.5,55.2,34.9,32.1,29.7$, 29.0, 16.3, 8.2; IR (neat) 3436, 2971, 2881, 1613, 1514, $1249 \mathrm{~cm}^{-1}$; HRMS (ES+) m / z for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd 375.2147, found 375.2141.

(3R,4R)-4-((S)-2,2-Diethyl-[1,3]dioxolan-4-yl)-4-(4-methoxy-benzyloxy)-3-methyl-
butyraldehyde (SI-2) To a $0{ }^{\circ} \mathrm{C}$ solution of alcohol $8(15.0 \mathrm{~g}, 42.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(142 \mathrm{~mL})$ was added DMSO ($9.1 \mathrm{~mL}, 128 \mathrm{mmol}$), i- $\mathrm{Pr}_{2} \mathrm{NEt}(22.2 \mathrm{~mL}, 128 \mathrm{mmol})$ and $\mathrm{SO}_{3} \cdot \operatorname{Pyr}(20.3 \mathrm{~g}, 128 \mathrm{mmol})$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , then quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(100 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mLx 3). The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The crude product was purified by flash column chromatography to afford SI-2 (13.39 $\mathrm{g}, 89 \%$) as a colorless oil: $[\square]_{\mathrm{D}}^{25}=-30^{\circ}\left(c 2.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 9.73$ (app t, $J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{AB}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{AB}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=6.5,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=6.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=4.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{ddd}, J=2.0,6.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.37$ (ddd, $J=2.0,7.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.06(\mathrm{~d}, J=7.5, \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 202.2,159.2,130.2,129.4,113.7,113.0,82.2,76.1,73.3,67.6,55.2,47.1$, 30.3, 29.7, 28.9, 16.5, 8.2, 8.2; IR (neat) 2971, 2934, 2724, 2721, 1724, 1514, $1249 \mathrm{~cm}^{-1}$; HRMS (ES+) m / z for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 373.1991, found 373.1984.

(S)-2,2-Diethyl-4-[(1R,2R)-1-(4-methoxy-benzyloxy)-2-methyl-pent-4-ynyl]-[1,3]dioxolane
(9) To a $0{ }^{\circ} \mathrm{C}$ solution of $\mathrm{PPh}_{3}(24.9 \mathrm{~g}, 94.87 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(182 \mathrm{~mL})$ was added $\mathrm{CBr}_{4}(15.7 \mathrm{~g}, 47.4$ $\mathrm{mmol})$. The reaction was warmed to room temperture for 30 min and then cooled back to $0{ }^{\circ} \mathrm{C}$. To this mixture was added aldehyde $\mathbf{S I - 2}(12.8 \mathrm{~g}, 36.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction was stirred for 30 min and then diluted with hexane $(400 \mathrm{~mL})$, upon which a white precipitate formed $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}\right)$. The slurry was filtered through Celite and concentrated. The residue was dissolve in hexane $(300 \mathrm{~mL})$ to precipitate more $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$. The slurry was filtered through Celite and again concentrated. The residual oil was dissolved in THF (100 mL), cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with n -BuLi (32.4 mL of 2.29 M hexane solution, 74.3 mmol$)$. The reaction was stirred for 1 h and then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$
and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. Purification of the crude product by flash column chromatography afforded $9(11.0 \mathrm{~g}, 98 \%)$ as a colorless oil: $[\square]_{\mathrm{D}}^{25}=-7.6^{\circ}\left(c 0.89, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square$ $7.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{AB}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{AB}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17(\mathrm{dt}, J=6.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=6.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.57(\mathrm{t}, ~ J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{app} \mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.71$ $(\mathrm{m}, 4 \mathrm{H}), 1.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{appq}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 159.2$, $130.5,129.4,113.7,112.8,83.2,81.2,76.5,73.7,69.4,67.0,55.2,34.9,29.7,29.0,22.1,15.7,8.2,8.1$; IR (neat) $3295,2971,1613,1514 \mathrm{~cm}^{-1}$; HRMS (ES+ $) m / z$ for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 369.2042, found 369.2037.

(2S,3R,4R)-3-(4-Methoxy-benzyloxy)-4-methyl-hept-6-yne-1,2-diol (SI-3) To alkyne 9 (4.84 $\mathrm{g}, 14.0 \mathrm{mmol}$) was added a $4: 1 \mathrm{mix}$ me of AcOH and water $(47 \mathrm{~mL})$. The reaction mixture was heated to $40^{\circ} \mathrm{C}$ for 6 h and then was diluted with 50 mL of EtOAc. Solid $\mathrm{NaHCO}_{3}(20 \mathrm{~g})$ was slowly added portionwise and then the mixture was extracted with EtOAc $(25 \mathrm{~mL} \times 3)$. The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The crude product was purified by flash column chromatography to afford diol SI-3 (3.39 g, 87\%) as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}=+13.6^{\circ}(c 0.59$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{AB}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{AB}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.84(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{dd}, J=4.4,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.33-2.46(\mathrm{~m}, 3 \mathrm{H}), 2.18(\mathrm{dd}, J=4.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-2.02(\mathrm{~m}, 1 \mathrm{H}), 7.27$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 159.4,130.3,129.6,113.9$, $83.8,83.0,74.8,71.5,69.9,63.3,55.3,34.4,21.9,16.3$; IR (neat) $3413,3306,2936,1612,1515,1249 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS $(\mathrm{ES}+) \mathrm{m} / z$ for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 301.1416, found 301.1416.

(2R,3R)-2-(4-Methoxy-benzyloxy)-3-methyl-hex-5-ynal (10) To a $0{ }^{\circ} \mathrm{C}$ solution of SI-3 (3.39 $\mathrm{g}, 12.2 \mathrm{mmol}$) in THF (20 mL) and pH 7 buffer (20 mL) was added $\mathrm{NaIO}_{4}(3.13 \mathrm{~g}, 14.6 \mathrm{mmol})$. The reaction was stirred for 4 h , quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(25 \mathrm{~mL})$ and extracted with EtOAc (25 mL x 3). The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated to
afford pure $10(2.76 \mathrm{~g}, 92 \%)$ as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}=+80^{\circ}\left(c 2.26, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ प9.65 (app d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{dd}, J=3.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.11-$ $2.17(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{appt}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) [203.5, 159.5, 129.8, 129.2, 113.8, 85.6, 81.9, 72.8, 70.4, 55.2, 34.0, 21.3, 15.3; IR (neat) 3292, 2967, 2837, 1731, 1515, $1249 \mathrm{~cm}^{-1}$; HRMS (ES+) m / z for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 269.1154, found 269.1147.

