## Supporting Information for

Dipyrrolyl Precursors to Bisalkoxide Molybdenum Olefin Metathesis Catalysts

Adam S. Hock, Richard R. Schrock, and Amir H. Hoveyda

### 1. Experimental Details

For  $\{Mo(NAr)(syn-CHCMe_2Ph)(\eta^5-NC_4H_4)(\eta^1-NC_4H_4)\} \{Mo(NAr)(syn-CHCMe_2Ph)(\eta^1-NC_4H_4)_2\}$  (06172)

- 2. Partially labeled ORTEP drawing
- 3. Crystal data and structure refinement
  - 4. Atomic coordinates
  - 5. Bond lengths and angles
  - 6. Anisotropic thermal parameters
- 7. Hydrogen atom coordinates and isotropic displacement parameters

#### Experimental

All complexes were handled using standard Schlenk techniques or in a Vacuum Atmospheres glove box under an argon or dinitrogen atmosphere. All solvents were dried, degassed, and stored over activated molecular sieves in a dinitrogen-filled glovebox. Pyrrole was distilled from CaH<sub>2</sub> in an inert atmosphere and lithium pyrrolide was prepared using published procedures.<sup>1</sup>  $Mo(N-2,6-i-Pr_2C_6H_3)(CHCMe_2Ph)(OTf)_2DME$ ,<sup>2</sup>  $Mo(NAd)(CHR)(OTf)_2(DME)$ ,<sup>2</sup> and  $Mo(N-2,6-Br_2-4-MeC_6H_2)(CHCMe_3)(OTf)_2(DME)$ <sup>3</sup> were synthesized by published procedures. Elemental analyses were performed by Desert Analytics, Tucson, Arizona.

**Mo**(N-2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>3</sub>)(NC<sub>4</sub>H<sub>4</sub>)<sub>2</sub>. To a -35 °C solution of 0.193 g (0. 27 mmol) Mo(NAr)(CHCMe<sub>3</sub>)(OTf)<sub>2</sub>(DME) in 4 mL diethyl ether was added 38.6 mg (0.53 mmol) of LiNC<sub>4</sub>H<sub>4</sub> as a solid in one portion. The mixture was stirred at room temperature for 1 hour, then all volatiles were removed *in vacuo*. The resulting brown powder was extracted with 5 mL of toluene and the solution was filtered through celite. The celite was washed with toluene (1 mL) and the resulting solution was taken to dryness *in vacuo*. The product may be recrystallized from mixtures of pentane/toluene or pure toluene at-35 °C as a toluene solvate; 110 mg (74%): <sup>1</sup>H NMR (300 MHz, 293K, toluene-*d*<sub>8</sub>)  $\delta$  13.5 (br s, 1H, MoCHR), 7-6.2 (v br s, overlapping, 11 H, Ar- *H* and NC<sub>4</sub>H<sub>4</sub>), 3.8-2.9 (br s, 2H, *i*-Pr), 1.3 (br s, 9H, CMe<sub>3</sub>), 1.1 (br s, 12H, *i*-Pr).

 $Mo(N-2,6-i-Pr_2C_6H_3)(CHCMe_2Ph)(NC_4H_4)_2$ . LiNC<sub>4</sub>H<sub>4</sub> (410 mg, 5.62 mmol) was added as a solid in several small portions a -40 °C solution of 2.223 g (2.81 mmol)  $Mo(NAr)(CHCMe_2Ph)(OTf)_2(DME)$  in 60 mL of diethyl ether. The mixture was stirred

<sup>&</sup>lt;sup>1</sup> Deiter, T. Z. Anorg. Allgem. Chem. **1971**, 384, 136-146.

<sup>&</sup>lt;sup>2</sup> Oskam, J. H.; Fox, H. H.; Yap, K. B.; McConville, D. H.; O'Dell, R.; Lichtenstein, B.

J.; Schrock, R. R. J. Organomet. Chem. 1993, 459, 185-198.

<sup>&</sup>lt;sup>3</sup> J. Y. Jamieson, Ph.D. thesis, Massachusetts Institute of Technology, 2002.

at room temperature for 1 hour. All volatiles were removed *in vacuo* and the resulting powder was extracted with 65 mL of a 1:1 mixture of toluene and pentane and the solution was filtered through celite. The celite was washed with toluene (3x15 mL) and the resulting solution was reduced to dryness *in vacuo*. The solid was recrystallized from pentane -35 °C; yield 1.2 g (80%): <sup>1</sup>H NMR (toluene-d<sub>8</sub>, 500 MHz) (223 K)  $\delta$  13.55 (s, 1H, MoCHR), 13.16 (s, 1H, MoCHR), 7.4-6.7 (m, Ar-H, NC<sub>4</sub>H<sub>4</sub>), 5.85 (s, 1H, NC<sub>4</sub>H<sub>4</sub>), 5.10 (s, 1H, NC<sub>4</sub>H<sub>4</sub>), 4.91 (s, 1H, NC<sub>4</sub>H<sub>4</sub>), 4.83 (s, 1H, NC<sub>4</sub>H<sub>4</sub>), 3.85 (sept, 2H, *i*-Pr methine), 2.85 (sept, 2H, *i*-Pr methine), 1.75 (s, 6H, MoCHCMe<sub>2</sub>Ph), 1.71 (s, 3H, MoCHCMe<sub>2</sub>Ph), 1.68 (s, 3H, MoCHCMe<sub>2</sub>Ph), 1.19 (br d, 12H, Ar-*i*-Pr), 1.12 (d, 3H, Ar*i*-Pr), 1.03 (overlapping d, 6H, Ar-*i*-Pr), 0.55 (d, 3H, Ar-*i*-Pr); (323 K):  $\delta$  13.18 (s, 1H, MoCHCMe<sub>2</sub>Ar), 6.86 (m, 3H, MoNAr), 6.44 (s, 4H, NC<sub>4</sub>H<sub>4</sub>), 6.14, (s, 4H, NC<sub>4</sub>H<sub>4</sub>), 3.22 (sept, 2H, *i*-Pr methine), 1.56 (s, 6H, MoCHCMe<sub>2</sub>Ar), 0.96 (d, 12H, *i*-Pr methyl). <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 126 MHz, 223 K): 313.9 (J<sub>CH</sub> 122.8 Hz), 293.9 (J<sub>CH</sub> 121.3 Hz). Analysis calcd. For C<sub>30</sub>H<sub>37</sub>MoN<sub>3</sub> (found): C 67.28 (67.38), H 6.96 (7.20), Mo 17.91, N 7.85 (7.70).

**Mo**(**NAd**)(**CHCMe**<sub>2</sub>**Ph**)(**NC**<sub>4</sub>**H**<sub>4</sub>)<sub>2</sub>. LiNC<sub>4</sub>H<sub>4</sub> (169 mg, 2.32 mmol) was added as a solid in small portions to a -35 °C solution of 0.890 g (1.16 mmol) Mo(NAd)(CHCMe<sub>2</sub>Ph)(OTf)<sub>2</sub>(DME) in 50 mL of diethyl ether. The mixture was stirred at room temperature for 1.5 h, then all volatiles were removed *in vacuo*. The resulting brown powder was extracted with toluene and the solution was filtered through celite. The celite was washed with toluene and the combined filtrates were taken to dryness *in vacuo*. The off-white solid may be recrystallized from toluene at -35 °C; yield 420 mg (2 crops, 71%): <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 500 MHz, 293 K)  $\delta$  13.6 (br s, 1H, MoCHR), 12.8 (br s, 1H, MoCHR), 7.5, (br s, 4 H, MoCHCMe<sub>2</sub>Ph), 7.0-4.7 (2 overlapping br s, MoCHCMe<sub>2</sub>Ph and NC<sub>4</sub>H<sub>4</sub>), 1.8-1.6 (br multiplet, 15H, MoNAd), 1.3 (br s, 6H, MoCHCMe<sub>2</sub>Ph). <sup>13</sup>C (CD<sub>2</sub>Cl<sub>2</sub> 126 MHz, 223K): 316.1 (J<sub>CH</sub> 118.2 Hz), 295.5 (J<sub>CH</sub> 111.3 Hz). Analysis calcd. For C<sub>28</sub>H<sub>35</sub>MoN<sub>3</sub> (found): C 66.00 (65.10), H 6.92 (6.60), Mo 18.83, N 8.25 (7.04).

**Mo**(N-2,6-Br<sub>2</sub>-4-MeC<sub>6</sub>H<sub>2</sub>)(CHCMe<sub>3</sub>)(NC<sub>4</sub>H<sub>4</sub>)<sub>2</sub>. LiNC<sub>4</sub>H<sub>4</sub> (35.4 mg, 0.485 mmol) in diethyl ether (~2 mL) was added to a -40 °C solution of 0.198 g (0.243 mmol) Mo(NAr)(CHCMe<sub>3</sub>)(OTf)<sub>2</sub>(DME) in 3 mL of dichloromethane. The mixture was stirred at room temperature for 1 hour and all volatiles were removed *in vacuo*. The resulting red-brown powder was extracted with benzene and the solution was filtered through celite. The celite was washed with benzene and the combined filtrates were taken to dryness *in vacuo*. The product was recrystallized from pentane containing a few drops of benzene at -35 °C; yield 94 mg (62%): <sup>1</sup>H NMR (300 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K)  $\delta$  13.4 (br s, 1H MoC*H*R), 6.8-6.4 (br overlapping s, 10H, MoN*Ar* and NC<sub>4</sub>H<sub>4</sub>), 3.1 (s, 3H, MoNAr methyl), 1.4 (br s, 9H, MoCHC*Me*<sub>3</sub>). Analysis calcd. For C<sub>20</sub>H<sub>23</sub>MoBr<sub>2</sub>N<sub>3</sub> (found): C 42.81 (42.52), H 4.13 (4.12), Mo 17.10, Br 28.48, N 7.49 (6.83).