(3R,4S,5R,6R)-3-(Dimethylphenylsilanyl)-5-(4-methoxy-benzyloxy)-6-methyl-non-1-en-8-
yn-4-ol (12) To a $-78{ }^{\circ} \mathrm{C}$ slurry of aldehyde $\mathbf{1 0}(5.95 \mathrm{~g}, 24.2 \mathrm{mmol})$ and $4 \AA$ mol. sieves $(4.8 \mathrm{~g})$ in toluene $(20 \mathrm{~mL})$ was added $(S, S)-11^{6}$ (61 mL of a 1.0 M solution in toluene, 60.4 mmol). The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 18 h and then quenched with 2 N NaOH aq. $(100 \mathrm{~mL})$. The biphasic mixture was filtered through Celite and extracted with EtOAc ($30 \mathrm{~mL} x \mathrm{3}$). The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The crude product was purified by flash column chromatography to afford $\mathbf{1 2}(9.19 \mathrm{~g}, 90 \%)$ as a colorless oil: $[\mathrm{C}]^{25}{ }_{\mathrm{D}}=-6^{\circ}\left(c 2.48, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.55-7.57 (m, 2H), 7.34-7.36 (m, 3H), $7.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.98(\mathrm{dt}, J=10.4,21.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=21.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=3.2,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.43(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H})$, 0.34 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 159.3,137.9,134.8,134.1,130.4,129.4,129.0,127.6,114.5$, $113.9,85.5,83.6,74.9,71.1,69.3,55.3,39.2,34.1,20.3,17.9,-3.8,-4.2$; IR (neat) $3560,3304,2961$, 1613, $1514 \mathrm{~cm}^{-1} ;$ HRMS (ES+) m / z for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 445.2175, found 445.2176.

Scheme 1. Absolute and Relative Stereochemical Assignment of 12

The absolute stereochemistry of the $\mathrm{C}(17)$ hydroxyl was confirmed by application of the modified Mosher ester analysis (Scheme 1). In addition, the $\mathrm{C}(16)-\mathrm{C}(17)$ relative stereochemistry was verified as anti by Peterson elimination of $\mathbf{1 2}$ to afford the corresponding Z diene.

1-[(1R,2S,3R)-3-(Dimethyl-phenyl-silanyl)-1-((R)-1-methyl-but-3-ynyl)-2-triethylsilanyloxy-pent-4-enyloxymethyl]-4-methoxy-benzene (4) To a solution of $\mathbf{1 2}$ ($1.01 \mathrm{~g}, 2.39 \mathrm{mmol}$) in DMF (2.5 mL) was added imidazole ($0.50 \mathrm{~g}, 7.4 \mathrm{mmol}$) and $\mathrm{TESCl}(1.21 \mathrm{~mL}, 7.17 \mathrm{mmol})$. The reaction was heated to $45{ }^{\circ} \mathrm{C}$ for 17 h and then quenched with water (15 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL} \times 3)$. The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The crude product was purified by flash column chromatography to afford $4(1.19 \mathrm{~g}, 93 \%)$ as a colorless oil: $[\mathrm{C}]^{25}{ }_{\mathrm{D}}$ $=+31^{\circ}\left(c 1.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.49-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{dt}, J=10.8,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=10.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.79(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{AB}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.70(\mathrm{~m}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{dd}, J=3.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{dt}, J=3.2,16.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.09-2.13 (m, 1H), 1.94 (app t, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=8.4 \mathrm{~Hz}, 9 \mathrm{H}), 0.50-$ $0.57(\mathrm{~m}, 6 \mathrm{H}), \quad 0.34(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 159.1,138.0,136.5,134.3$, $130.8,129.3,128.9,127.6,113.6,113.2,85.3,83.4,72.6,71.5,69.5,55.2,37.0,32.9,22.8,17.0,7.1,5.6$, $-3.2,-4.2$; IR (neat) 3309, 2956, 2877, 1613, 1514, $1248 \mathrm{~cm}^{-1}$; HRMS (ES+) m / z for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd 559.3040, found 559.3044.

(4R,5R)-4-((E)-4-\{(2S,4S,5R)-4-(Dimethyl-phenyl-silanyl)-5-[(1S,2R,3R)-2-(4-methoxy-benzyloxy)-3-methyl-1-triethylsilanyloxy-hex-5-ynyl]-tetrahydro-furan-2-yl\}-but-1-enyl)-2,2-dimethyl-5-vinyl-[1,3]dioxolane (2) A $25-\mathrm{mL}$ round bottom flask was charged with aldehyde $\mathbf{3}$ (1.06 g ,
$5.04 \mathrm{mmol})$, allylsilane $4(8.12 \mathrm{~g}, 15.1 \mathrm{mmol})$, activated $4 \AA$ molecular sieves (2.0 g) and dichloromethane $(10 \mathrm{~mL})$. The slurry was stirred at room temperature for 10 min and then cooled to -78 ${ }^{\circ} \mathrm{C}$. The cooled reaction was then treated with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.64 \mathrm{~mL}, 5.04 \mathrm{mmol}$, freshly distilled from calcium hydride). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 21 h and then quenched with triethylamine $(1 \mathrm{~mL})$. The mixture was diluted with sat. aq. $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and filtered through Celite. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \times 3)$. The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. Purfication of the crude product by flash column chromatography afforded $2(1.19 \mathrm{~g}, 48 \%$; $(6.27 \mathrm{~g}$ of allylsilane 4 was recovered)) as a colorless oil with $>20: 1$ diastereoselectivity: $[\square]^{25}=+23^{\circ}\left(c 0.76, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.47 (app dd, $J=1.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.29-7.38$ (m, 3 H), 7.24 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.87 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.74-5.82(\mathrm{~m}, 2 \mathrm{H}), 5.41(\mathrm{~b}$ dd, $J=7.2,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\operatorname{app} \mathrm{dd}, J=6.8,12.4 \mathrm{~Hz}$, $3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{app} \mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-2.34(\mathrm{~m}, 5 \mathrm{H})$, $1.94(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.51-0.61(\mathrm{~m}, 6 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 158.9,137.6,136.4,134.3,133.8,130.9,129.1,128.9,127.8,125.5,118.2,113.2,108.6,83.8$, $83.2,82.1,80.2,78.5,77.2,73.6,73.1,69.2,55.1,35.2,34.5 .34 .3,29.3,27.0,26.9,26.2,22.1,17.1,7.1$, 5.2, -4.1; IR (neat) 3309, 2955, 2250, 2115, 1614, $1514 \mathrm{~cm}^{-1}$; HRMS (ES+) m / z for $\mathrm{C}_{44} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd 769.4296, found 769.4307.

Figure 1. Observed nOe's verifying 2,5-cis-THF stereochemistry in 2.

The 2,5-cis relative stereochemistry about the THF ring in [3+2] adduct $\mathbf{2}$ was confirmed by the observed nOe correlation peaks shown in Figure 1.