**Mo**(**NAd**)(**CHCMe**<sub>2</sub>**Ph**)(**NC**<sub>4</sub>**H**<sub>4</sub>)<sub>2</sub>(**PMe**<sub>3</sub>). Excess trimethylphosphine (50 μL) was added to 150 mg of Mo(NAd)(CHCMe<sub>2</sub>Ph)(NC<sub>4</sub>H<sub>4</sub>)<sub>2</sub> in diethyl ether. The mixture was stirred at room temperature for 30 minutes and the solvent was removed *in vacuo*. Mo(NAd)(CHCMe<sub>2</sub>Ph)(NC<sub>4</sub>H<sub>4</sub>)<sub>2</sub>(PMe<sub>3</sub>) was crystallized from pentane as orange blocks; yield 100 mg (58%): NMR (<sup>1</sup>H, 300 MHz, C<sub>6</sub>D<sub>6</sub>) δ 12.49 (d, 1H, J<sub>H-P</sub> 4.8Hz, CHCMe<sub>2</sub>Ph), 8.41 (m, 2H, Ar), 7.05 (m, 6H, Ar), 6.80 (s, 4H, NC<sub>4</sub>H<sub>4</sub>), 6.40 (s, 4H, NC<sub>4</sub>H<sub>4</sub>), 2.43 (s, 6H), 1.82 (s, 6H), 1.73 (s, 3H, *Ad*), 1.35 (s, 6H), 0.46 (d, 9H, J<sub>HP</sub> 9.2 Hz, PMe<sub>3</sub>); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>) δ 301.73 (d, MoCHCMe<sub>2</sub>Ph, <sup>2</sup>J<sub>C-P</sub> 19.5 Hz), 148, 132.19, 129.13, 126.37, 125.96, 109.16, 108.62, 42.22, 36.21, 30.03, 16.50 (d, PMe<sub>3</sub>, J<sub>C-P</sub> 25 Hz). Analysis calcd. For C<sub>31</sub>H<sub>44</sub>MoN<sub>3</sub>P (found): C 63.58 (63.37), H 7.57 (7.45), Mo 16.38, N 7.18 (6.04), P 5.29.

**Representative procedure for the** *in situ* catalyst generation. The molybdenum precursor (ca. 0.02 mmol) is dissolved in 0.2 mL of  $C_6D_6$ . An equimolar amount of diol or two equivalents of alcohol in 0.3 mL of  $C_6D_6$  and the solutions are combined in a Teflon-sealed NMR tube. The <sup>1</sup>H NMR spectrum was recorded within 15 minutes. All diols and alcohols thus far examined have proceeded to completion by the time the <sup>1</sup>H NMR spectrum was recorded.

**Observation of Mo**(N-2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)(η<sup>1</sup>-NC<sub>4</sub>H<sub>4</sub>)(η<sup>5</sup>-C<sub>4</sub>H<sub>4</sub>NB(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>. To 23.0 mg (0.021 mmol) of {Mo(N-2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)(NC<sub>4</sub>H<sub>4</sub>)<sub>2</sub>}<sub>2</sub> in ~0.25 mL of C<sub>6</sub>D<sub>6</sub> was added B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (22 mg, 0.043 mmol) in ca. 0.25 mL C<sub>6</sub>D<sub>6</sub>. The solution was transferred to a Teflon-sealed NMR tube and the <sup>1</sup>H NMR spectrum was recorded (500 MHz, 293 K) δ 13.89 (s, 1H, MoCHR minor isomer), 13.08 (s, 1H, MoCHR major isomer), 7.72 (br s, 1H, η<sup>5</sup>-C<sub>4</sub>H<sub>4</sub>NB(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>), 7.28 (br s, 1H, η<sup>5</sup>-C<sub>4</sub>H<sub>4</sub>NB(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>), 7.08 (m, 4H, MoCHCMe<sub>2</sub>Ph), 7.02 (d, J<sub>HH</sub>7.6 Hz, 2H, η<sup>1</sup>-NC<sub>4</sub>H<sub>4</sub>), 6.87 (m, 1H, MoCHCMe<sub>2</sub>Ph), 6.78 (d, J<sub>HH</sub>7.6 Hz, 2H, η<sup>1</sup>-NC<sub>4</sub>H<sub>4</sub>), 5.78 (br s, 1H, η<sup>5</sup>-C<sub>4</sub>H<sub>4</sub>NB(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>), 5.41, (br s, 1H, η<sup>5</sup>-C<sub>4</sub>H<sub>4</sub>NB(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>), 2.82 (br s, 2H, *i*-Pr methine), 1.51 (s, 3H, MoCHCMe<sub>2</sub>Ph), 1.25 (s, 3H, MoCHCMe<sub>2</sub>Ph), 0.92 (br mult, 12H, *i*-Pr methyls).