(1R,2R,3R)-1-\{(2S,5S)-5-[(E)-4-((4R,5R)-2,2-Dimethyl-5-vinyl-[1,3]dioxolan-4-yl)-but-3-enyl]-tetrahydro-furan-2-yl\}-2-(4-methoxy-benzyloxy)-3-methyl-hex-5-yn-1-ol (SI-4) To [3+2]
adduct $2(1.81 \mathrm{~g}, 2.42 \mathrm{mmol})$ in DMF $(2.5 \mathrm{~mL})$ was added $\mathrm{TBAF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(3.82 \mathrm{~g}, 12.1 \mathrm{mmol}$, purchased from ACROS). The reaction was fitted with a condenser and placed in a $90^{\circ} \mathrm{C}$ oil bath for 72 h . More $\mathrm{TBAF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~g}, 6.34 \mathrm{mmol})$ was added to the reaction three times during the 72 h period; at hour 8 , hour 32 and hour 56. After 72 h , the reaction was diluted with pH 7 buffer (50 mL) and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \times 3)$. The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The crude product was purified by flash column chromatography to afford SI-4 (1.03 g, 85\%) as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}=+6.4^{\circ}\left(c 0.39, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.73-5.81(\mathrm{~m}, 2 \mathrm{H}), 5.41$ (app bddd, $J=1.6,6.0,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=1.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{app} \mathrm{q}, J=10.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.03(\operatorname{app~q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\operatorname{appq}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (quint., $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (s, $3 \mathrm{H}), 3.45-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{bd}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{ddq}, J=2.4,6.8$, $16.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-2.24(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.64-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 159.2,135.9,134.2,130.4,129.5,125.9,118.4,113.6,108.7,83.1,82.1,82.0,81.6,80.4,79.2$, $73.5,73.1,69.9,55.1,35.1,34.2,31.0,29.0,27.0,27.0,21.8,16.2$; IR (neat) $3536,3296,2984,2934$, 1613, 1514, $1248 \mathrm{~cm}^{-1}$; HRMS (ES+) m / z for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 521.2879, found 521.2879.

[(1R,2R,3R)-1-\{(2S,5S)-5-[(E)-4-((4R,5R)-2,2-Dimethyl-5-vinyl-[1,3]dioxolan-4-yl)-but-3-enyl]-tetrahydro-furan-2-yl\}-2-(4-methoxy-benzyloxy)-3-methyl-hex-5-ynyloxyl-triethyl-silane (SI5) To a $0{ }^{\circ} \mathrm{C}$ solution of alcohol SI-4 ($1.2 \mathrm{~g}, 2.41 \mathrm{mmol}$) and triethylamine ($0.67 \mathrm{~mL}, 4.82 \mathrm{mmol}$) in dichloromethane (8 mL) was added TESOTf ($0.65 \mathrm{~mL}, 2.89 \mathrm{mmol}$). After 5 min the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (30 mL x 3). The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtere and concentrated. The crude product was purified by flash column chromatography to afford SI-5 (1.39 g, $94 \%)$ as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}=+11^{\circ}\left(c 0.36, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.75-5.85(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{bdd}, J=7.2,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.23(\mathrm{dd}, J=0.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.05(\operatorname{app~q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\operatorname{appq}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=3.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=3.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-$ $2.40(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.24(\mathrm{~m}, 3 \mathrm{H}), 1.97(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.51-$ $1.59(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.55-0.72(\mathrm{~m}$,
$6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 159.0,136.3,134.3,131.0,129.0,125.7,118.4,113.6,108.8,83.2$, 83.1, 82.2, 82.2, 80.4, 78.2, 75.8, 71.9, 69.6, 55.2, 35.3, 33.2, 31.1, 29.2, 27.8, 27.0, 26.9, 22.5, 16.5, 7.0, 5.2; IR (neat) 3308, 2954, 2875, 1612, 1514, 1247, $1057 \mathrm{~cm}^{-1}$; HRMS (ES+) m / z for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{6} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd 635.3744, found 635.3754.

(1S,2R,3R)-1-\{(2S,5S)-5-[(E)-4-((4R,5R)-2,2-Dimethyl-5-vinyl-[1,3]dioxolan-4-yl)-but-3-enyl]-tetrahydro-furan-2-yl\}-3-methyl-1-triethylsilanyloxy-hex-5-yn-2-ol (13a) To a $0{ }^{\circ} \mathrm{C}$ solution of SI-5 $(0.621 \mathrm{~g}, 1.01 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ and pH 7 buffer $(1 \mathrm{~mL})$ was added DDQ $(0.46 \mathrm{~g}$, $2.02 \mathrm{mmol})$. The reaction was stirred for 1 h , and then quenched with sat. aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \times 3)$. The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. Purification of the crude product by flash column chromatography afforded $13 \mathrm{a}(0.49 \mathrm{~g}, 99 \%)$ as a colorless oil: [[]$^{25}{ }_{\mathrm{D}}=+13{ }^{\circ}\left(c 0.18, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 5.74-5.83(\mathrm{~m}, 2 \mathrm{H}), 5.43(\operatorname{app}$ bddd, $J=1.2,6.0,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=$ $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=0.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{app} \mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dt}, J=3.6,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.20(\mathrm{~m}$, $2 \mathrm{H}), 1.95(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.46(\mathrm{~m}$, $3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.66($ app dsept., $J=$ $7.6,19.26 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 136.2,134.3,125.9,118.5,108.8,83.1,82.2,82.2,81.3$, $78.7,74.5,74.4,69.3,35.7,35.2,30.8,29.2,27.4,27.1,27.0,22.1,15.7,7.0,5.3$; IR (neat) 3524,3310 , 2954, 2875, 1379, 1238, $1054 \mathrm{~cm}^{-1}$; HRMS (ES+) m / z for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 515.3169, found 515.3171 .

 ratio $=1: 1$

Scheme 2. Synthesis of acids 14 and 15a
The synthesis of acids $\mathbf{1 4}$ and $\mathbf{1 5 a}$ are shown in Scheme 2. Diastereoselective methylation of oxazolidinone SI-6 ${ }^{7}$ afforded oxazolidinone SI-7 (79\% yield, dr 5:1). Treatment of SI-7 with diiron nonacarbonyl afforded the diene complexed oxazolidinones SI-8 and SI-9 as a 1:1 separable mixture of diastereomers. Hydrolysis of oxazolidinone SI-7 afforded acid 14 (64% yield). Hydrolysis of iron complexed oxazolidinone SI-8 afforded acid 15a (64% yield).

(4R,5S)-4-Methyl-3-((E)-(R)-2-methyl-hexa-3,5-dienoyl)-5-phenyl-oxazolidin-2-one
To a $-78{ }^{\circ} \mathrm{C}$ solution of oxazolidinone SI-6 ${ }^{7}(8.75 \mathrm{~g}, 32.2 \mathrm{mmol})$ in THF (90 mL) was added NaHMDS $(8.28 \mathrm{~g}, 45.1 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then treated with MeOTf ($5.47 \mathrm{~mL}, 48.4 \mathrm{mmol}$). After 3 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$. The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated. Analysis of the crude product by ${ }^{1} \mathrm{H}$ NMR indicated a 5:1 mixture of diastereomers in favor of SI-7. The crude product was purified by flash column chromatography in $20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane (minor isomer, $\mathrm{R}_{\mathrm{f}}=0.21$; major isomer, $\mathrm{R}_{\mathrm{f}}=0.36$) to afford SI-7 (7.30 g, 79\%) as a colorless oil: $[\square]^{25}=27^{\circ}\left(c 0.55, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.35-$ $7.44(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.20-6.37(\mathrm{~m}, 2 \mathrm{H}), 5.83(\mathrm{dd}, J=8.4,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.21(\operatorname{appd}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\operatorname{app~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (quint., $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (quint., $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\square 174.4,152.6,136.5,133.2,132.7,132.6,128.7,128.7,125.6,117.3,78.8,55.1,40.8,17.3,14.5 ;$ IR (neat) 2981, 2934, 1782, 1699, 1356, $1197 \mathrm{~cm}^{-1}$; HRMS (ES +) m / z for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 308.1263 , found 308.1262 .

Tricarbonyl[(4R,5S)-4-Methyl-3-((E)-(2S,3R)-2-methyl-hexa-3,5-dienoyl)-5-phenyl-oxazolidin-2-one]iron (SI-8) and Tricarbonyl[(4R,5S)-4-Methyl-3-((E)-(2S,3S)-2-methyl-hexa-3,5-dienoyl)-5-phenyl-oxazolidin-2-one]iron (SI-9) To oxazolidinone SI-7 ($2.0 \mathrm{~g}, 7.0 \mathrm{mmol}$) in benzene $(23 \mathrm{~mL})$ was added diiron(nonacarbonyl) $(3.8 \mathrm{~g}, 10.5 \mathrm{mmol})$. The reaction was fitted with a condenser and refluxed for a total of 24 h . Additional diiron(nonacarbonyl) $(1.5 \mathrm{~g}, 4.12 \mathrm{mmol})$ and benzene $(10 \mathrm{~mL})$ was added to the reaction at hour 6 and hour 20. After 24 hours, the reaction was cooled to room temp, filtered through Celite with an $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ wash and concentrated to afford a $1: 1$ mixture of SI-8 and SI-9. The crude product mixture was separated by flash column chromatography $\left(10 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes to $40 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes with SI-9 (0.78 g) eluting before SI-8 (0.71 g), SI-8 and SI-9 combined yield of 50\%).

Spectroscopic properties of SI-8 (yellow solid): $\mathrm{R}_{\mathrm{f}}=0.33$ (30\% $\mathrm{Et}_{2} \mathrm{O} /$ hexane $)$; $[\square]^{25}{ }_{\mathrm{D}}=+8^{\circ}(c$ $\left.0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.36-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.36(\operatorname{app~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.46(\mathrm{dd}, J=4.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.27(\mathrm{~m}, 1 \mathrm{H}), 4.76$ (quint., $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82-3.40 $(\mathrm{m}, 1 \mathrm{H}), 1.78(\operatorname{app} \mathrm{dd}, J=1.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\operatorname{app} \mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.39(\mathrm{app} \mathrm{dd}, J=2.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 210.8,175.2,152.9$, $133.2,128.9,128.8,125.7,86.4,81.9,78.9,64.7,55.1,41.0,40.4,19.9,14.5$; IR (neat) $2984,2047,1970$, 1779, 1697, $1355 \mathrm{~cm}^{-1}$; HRMS (ES+) m / z for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FeNO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 448.0459 , found 448.0464 .

Spectroscopic properties of SI-9 (yellow solid): $\mathrm{R}_{\mathrm{f}}=0.50\left(30 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$; $[\square]^{25}{ }_{\mathrm{D}}=-83^{\circ}(c$ $\left.0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.30-7.45(\mathrm{~m}, 5 \mathrm{H}), 5.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.33(\mathrm{~m}$, $2 \mathrm{H}), 4.84$ (quint., $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.78(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{app} \mathrm{dd}, J=7.6,10.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.45(\mathrm{app} \mathrm{dd}, J=2.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 211.4,174.6,152.6,133.2,128.7,125.6,87.1,82.7,79.2,62.9,55.4,43.4,40.4,26.3,22.3,14.3 ;$ IR (neat) 2977, 2046, 1978, 1782, 1700, $1342 \mathrm{~cm}^{-1}$; HRMS (ES+) m / z for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FeNO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 448.0459, found 448.0462.

Tricarbonyl[(E)-(2S,3R)-2-Methyl-hexa-3,5-dienoic acid]iron (15a) To a $0{ }^{\circ} \mathrm{C}$ solution of oxazolidinone SI-8 ($1.15 \mathrm{~g}, 2.70 \mathrm{mmol}$) in THF $(21 \mathrm{~mL})$ and water (7 mL) was added LiOH (0.194 g , $8.11 \mathrm{mmol})$. The reaction was stirred for 1.5 h and then quenched with $1 \mathrm{M} \mathrm{HCl}(25 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(25$ $\mathrm{mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL} x 3)$. The organic phase was dried over anhydrous MgSO_{4}, filtered and concentrated. The crude carboxylic acid was purified by flash column chromatography to afford $15 \mathrm{a}(0.423 \mathrm{~g}, 58 \%)$ as a yellow solid: $[\square]^{25}{ }_{\mathrm{D}}=+11^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 10.40(\mathrm{bs}, 1 \mathrm{H}), 5.38-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.30(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{bs}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{app} \mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 211.1,181.1,87.1,82.3,63.1,44.0,40.5,19.0$; IR (neat) 2983, 2049, 1971, $1705 \mathrm{~cm}^{-1}$; HRMS (EI+) m/z for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{FeO}_{4}[\mathrm{M}-\mathrm{CO}]^{+}$calcd 237.9928, found 237.9918. The spectroscopic data obtained for $\mathbf{1 5 a}$ are fully consistent with data for racemic 15a previously published by Donaldson. ${ }^{8}$

Tricarbonyl[(E)-(2S,3R)-2-Methyl-hexa-3,5-dienoic acid (1R,2R)-1-((R)-\{(2S,5S)-5-[(E)-4-((4R,5R)-2,2-dimethyl-5-vinyl-[1,3]dioxolan-4-yl)-but-3-enyl]-tetrahydro-furan-2-yl\}-
triethylsilanyloxy-methyl)-2-methyl-pent-4-ynyl ester]iron (SI-10). To $0{ }^{\circ} \mathrm{C}$ solution of $\mathbf{1 3 a}$ (120 mg , $0.244 \mathrm{mmol})$, $15 \mathrm{a}(105 \mathrm{mg}, 0.390 \mathrm{mmol})$, triethylamine $(0.12 \mathrm{~mL}, 0.854 \mathrm{mmol})$, and DMAP (30 mg , 0.244 mmol) in THF (0.5 mL) was added 2,4,6-trichlorobenzoyl chloride ($61 \square \mathrm{~L}, 0.390 \mathrm{mmol}$). The redish brown solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and allowed to warm to room temperature over another 1 h. After complete consumption of 13a was observed by TLC analysis, the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL} \mathrm{x} \mathrm{3})$. The organic phase was washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, brine, dried over anhydrous MgSO_{4}, filtered and concentrated. Purification of the crude product by flash column chromatography afforded SI-10 (179 mg, 99%) as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}=+13^{\circ}\left(c 0.18, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 5.74-5.81(\mathrm{~m}, 2 \mathrm{H})$, 5.43 (app dd, $J=4.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.69(\mathrm{dd}, J=1.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{app} \mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.72$ (quint., $J=5.6,1 \mathrm{H}), 3.67(\mathrm{dd}, J=$ $1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{appq}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.32(\mathrm{~m}, 7 \mathrm{H}), 1.94(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.88(\mathrm{~m}$,
$3 \mathrm{H}), 1.50-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.97(\operatorname{app~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.59-0.76(\mathrm{~m}, 6 \mathrm{H}), 0.32(\mathrm{bdd}, J=$ $1.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 211.2,173.7,136.1,134.3,126.0,118.5,108.9,87.5$, $82.2,82.2,82.2,80.7,78.5,77.4,77.2,75.4,69.7,63.9,44.5,40.4,35.2,33.3,30.9,29.2,27.8,27.1,26.9$, $22.3,19.2,16.1,7.1,5.4$; IR (neat) $3310,2049,1978,1732,1238,1170 \mathrm{~cm}^{-1} ; H R M S(E S+) \mathrm{m} / \mathrm{z}$ for $\mathrm{C}_{38} \mathrm{H}_{56} \mathrm{FeO}_{9} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 763.2941, found 763.2944.