#### X-Ray Structural Studies

Low temperature diffraction data were collected on a Siemens Platform threecircle diffractometer coupled to a Bruker-AXS SMART Apex CCD detector with graphite-monochromated MoK $\alpha$  radiation ( $\lambda = 0.71073$  Å), performing  $\phi$  and  $\omega$ -scans. The structures were solved by direct methods using SHELXS<sup>4</sup> and refined against  $F^2$  on all data by full-matrix least squares with SHELXL-97.<sup>5</sup> All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at

<sup>&</sup>lt;sup>4</sup> Sheldrick, G. M. Acta Cryst. 1990, A46, 467.

<sup>&</sup>lt;sup>5</sup> Sheldrick, G. M. (**1997**). SHELXL 97, University of Göttingen, Germany.

geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). Crystal and structural refinement data for the structure is listed below.

Crystals of  $\{Mo(NAr)(syn-CHCMe_2Ph)(\eta^5-NC_4H_4)(\eta^1-NC_4H_4)\}\{Mo(NAr)(syn-CHCMe_2Ph)(\eta^5-NC_4H_4)(\eta^1-NC_4H_4)\}$ CHCMe<sub>2</sub>Ph)( $\eta^1$ -NC<sub>4</sub>H<sub>4</sub>)<sub>2</sub> (06172) grown at -40 °C from a mixture of pentane and toluene were coated with Paratone-N oil (an Exxon-Mobile (TM) product) in a dinitrogen-filled glovebox and examined under a microscope. A suitable crystal measuring 0.10 x 0.08 x 0.03 mm<sup>3</sup> was selected and mounted in a nylon loop. Initial examination of the data indicated that the space group was P21/c. However, no reasonable solution could be obtained via direct methods or from the Patterson map. The program CELL\_NOW<sup>6</sup> was used to re-determine the unit cell from 999 reflections sampled from several regions in the hemisphere of data. The resulting, slightly different, unit cell was used to integrate the data in the SAINT software package in the triclinic setting. A solution in the space group P1 (#1) was refined isotropically and the routines ADDSYM and NEWSYM in Platon<sup>7</sup> were used to confirm that the correct space group was indeed P21/c. Reintegration in the primitive, monoclinic setting followed by absorption correction with the SADABS<sup>8</sup> package yielded the data set from which the correct initial solution was obtained. Confirmation of the space group/setting was substantiated by the successful refinement of the structure and use of the ADDSYM and NEWSYM functions in the Platon software package.

<sup>&</sup>lt;sup>6</sup> Sheldrick, G. M. (2006c). CELL\_NOW, Bruker AXS, Inc., Madison, Wisconsin, USA.

<sup>&</sup>lt;sup>7</sup> Spek, A. L. Acta Cryst. 1990, A46, C34.

<sup>&</sup>lt;sup>8</sup> Sheldrick, G. M. (2006a). SADABS, Bruker AXS, Inc., Madison, Wisconsin, USA.



Figure 1. Thermal Ellipsoid Plot (50% probability level) of the structure of **06172**. Hydrogen atoms and co-crystallized solvent molecules have been omitted for clarity. The full labeling scheme may be seen on http://reciprocal.lms.mit.edu/recipnet/index.jsp by searching the code 06172.

| Identification code                     | 06172                                       |                               |
|-----------------------------------------|---------------------------------------------|-------------------------------|
| Empirical formula                       | C67 H82 Mo2 N6                              |                               |
| Formula weight                          | 1163.27                                     |                               |
| Temperature                             | 100(2) K                                    |                               |
| Wavelength                              | 0.71073 Å                                   |                               |
| Crystal system                          | Monoclinic                                  |                               |
| Space group                             | P21/c                                       |                               |
| Unit cell dimensions                    | a = 24.903(12) Å                            | $\alpha = 90^{\circ}$         |
|                                         | b = 12.723(5) Å                             | $\beta = 106.001(12)^{\circ}$ |
|                                         | c = 19.434(9)  Å                            | $\gamma=90^{\rm o}$           |
| Volume                                  | 5919(4) Å <sup>3</sup>                      |                               |
| Ζ                                       | 4                                           |                               |
| Density (calculated)                    | 1.305 Mg/m <sup>3</sup>                     |                               |
| Absorption coefficient                  | 0.469 mm <sup>-1</sup>                      |                               |
| F(000)                                  | 2440                                        |                               |
| Crystal size                            | 0.10 x 0.08 x 0.03 mm <sup>3</sup>          |                               |
| Theta range for data collection         | 1.70 to 21.97°.                             |                               |
| Index ranges                            | -26<=h<=25, 0<=k<=13, 0<=l<                 | =20                           |
| Reflections collected                   | 7216                                        |                               |
| Independent reflections                 | 7216 [R(int) = 0.1879]                      |                               |
| Completeness to theta = $21.97^{\circ}$ | 99.6 %                                      |                               |
| Absorption correction                   | Empirical                                   |                               |
| Max. and min. transmission              | 0.9861 and 0.9546                           |                               |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup> |                               |
| Data / restraints / parameters          | 7216 / 0 / 670                              |                               |
| Goodness-of-fit on F <sup>2</sup>       | 1.013                                       |                               |
| Final R indices [I>2sigma(I)]           | R1 = 0.0412, wR2 = 0.0775                   |                               |
| R indices (all data)                    | R1 = 0.0753, wR2 = 0.0901                   |                               |
| Largest diff. peak and hole             | 0.590 and -0.534 e.Å <sup>-3</sup>          |                               |