(E)-(R)-2-Methyl-hexa-3,5-dienoic acid (1R,2R)-1-((R)-\{(2S,5S)-5-[(E)-4-((4R,5R)-2,2-dimethyl-5-vinyl-[1,3]dioxolan-4-yl)-but-3-enyl]-tetrahydro-furan-2-yl\}-triethylsilanyloxy-methyl)-2-methyl-pent-4-ynyl ester (16) To a $0^{\circ} \mathrm{C}$ solution of SI-10 ($45 \mathrm{mg}, 0.061 \mathrm{mmol}$) in acetone (1 mL) was added cerium ammonium nitrate (CAN) ($67 \mathrm{mg}, 0.122 \mathrm{mmol}$). The reaction was stirred for 1 h , then quenched with triethylamine $(1 \mathrm{~mL})$ and diluted with sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$. The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The crude product was purified by flash column chromatography to afford $16(35 \mathrm{mg}, 95 \%)$ as a colorless oil: [$\square]^{25}{ }_{\mathrm{D}}=-1.0^{\circ}\left(c 0.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 6.29(\mathrm{dt}, J=10.0,16.8,1 \mathrm{H}), 6.15(\mathrm{dd}, J=10.4,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.82(\mathrm{~m}, 3 \mathrm{H})$, $5.42(\mathrm{bdd}, J=1.6,6.0,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=1.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J$ $=17.6,1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=2.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\operatorname{app} \mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.71$ (quint., $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=2.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (quint., $J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.98-2.36(\mathrm{~m}, 5 \mathrm{H}), 1.94(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.56(\mathrm{~m}$, $1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.57-0.72(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 173.7,136.3,136.2,134.3,132.5$, $132.3,125.8,118.5,117.0,108.8,82.4,82.2,82.2,80.4,78.4,77.4,75.3,69.6,42.8,35.2,33.3,30.9$, 29.2, 27.0, 26.9, 22.2, 17.0, 16.1, 7.0, 5.3; IR (neat) $3310,2953,2876,1733,1378,1239 \mathrm{~cm}^{-1} ; \mathrm{HRMS}$ $(\mathrm{ES}+) m / z$ for $\mathrm{C}_{35} \mathrm{H}_{56} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 623.3744, found 623.3748.

(4E,11E,13E)-(1S,6R,10R,15R,18R,19R,20S)-8,8,15-Trimethyl-18-((R)-1-methyl-but-3-ynyl)-19-triethylsilanyloxy-7,9,17,23-tetraoxa-tricyclo[18.2.1.0 ${ }^{6,10}$]tricosa-4,11,13-trien-16-one
To polyene $16(63 \mathrm{mg}, 0.105 \mathrm{mmol})$ in dichloromethane $(105 \mathrm{~mL})$ was added Grubbs' first generation catalyst ($17 \mathrm{mg}, 0.021 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$. The reaction was fitted with a condenser, refluxed for 12 h and condensed. The crude product was purified by flash column chromatography to afford 17 ($44 \mathrm{mg}, 73 \%$) as a colorless oil. In addition, an inseparable mixture of products thought to arrive by eneyne metathesis ($4 \mathrm{mg}, 10 \%$) was also isolated. Spectroscopic data for 17 : $[\square]^{25}{ }_{\mathrm{D}}=-34^{\circ}(c$ $\left.0.21, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 6.15-6.26(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{ddd}, J=3.6,9.6,15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.49-5.57(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{app} \mathrm{dd}, J=8.4,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{app} \mathrm{dd}, J=1.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\operatorname{app~dt}, J$ $=8.4,26.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{app} \mathrm{dd}, J=1.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.35(\mathrm{~m}, 3 \mathrm{H}), 2.19-2.36(\mathrm{~m}, 3 \mathrm{H}), 1.82-2.03$ $(\mathrm{m}, 3 \mathrm{H}), 1.95(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $9 \mathrm{H}), 0.57-0.73(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 174.2,138.4,135.5,131.3,127.6,125.7,109.0$, $83.0,82.9,82.3,79.9,78.5,77.2,75.1,69.3,44.2,33.2,32.0,29.6,28.6,27.2,27.1,27.0,22.5,16.9,15.6$, 7.1, 5.6; IR (neat) 3310, 2950, 2874, 1732, 1378, 1237, 1170, $1053 \mathrm{~cm}^{-1}$; HRMS (ES+) m / z for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 595.3431 , found 595.3442 .

(4E,11E,13E)-(1S,6R,10R,15R,18R,19R,20S)-8,8,15-Trimethyl-18-((R)-1-methyl-3-tributylstannanyl-but-3-enyl)-19-triethylsilanyloxy-7,9,17,23-tetraoxa-tricyclo [18.2.1.0 ${ }^{6,10}$]tricosa-

4,11,13-trien-16-one (18) To a $0{ }^{\circ} \mathrm{C}$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(0.45 \mathrm{~mL}, 3.2 \mathrm{mmol})$ in THF (3 mL) was added $\mathrm{n}-\mathrm{BuLi}(1.30 \mathrm{~mL}$ of a 2.31 M solution in hexanes, 3.0 mmol$)$. The reaction was allowed to stir for 30 min and then cooled to $-30^{\circ} \mathrm{C}$. To this mixture was added $\mathrm{Bu}_{3} \mathrm{SnH}(0.80 \mathrm{~mL}, 3.0 \mathrm{mmol})$. After $1 \mathrm{~h}, \mathrm{Et}_{2} \mathrm{AlCl}$ $\left(1.7 \mathrm{~mL}\right.$ of a 1.8 M solution in toluene, 3.0 mmol) was added. The reaction was stirred at $-30{ }^{\circ} \mathrm{C}$ for another 1.5 h and then used immediately in the stannylalumination-protonylysis of $\mathbf{1 7}$.

To a $-30{ }^{\circ} \mathrm{C}$ solution of $\mathbf{1 7}(44 \mathrm{mg}, 0.077 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added $\mathrm{Bu}_{3} \mathrm{Sn}^{2}-\mathrm{AlEt}_{2}(1.1 \mathrm{~mL}$ of the 0.41 M solution from above, 0.45 mmol), followed by $\mathrm{CuCN}(2 \mathrm{mg}, 0.022 \mathrm{mmol})$. The bright orange solution was stirred for 1 h at $-30^{\circ} \mathrm{C}$, then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(20$ mL). This mixture was stirred vigorously at room temp for 15 min . The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. Purification of the crude product by flash column chromatography afforded $\mathbf{1 8}$ (38 mg , $58 \%)$ as a colorless oil: $[\square]^{25}=-34.5^{\circ}\left(c 0.11, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 6.15-6.26(\mathrm{~m}, 2 \mathrm{H})$,
5.72 (app ddd, $J=3.6,9.6,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63\left(\mathrm{app} \mathrm{t},{ }^{3} J_{\mathrm{Sn}-\mathrm{H}}=70 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.50-5.90(\mathrm{~m}, 2 \mathrm{H}), 5.34(\mathrm{dd}, J=$ $8.8,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14\left(\mathrm{dt}, \mathrm{J}=2.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{Sn}-\mathrm{H}}=31.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.50(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{app} \mathrm{dt}, J=$ $8.8,24.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.35(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-2.06(\mathrm{~m}$, $4 \mathrm{H}), 1.60-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.57(\mathrm{~m}, 8 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.25-1.36(\mathrm{~m}, 7 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.18-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.93-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.85-0.93(\mathrm{~m}, 14 \mathrm{H}), 0.81(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.55-0.72(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right) \square 174.2,154.1,138.5,136.0,135.8,131.1$, $127.5,126.7,125.7,109.0,83.1,82.4,80.1,79.6,77.2,75.0,45.4,44.4,33.0,32.1,29.7,29.2,29.1,28.5$, $27.4,27.2,27.1,16.9,14.8,13.7,9.6,7.2,5.7$; IR (neat) $2954,2931,2873,1732,1237,1170,1053 \mathrm{~cm}^{-1}$; HRMS (ES+) m / z for $\mathrm{C}_{45} \mathrm{H}_{80} \mathrm{O}_{6} \mathrm{SiSnNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 887.4644, found 887.4655.

(4E,11E,13E)-(1S,6R,10R,15R,18R,19R,20S)-18-((R)-3-Iodo-1-methyl-but-3-enyl)-8,8,15-trimethyl-19-triethylsilanyloxy-7,9,17,23-tetraoxa-tricyclo[18.2.1.0 ${ }^{6,10}$]tricosa-4,11,13-trien-16-one
(19) To a $-45^{\circ} \mathrm{C}$ solution of stannane $\mathbf{1 8}$ ($121 \mathrm{mg}, 0.140 \mathrm{mmol}$) in dichloromethane (2 mL) was added NIS ($38 \mathrm{mg}, 0.17 \mathrm{mmol}$). The reaction was stirred at $-45^{\circ} \mathrm{C}$ for 2 h and then quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$. The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The crude product was purified by flash column chromatography to afford $19(94 \mathrm{mg}, 96 \%)$ as a colorless oil: $[\square]_{\mathrm{D}}^{25}=-63^{\circ}\left(c 0.13, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 6.15-6.28(\mathrm{~m}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{ddd}, J=4.0,10.4,14.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.53(\mathrm{app} \mathrm{dt}, J=9.2,14.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{dd}, J=8.8,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\operatorname{app}$ $\mathrm{dt}, J=8.8,28.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.37(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.00(\mathrm{dd}, J=$ $10.0,13.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.82-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $1.31-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.56-0.75(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 174.4,138.3,135.9,135.5,131.3,127.7$, $127.1,125.7,111.4,109.0,83.1,82.3,80.0,78.6,77.2,75.0,48.0,44.1,32.7,32.0,29.5,28.5,27.2,27.0$, $16.9,14.5,7.2,5.7$; IR (neat) $2950,2874,1731,1378,1237,1170,1053 \mathrm{~cm}^{-1} ; \operatorname{HRMS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}$ for $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{IO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 723.2554, found 723.2559.

(7E,9E,13E)-(1S,2R,3R,6R,11R,12R,17S)-2,11,12-Trihydroxy-3-((R)-3-iodo-1-methyl-but-3-

 enyl)-6-methyl-4,20-dioxa-bicyclo[15.2.1]icosa-7,9,13-trien-5-one (20). A solution of vinyl iodide 19 $(15 \mathrm{mg}, 0.021 \mathrm{mmol})$ in a mixture of AcOH , THF and water $(4 / 1 / 1)(0.5 \mathrm{~mL})$ was heated to $40^{\circ} \mathrm{C}$ for 6 h . The mixture was then carefully poured into a separatory funnel containing $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The crude product was purified by flash column chromatography to afford $\mathbf{2 0}(9 \mathrm{mg}, 77 \%)$ as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}=-14.2^{\circ}(\mathrm{c}$ $\left.0.12, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 6.10-6.28(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 5.50-5.69(\mathrm{~m}$, $3 \mathrm{H}), 5.26(\mathrm{dd}, J=8.0,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (app dt, $J=8.8,28.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.68-$ $3.74(\mathrm{~m}, 1 \mathrm{H}), 3.55(\operatorname{app~q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.35-2.57(\mathrm{~m}, 4 \mathrm{H})$, $2.23-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{dd}, J=10.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.25(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 174.4,135.0,134.9,134.1,131.5$, $129.5,127.3,110.7,79.8,78.1,77.6,77.2,77.1,76.6,73.3,48.4,44.0,33.2,32.5,29.9,29.0,27.1,17.5$, 14.7; IR (neat) $3428,2932,2873,1729,1167,990 \mathrm{~cm}^{-1}$; HRMS (ES +) m / z for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{IO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd 569.1376, found 569.1369.

Amphidinolide E (1) To a slurry of vinyl iodide $20(20 \mathrm{mg}, 0.037 \mathrm{mmol})$ and $\mathrm{CuCl}(20 \mathrm{mg}$, 0.201 mmol) in THF (0.5 mL) was added vinylstannane $\mathbf{2 1}^{9}(68 \mathrm{mg}, 0.183 \mathrm{mmol})$, followed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(8.5 \mathrm{mg}, 0.00732 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$. The reaction was stirred at room temp for 16 h , and then diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, filtered through Celite and concentrated. The crude product was purified by flash column chromatography using 10% methanol/chloroform to afford material that was still contaminated with an organotin impurity. The stannane impurity was removed by hplc purification with 100% ethyl acetate eluent on a normal phase, Varian Dynamax Microsorb $60-8 \mathrm{Si}, 250 \times 21.4 \mathrm{~mm}$ column. The retention time for amphidinolide E was 9.5 min . The flow rate was $18 \mathrm{~mL} / \mathrm{min}$.