# Table 1. Crystal data and structure refinement for {Mo(NAr)(CHR)(NC<sub>4</sub>H<sub>4</sub>)<sub>2</sub>}<sub>2</sub>.

|           | X       | у        | Z       | U(eq) |
|-----------|---------|----------|---------|-------|
| <br>Mo(1) | 3042(1) | 8833(1)  | 4794(1) | 15(1) |
| Mo(2)     | 1260(1) | 9284(1)  | 3435(1) | 16(1) |
| N(1A)     | 3711(2) | 8566(3)  | 5307(2) | 15(1) |
| N(2A)     | 2949(2) | 7481(3)  | 4169(2) | 18(1) |
| N(3A)     | 2778(2) | 9826(3)  | 5499(2) | 16(1) |
| N(1B)     | 573(2)  | 9542(3)  | 2975(2) | 16(1) |
| N(2B)     | 1584(2) | 8780(3)  | 2624(2) | 18(1) |
| N(3B)     | 2048(2) | 8621(3)  | 4418(2) | 17(1) |
| C(1A)     | 3201(2) | 9782(4)  | 4150(3) | 17(1) |
| C(2A)     | 3661(2) | 10288(4) | 3889(3) | 21(1) |
| C(3A)     | 3722(2) | 9622(4)  | 3256(3) | 29(2) |
| C(4A)     | 4217(2) | 10277(4) | 4472(3) | 26(1) |
| C(5A)     | 3493(2) | 11426(4) | 3668(3) | 17(1) |
| C(6A)     | 3495(2) | 12174(4) | 4195(3) | 23(1) |
| C(7A)     | 3377(2) | 13223(4) | 4019(3) | 26(1) |
| C(8A)     | 3246(2) | 13539(4) | 3313(3) | 28(2) |
| C(9A)     | 3221(2) | 12800(4) | 2784(3) | 26(1) |
| C(10A)    | 3351(2) | 11751(4) | 2960(3) | 24(1) |
| C(11A)    | 2805(2) | 7348(4)  | 3437(3) | 21(1) |
| C(12A)    | 2658(2) | 6321(4)  | 3270(3) | 25(1) |
| C(13A)    | 2708(2) | 5785(4)  | 3908(3) | 25(1) |
| C(14A)    | 2886(2) | 6507(4)  | 4449(3) | 22(1) |
| C(15A)    | 2631(2) | 10869(4) | 5439(3) | 17(1) |
| C(16A)    | 2388(2) | 11154(4) | 5966(3) | 21(1) |
| C(17A)    | 2380(2) | 10237(4) | 6378(3) | 23(1) |
| C(18A)    | 2621(2) | 9459(4)  | 6080(3) | 21(1) |
| C(19A)    | 4235(2) | 8243(4)  | 5738(3) | 16(1) |
| C(20A)    | 4556(2) | 7535(4)  | 5453(3) | 22(1) |
| C(21A)    | 5056(2) | 7183(4)  | 5908(3) | 25(1) |
| C(22A)    | 5231(2) | 7515(4)  | 6605(3) | 29(2) |