Amphidinolide E was detected using UV absorbtion ($\square=254 \mathrm{~nm}$ and 280 nm) and RI detection. Using the above conditions $10.6 \mathrm{mg}(59 \%)$ of pure amphidinolide E was isolated: $[\square]^{25}{ }_{\mathrm{D}}=-86^{\circ}\left(c 0.08, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 6.10-6.28(\mathrm{~m}, 2 \mathrm{H})(\mathrm{H} 4$ and H 5$), 6.05(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})(\mathrm{H} 22), 5.58-5.75$ (m, 3H) (H3, H10, H23), 5.27 (dd, $J=7.6,14.4 \mathrm{~Hz}, 1 \mathrm{H})(\mathrm{H} 9), 4.98(\mathrm{~s}, 1 \mathrm{H})(\mathrm{H} 29), 4.87$ (s, 1H) (H29), $4.75(\mathrm{~s}, 1 \mathrm{H})(\mathrm{H} 26), 4.71(\mathrm{~s}, 1 \mathrm{H})(\mathrm{H} 26), 4.66(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})(\mathrm{H} 18), 3.95(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})(\mathrm{H} 8), 3.89$ $(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})(\mathrm{H} 7), 3.68-3.74(\mathrm{~m}, 1 \mathrm{H})(\mathrm{H} 17), 3.52-3.60(\mathrm{~m}, 1 \mathrm{H})(\mathrm{H} 16), 3.36-3.45(\mathrm{~m}, 1 \mathrm{H})(\mathrm{H} 13)$, 3.21-3.30 (m, 1H) (H2), 2.71-2.84 (m, 2H) (H24), 2.20-2.45 (m, 6H) (H20a, H19, H11a and $-\mathrm{OH} x 3)$, 1.75-1.94 (m, 3H) (H11b, H12a, H20b), $1.72(\mathrm{~s}, 3 \mathrm{H})(\mathrm{H} 27)$, 1.51-1.68 (m, 1H) (H15a, overlapping w/ water), 1.21-1.51 (m, 4H) (H12b, H14a, H14b, H15b), 1.25 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})(\mathrm{H} 30), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H})(\mathrm{H} 29) ;{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right) \square 174.4,144.4,144.0,135.1,135.0,134.1,133.3,131.4,131.4$, 129.4, 127.9, 115.7, 110.7, 79.9, 78.3, 78.0, 77.6, 76.7 (overlapping w/ chloroform), 73.2, 44.1, 41.2, $36.0,32.6,32.3,29.9,28.9,27.1,22.5,17.5,15.3$; IR (neat) $3439,2929,1731,1454,1168,990 \mathrm{~cm}^{-1}$; HRMS (ES+) m/z for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 523.3036, found 523.3038.

Comparison of ${ }^{1} \mathbf{H}$ NMR Data for Synthetic and Natural Amphidinolide \mathbf{E}

${ }_{3}$

Position	Natural (Kobayashi, 600 MHz$)^{10}$	Synthetic (Roush, 400 MHz)
1	----	----
2	3.26 (1H, dq, J = 10.0, 6.8 Hz)	3.26 (1H, m)
3	5.59 (1H, dd, J = 14.0, 10.0)	5.59 (1H, m) H3, H10 \& H23 overlap
4	6.20 (1H, dd, J = 14.0, 10.6)	$6.20(1 \mathrm{H}, \mathrm{m}) \mathrm{H} 4$ and H5 overlap
5	6.16 (1H, dd, J = 14.5, 10.6)	$6.16(1 \mathrm{H}, \mathrm{m}) \mathrm{H} 4$ and H5 overlap
6	5.53 (1H, dd, J = 14.5, 8.5)	5.53 (1H, dd, J = 14.8, 8.8)
7	3.88 (1H, t, J = 8.5)	3.89 (1H, t, J = 8.8)
8	3.95 (1H, t, J = 8.5)	3.95 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4$)
9	5.27 (1H, dd, J = 15.6, 8.5)	5.27 (1H, dd, J = 14.4, 7.6)
10	5.64 (1H, m)	5.64 (1H, m) H3, H10 \& H23 overlap
11a	2.23 (1H, m)	2.25 (1H, m) H11a \& H19 overlap
11b	1.82 (1H, m)	$1.82(1 \mathrm{H}, \mathrm{m})$
12a	1.76 (1H, m)	1.76 (1H, m)
12b	1.48 (1H, m)	1.48 (1H, m)
13	3.41 (1H, m)	3.40 (1H, m)
14a	1.40 (1H, m)	1.40 (1H, m)
14b	1.25 (1H, m)	1.25 (1H, m)
15a	1.58 (1H, m)	1.58 (1H, m) overlapping $w /$ water
15b	1.33 (1H, m)	1.33 (1H, m)
16	3.56 (1H, dt, J = 7.5, 7.1)	3.56 (1H, m)
17	3.72 (1H, dt, J $=7.5,4.5$)	3.72 (1H, m)
18	4.66 (1H, d, J = 8.3)	4.66 (1H, d, J = 9.2)
19	2.25 (1H, m)	2.26 (1H, m) H11a \& H19 overlap
20a	2.40 (1H, d, J = 13.4)	2.40 (1H, d, J = 14.0)
20b	1.79 (1H, m)	1.79 (1H, m)
21	--	----
22	6.05 (1H, d, J = 15.9)	6.05 (1H, d, J = 15.2)
23	5.71 (1H, dt, J = 15.9, 6.8)	5.71 (1H, m) H3, H10 \& H23 overlap
24	2.78 (2H, br d, J = 6.8)	2.78 (2H, m)
25	----	----
26a	4.75 (1H, s)	4.75 (1H, s)
26b	4.71 (1H, s)	4.71 (1H, s)
27	1.72 (3H, s)	1.72 (3H, s)
28a	4.98 (1H, s)	4.98 (1H, s)
28b	4.87 (1H, s)	4.87 (1H, s)
29	0.92 (3H, d, J = 6.6)	0.92 (3H, d, J = 6.8)
30	1.25 (3H, d, J = 6.8)	1.25 (3H, d, J = 6.8)

Comparison of ${ }^{13} \mathbf{C}$ NMR Data for Synthetic and Natural Amphidinolide \mathbf{E}

Position	Natural (Kobayashi) ${ }^{10}$	Synthetic (Roush)
1	174.42 ppm	174.4
2	44.06	44.1
3	135.14	135.1
4	134.93	135.0
5	134.15	134.1
6	133.34	133.3
7	79.86	79.9
8	78.27	78.3
9	131.40	131.4
10	131.37	131.4
11	41.26	41.3
12	36.07	36.0
13	78.04	78.0
14	32.60	32.6
15	29.94	29.9
16	77.58	77.6
17	76.68	76.7 under CDCl_{3}
18	73.20	73.2
19	32.34	32.3
20	28.95	29.0
21	144.68	144.7
22	129.41	129.4
23	127.93	127.9
24	27.14	27.1
25	144.00	144.0
26	115.70	115.8
27	22.53	22.5
28	110.71	110.7
29	17.52	17.5
30	15.36	15.3

Comparison of ${ }^{1} \mathbf{H}$ NMR Data for (S)-MTPA Mosher Triesters of Amphidinolide E

Position	Natural (Kobayashi, 600 MHz$)^{11}$	Synthetic (Roush, 400 MHz)
1	----	--
2	3.24 (1H, m)	3.24 (1H, m)
3	5.67 (1H, m)	5.67 (1H, m)
4	6.17 (1H, dd, J = 10.4, 15.3)	6.17 (1H, dd, J = 10.4, 14.4)
5	6.40 (1H, dd, J = 10.8, 15.3)	6.40 (1H, dd, J = 11.2, 15.2)
6	5.39 (1H, dd, J = 9.3, 15.3)	5.39 (1H, m)
7	5.60 (1H, brt, J = 9.3)	5.60 (1H, m)
8	5.65 (1H, m)	5.65 (1H, m)
9	5.21 (1H, dd, J = 7.4, 15.6)	5.21 (1H, dd, J = 7.2, 15.6)
10	5.75 (1H, dt, J = 15.6, 7.1)	5.75 (1H, m)
11a	2.28 (1H, m)	2.26 (1H, m)
11b	2.00 (1H, m)	2.01 (1H, m)
12a	1.56 (1H, m)	1.56 (1H, m)
12b	1.72 (1H, m)	1.72 (1H, m)
13	3.31 (1H, m)	3.31 (1H, m)
14a	$1.35(1 \mathrm{H}, \mathrm{m})$	$1.35(1 \mathrm{H}, \mathrm{m})$
14b	1.79 (1H, m)	1.79 (1H, m)
15a	1.45 (1H, m)	1.45 (1H, m)
15b	1.67 (1H, m)	1.67 (1H, m)
16	3.64 (1H, dt, J = 6.7, 9.3)	3.64 (1H, m)
17	5.38 (1H, d, J = 9.3)	5.38 (1H, m)
18	4.78 (1H, d, J = 10.4)	4.78 (1H, d, J =9.6)
19	1.81 (1H, m)	1.81 (1H, m)
20a	1.74 (1H, m)	1.74 (1H, m)
20b	2.25 (1H, m)	2.25 (1H, m)
21	----	----
22	5.96 (1H, d, J = 16.0)	5.96 (1H, d, J = 15.2)
23	5.54 (1H, dt, J = 16.0, 7.1)	$5.54(1 \mathrm{H}, \mathrm{m})$
24	2.71 (2H, brt, J = 7.1)	2.72 (2H, bs)
25	--	----
26a	4.67 (1H, brs)	4.67 (1H, brs)
26b	4.74 (1H, brs)	4.74 (1H, brs)
27	1.70 (3H, s)	1.70 (3H, s)
28a	4.72 (1H, brs)	4.72 (1H, brs)
28b	4.93 (1H, brs)	4.93 (1H, brs)
29	0.86 (3H, d, J = 6.7)	0.86 (3H, d, J = 6.4)
30	1.25 (3H, d, J = 6.7)	1.25 (3H, d, J = 6.7)
OMe (3x)	$3.34(3 \mathrm{H}, \mathrm{s}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.56(3 \mathrm{H}, \mathrm{s})$	$3.35(3 \mathrm{H}, \mathrm{s}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.58(3 \mathrm{H}, \mathrm{s})$
Ph groups	7.31-7.47 (14H, m)	7.30-7.47 (14H, m)
Ph groups	7.64 (1H, d, J = 7.8)	7.64 (1H, d, J = 7.6)

Comparison of ${ }^{1}$ H NMR Data for (R)-MTPA Mosher Triesters of Amphidinolide E

Position	Natural (Kobayashi, 600 MHz$)^{11}$	Synthetic (Roush, 400 MHz)
1	----	----
2	3.26 (1H, m)	3.26 (1H, m)
3	5.64 (1H, m)	5.64 (1H, m)
4	6.15 (1H, dd, J = 10.8, 15.3)	6.15 (1H, dd, J = 10.4, 15.2)
5	6.35 (1H, dd, J = 10.4, 15.3)	6.36 (1H, dd, J = 10.8, 14.8)
6	5.28 (1H, dd, J = 9.3, 15.3)	5.28 (1H, dd, J = 8.8, 14.8)
7	5.52 (1H, brt, J = 9.3)	5.52 (1H, brt, J = 9.2)
8	5.58 (1H, m)	5.58 (1H, m)
9	5.05 (1H, dd, J = 7.1, 15.6)	5.05 (1H, dd, J = 6.4, 15.6)
10	5.45 (1H, dt, J = 15.6, 7.1)	5.45 (1H, m)
11a	1.82 (1H, m)	1.82 (1H, m)
11b	2.09 (1H, m)	2.09 (1H, m)
12a	1.41 (1H, m)	1.41 (1H, m)
12b	1.58 (1H, m)	1.58 (1H, m)
13	3.17 (1H, m)	3.17 (1H, m)
14a	1.29 (1H, m)	$1.29(1 \mathrm{H}, \mathrm{m})$
14b	1.71 (1H, m)	1.71 (1H, m)
15a	1.41 (1H, m)	1.41 (1H, m)
15b	1.63 (1H, m)	1.63 (1H, m)
16	3.46 (1H, m)	3.46 (1H, m)
17	5.36 (1H, d, J = 9.3)	5.36 (1H, d, J = 9.6)
18	4.81 (1H, d, J = 10.4)	4.81 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.4$)
19	2.00 (1H, m)	2.00 (1H, m)
20a	1.80 (1H, dd, J = 10.4, 13.8)	1.80 (1H, m)
20b	2.33 (1H, dd, J = 3.4, 13.4)	2.33 (1H, app d, J = 14.4)
21	----	----
22	6.03 (1H, d, J = 15.6)	6.03 (1H, d, J = 16.4)
23	5.61 (1H, m)	5.61 (1H, m)
24	2.72 (2H, m)	2.72 (2H, d, 7.2)
25	--	----
26a	4.67 (1H, brs)	4.67 (1H, brs)
26b	4.73 (1H, brs)	4.73 (1H, brs)
27	1.69 (3H, s)	1.69 (3H, s)
28a	4.82 (1H, s)	4.82 (1H, s)
28b	4.99 (1H, brs)	4.98 (1H, brs)
29	0.90 (3H, d, J = 6.7)	0.90 (3H, d, J = 6.8)
30	1.29 (3H, d, J = 6.7)	1.29 (3H, d, J = 6.8)
OMe (3x)	$3.43(3 \mathrm{H}, \mathrm{s}), 3.46(3 \mathrm{H}, \mathrm{s}), 3.53(3 \mathrm{H}, \mathrm{s})$	$3.43(3 \mathrm{H}, \mathrm{s}), 3.46(3 \mathrm{H}, \mathrm{s}), 3.56(3 \mathrm{H}, \mathrm{s})$
Ph groups	7.31-7.47 (14H, m)	7.31-7.47 (14H, m)
Ph groups	7.61 (1H, d, J = 7.8)	7.60 (1H, d, J = 7.2)

References

(1) Otera, J.; Danoh, N.; Nozaki, H., J. Org. Chem. 1991, 56, 5307.
(2) Orita, A.; Sakamoto, K.; Hamada, Y.; Mitsutome, A.; Otera, J., Tetrahedron 1999, 55, 2899.
(3) Orita, A.; Mitsutome, A.; Otera, J., J. Org. Chem. 1998, 63, 2420.
(4) Sarabia, F.; Sanchez-Ruiz, A., J. Org. Chem. 2005, 70, 9514.
(5) Roush, W. R.; Koyama, K.; Curtin, M. L.; Moriarty, K. J., J. Am. Chem. Soc. 1996, 118, 7502.
(6) Roush, W. R.; Grover, P. T., Tetrahedron 1992, 48, 1981.
(7) Takacs, J. M.; Jaber, M. R.; Swanson, B. J.; Mehrman, S. J., Tetrahedron: Asymmetry 1998, 9, 4313.
(8) Wasicak, J. T.; Craig, R. A.; Henry, R.; Dasgupta, B.; Li, H.; Donaldson, W. A., Tetrahedron 1997, 53, 4185.
(9) Gurjar, M. K.; Mohapatra, S.; Phalgune, U. D.; Puranik, V. G.; Mohapatra, D. K., Tetrahedron Lett. 2004, 45, 7899.
(10) Kobayashi, J.; Ishibashi, M.; Murayama, T.; Takamatsu, M.; Iwamura, M.; Ohizumi, Y.; Sasaki, T., J. Org. Chem. 1990, 55, 3421.
(11) Kubota, T.; Tsuda, M.; Kobayashi, J. i., J. Org. Chem. 2002, 67, 1651.