Table 2. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $\approx^2 x 10^3$ ) for {Mo(NAr)(CHR)(NC<sub>4</sub>H<sub>4</sub>)<sub>2</sub>}<sub>2</sub>. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| C(23A) | 4922(2)  | 8235(4)  | 6870(3) | 29(1) |
|--------|----------|----------|---------|-------|
| C(24A) | 4421(2)  | 8623(4)  | 6443(3) | 23(1) |
| C(25A) | 4377(2)  | 7171(4)  | 4677(3) | 24(1) |
| C(26A) | 4814(2)  | 7493(4)  | 4293(3) | 31(2) |
| C(27A) | 4279(2)  | 5983(4)  | 4617(3) | 34(2) |
| C(28A) | 4093(2)  | 9443(5)  | 6726(3) | 33(2) |
| C(29A) | 4306(3)  | 10534(5) | 6630(3) | 58(2) |
| C(30A) | 4091(3)  | 9295(5)  | 7494(3) | 58(2) |
| C(1B)  | 1561(2)  | 10676(4) | 3538(3) | 20(1) |
| C(2B)  | 1398(2)  | 11805(4) | 3341(3) | 21(1) |
| C(3B)  | 1753(2)  | 12191(4) | 2857(3) | 30(2) |
| C(4B)  | 779(2)   | 11925(4) | 2919(3) | 25(1) |
| C(5B)  | 1506(2)  | 12448(4) | 4032(3) | 18(1) |
| C(6B)  | 1904(2)  | 13232(4) | 4213(3) | 24(1) |
| C(7B)  | 1966(2)  | 13822(4) | 4826(3) | 29(1) |
| C(8B)  | 1646(2)  | 13645(4) | 5281(3) | 26(1) |
| C(9B)  | 1259(2)  | 12844(4) | 5127(3) | 26(1) |
| C(10B) | 1194(2)  | 12252(4) | 4514(3) | 22(1) |
| C(11B) | 1845(2)  | 9337(4)  | 2197(3) | 24(1) |
| C(12B) | 1867(2)  | 8742(4)  | 1624(3) | 28(1) |
| C(13B) | 1622(2)  | 7766(4)  | 1694(3) | 26(1) |
| C(14B) | 1454(2)  | 7811(4)  | 2298(3) | 20(1) |
| C(15B) | 1666(2)  | 9114(4)  | 4704(3) | 20(1) |
| C(16B) | 1160(2)  | 8570(4)  | 4521(3) | 18(1) |
| C(17B) | 1234(2)  | 7679(4)  | 4127(3) | 18(1) |
| C(18B) | 1773(2)  | 7743(4)  | 4063(3) | 18(1) |
| C(19B) | 16(2)    | 9695(4)  | 2584(3) | 17(1) |
| C(20B) | -395(2)  | 9841(4)  | 2951(3) | 18(1) |
| C(21B) | -932(2)  | 10069(4) | 2548(3) | 22(1) |
| C(22B) | -1069(2) | 10113(4) | 1815(3) | 22(1) |
| C(23B) | -669(2)  | 9943(4)  | 1458(3) | 26(1) |
| C(24B) | -115(2)  | 9740(4)  | 1835(3) | 18(1) |
| C(25B) | -252(2)  | 9681(4)  | 3752(3) | 22(1) |
| C(26B) | -623(2)  | 10295(5) | 4123(3) | 38(2) |
| C(27B) | -281(2)  | 8497(4)  | 3899(3) | 29(2) |
| C(28B) | 320(2)   | 9543(4)  | 1433(3) | 22(1) |

| C(29B) | 362(2)  | 10463(4) | 951(3)  | 31(2) |
|--------|---------|----------|---------|-------|
| C(30B) | 190(2)  | 8524(4)  | 995(3)  | 26(1) |
| C(1T)  | 6467(2) | 4402(4)  | 3582(3) | 26(1) |
| C(2T)  | 5918(2) | 4583(5)  | 3559(3) | 31(2) |
| C(3T)  | 5741(2) | 5558(5)  | 3710(3) | 36(2) |
| C(4T)  | 6107(3) | 6385(5)  | 3884(3) | 33(2) |
| C(5T)  | 6661(2) | 6216(5)  | 3907(3) | 30(1) |
| C(6T)  | 6837(2) | 5230(4)  | 3765(3) | 25(1) |
| C(7T)  | 6658(3) | 3336(4)  | 3424(3) | 37(2) |

| Mo(1)-N(1A)   | 1.725(4) | C(12A)-C(13A) | 1.391(7) |
|---------------|----------|---------------|----------|
| Mo(1)-C(1A)   | 1.859(5) | C(13A)-C(14A) | 1.374(7) |
| Mo(1)-N(2A)   | 2.082(4) | C(15A)-C(16A) | 1.374(7) |
| Mo(1)-N(3A)   | 2.097(4) | C(16A)-C(17A) | 1.419(7) |
| Mo(1)-N(3B)   | 2.395(4) | C(17A)-C(18A) | 1.366(7) |
| Mo(2)-N(1B)   | 1.730(4) | C(19A)-C(24A) | 1.407(7) |
| Mo(2)-C(1B)   | 1.912(5) | C(19A)-C(20A) | 1.414(7) |
| Mo(2)-N(2B)   | 2.060(4) | C(20A)-C(21A) | 1.387(7) |
| Mo(2)-C(16B)  | 2.373(5) | C(20A)-C(25A) | 1.523(7) |
| Mo(2)-C(15B)  | 2.403(5) | C(21A)-C(22A) | 1.369(7) |
| Mo(2)-C(17B)  | 2.456(5) | C(22A)-C(23A) | 1.384(7) |
| Mo(2)-C(18B)  | 2.471(5) | C(23A)-C(24A) | 1.383(7) |
| Mo(2)-N(3B)   | 2.479(4) | C(24A)-C(28A) | 1.518(7) |
| N(1A)-C(19A)  | 1.404(6) | C(25A)-C(27A) | 1.531(7) |
| N(2A)-C(11A)  | 1.379(6) | C(25A)-C(26A) | 1.535(7) |
| N(2A)-C(14A)  | 1.379(6) | C(28A)-C(30A) | 1.507(8) |
| N(3A)-C(15A)  | 1.373(6) | C(28A)-C(29A) | 1.516(8) |
| N(3A)-C(18A)  | 1.375(6) | C(1B)-C(2B)   | 1.513(7) |
| N(1B)-C(19B)  | 1.400(6) | C(2B)-C(5B)   | 1.532(7) |
| N(2B)-C(14B)  | 1.383(6) | C(2B)-C(3B)   | 1.537(7) |
| N(2B)-C(11B)  | 1.383(6) | C(2B)-C(4B)   | 1.542(7) |
| N(3B)-C(15B)  | 1.376(6) | C(5B)-C(6B)   | 1.382(7) |
| N(3B)-C(18B)  | 1.390(6) | C(5B)-C(10B)  | 1.394(7) |
| C(1A)-C(2A)   | 1.519(7) | C(6B)-C(7B)   | 1.380(7) |
| C(2A)-C(4A)   | 1.530(7) | C(7B)-C(8B)   | 1.362(7) |
| C(2A)-C(3A)   | 1.534(7) | C(8B)-C(9B)   | 1.378(7) |
| C(2A)-C(5A)   | 1.536(7) | C(9B)-C(10B)  | 1.381(7) |
| C(5A)-C(10A)  | 1.386(7) | C(11B)-C(12B) | 1.359(7) |
| C(5A)-C(6A)   | 1.396(7) | C(12B)-C(13B) | 1.407(7) |
| C(6A)-C(7A)   | 1.389(7) | C(13B)-C(14B) | 1.352(7) |
| C(7A)-C(8A)   | 1.379(7) | C(15B)-C(16B) | 1.395(7) |
| C(8A)-C(9A)   | 1.382(7) | C(16B)-C(17B) | 1.409(7) |
| C(9A)-C(10A)  | 1.394(7) | C(17B)-C(18B) | 1.383(7) |
| C(11A)-C(12A) | 1.371(7) | C(19B)-C(24B) | 1.403(7) |

Table 3. Bond lengths [Å] and angles  $[^{\circ}]$  for  $\{Mo(NAr)(CHR)(NC_4H_4)_2\}_2$ .

| C(19B)-C(20B)      | 1.411(7)   | N(2B)-Mo(2)-C(15B)  | 127.86(16) |
|--------------------|------------|---------------------|------------|
| C(20B)-C(21B)      | 1.381(7)   | C(16B)-Mo(2)-C(15B) | 33.95(16)  |
| C(20B)-C(25B)      | 1.513(7)   | N(1B)-Mo(2)-C(17B)  | 105.61(17) |
| C(21B)-C(22B)      | 1.373(7)   | C(1B)-Mo(2)-C(17B)  | 141.38(19) |
| C(22B)-C(23B)      | 1.378(7)   | N(2B)-Mo(2)-C(17B)  | 103.58(16) |
| C(23B)-C(24B)      | 1.395(7)   | C(16B)-Mo(2)-C(17B) | 33.87(16)  |
| C(24B)-C(28B)      | 1.519(7)   | C(15B)-Mo(2)-C(17B) | 55.28(17)  |
| C(25B)-C(26B)      | 1.532(7)   | N(1B)-Mo(2)-C(18B)  | 135.13(17) |
| C(25B)-C(27B)      | 1.539(7)   | C(1B)-Mo(2)-C(18B)  | 123.28(19) |
| C(28B)-C(29B)      | 1.522(7)   | N(2B)-Mo(2)-C(18B)  | 82.71(16)  |
| C(28B)-C(30B)      | 1.536(7)   | C(16B)-Mo(2)-C(18B) | 54.77(17)  |
| C(1T)-C(2T)        | 1.376(7)   | C(15B)-Mo(2)-C(18B) | 53.65(17)  |
| C(1T)-C(6T)        | 1.381(7)   | C(17B)-Mo(2)-C(18B) | 32.59(15)  |
| C(1T)-C(7T)        | 1.496(7)   | N(1B)-Mo(2)-N(3B)   | 157.32(16) |
| C(2T)-C(3T)        | 1.374(8)   | C(1B)-Mo(2)-N(3B)   | 91.72(18)  |
| C(3T)-C(4T)        | 1.372(8)   | N(2B)-Mo(2)-N(3B)   | 95.18(15)  |
| C(4T)-C(5T)        | 1.385(8)   | C(16B)-Mo(2)-N(3B)  | 55.84(16)  |
| C(5T)-C(6T)        | 1.381(7)   | C(15B)-Mo(2)-N(3B)  | 32.69(14)  |
| N(1A)-Mo(1)-C(1A)  | 99.5(2)    | C(17B)-Mo(2)-N(3B)  | 55.21(15)  |
| N(1A)-Mo(1)-N(2A)  | 96.24(16)  | C(18B)-Mo(2)-N(3B)  | 32.62(14)  |
| C(1A)-Mo(1)-N(2A)  | 98.82(19)  | C(19A)-N(1A)-Mo(1)  | 173.9(3)   |
| N(1A)-Mo(1)-N(3A)  | 99.65(17)  | C(11A)-N(2A)-C(14A) | 105.8(4)   |
| C(1A)-Mo(1)-N(3A)  | 102.26(18) | C(11A)-N(2A)-Mo(1)  | 131.2(3)   |
| N(2A)-Mo(1)-N(3A)  | 150.98(16) | C(14A)-N(2A)-Mo(1)  | 121.2(3)   |
| N(1A)-Mo(1)-N(3B)  | 155.16(16) | C(15A)-N(3A)-C(18A) | 105.5(4)   |
| C(1A)-Mo(1)-N(3B)  | 105.19(18) | C(15A)-N(3A)-Mo(1)  | 130.6(3)   |
| N(2A)-Mo(1)-N(3B)  | 77.85(14)  | C(18A)-N(3A)-Mo(1)  | 122.9(3)   |
| N(3A)-Mo(1)-N(3B)  | 77.54(14)  | C(19B)-N(1B)-Mo(2)  | 176.7(4)   |
| N(1B)-Mo(2)-C(1B)  | 100.5(2)   | C(14B)-N(2B)-C(11B) | 105.7(4)   |
| N(1B)-Mo(2)-N(2B)  | 101.80(17) | C(14B)-N(2B)-Mo(2)  | 122.4(3)   |
| C(1B)-Mo(2)-N(2B)  | 98.28(19)  | C(11B)-N(2B)-Mo(2)  | 130.4(4)   |
| N(1B)-Mo(2)-C(16B) | 101.58(18) | C(15B)-N(3B)-C(18B) | 105.4(4)   |
| C(1B)-Mo(2)-C(16B) | 113.26(19) | C(15B)-N(3B)-Mo(1)  | 126.6(3)   |
| N(2B)-Mo(2)-C(16B) | 136.06(17) | C(18B)-N(3B)-Mo(1)  | 124.6(3)   |
| N(1B)-Mo(2)-C(15B) | 128.59(18) | C(15B)-N(3B)-Mo(2)  | 70.6(3)    |
| C(1B)-Mo(2)-C(15B) | 86.18(19)  | C(18B)-N(3B)-Mo(2)  | 73.4(3)    |

| Mo(1)-N(3B)-Mo(2)    | 136.74(17) | C(20A)-C(25A)-C(27A) | 111.9(4) |
|----------------------|------------|----------------------|----------|
| C(2A)-C(1A)-Mo(1)    | 145.1(4)   | C(20A)-C(25A)-C(26A) | 110.2(4) |
| C(1A)-C(2A)-C(4A)    | 111.2(4)   | C(27A)-C(25A)-C(26A) | 110.3(4) |
| C(1A)-C(2A)-C(3A)    | 106.5(4)   | C(30A)-C(28A)-C(29A) | 109.5(5) |
| C(4A)-C(2A)-C(3A)    | 108.6(4)   | C(30A)-C(28A)-C(24A) | 114.9(5) |
| C(1A)-C(2A)-C(5A)    | 108.6(4)   | C(29A)-C(28A)-C(24A) | 110.1(5) |
| C(4A)-C(2A)-C(5A)    | 109.7(4)   | C(2B)-C(1B)-Mo(2)    | 141.5(4) |
| C(3A)-C(2A)-C(5A)    | 112.1(4)   | C(1B)-C(2B)-C(5B)    | 108.3(4) |
| C(10A)-C(5A)-C(6A)   | 118.3(5)   | C(1B)-C(2B)-C(3B)    | 107.4(4) |
| C(10A)-C(5A)-C(2A)   | 122.2(5)   | C(5B)-C(2B)-C(3B)    | 112.0(4) |
| C(6A)-C(5A)-C(2A)    | 119.5(5)   | C(1B)-C(2B)-C(4B)    | 112.8(4) |
| C(7A)-C(6A)-C(5A)    | 121.1(5)   | C(5B)-C(2B)-C(4B)    | 108.7(4) |
| C(8A)-C(7A)-C(6A)    | 120.0(5)   | C(3B)-C(2B)-C(4B)    | 107.6(4) |
| C(7A)-C(8A)-C(9A)    | 119.5(5)   | C(6B)-C(5B)-C(10B)   | 116.8(5) |
| C(8A)-C(9A)-C(10A)   | 120.6(5)   | C(6B)-C(5B)-C(2B)    | 123.3(5) |
| C(5A)-C(10A)-C(9A)   | 120.4(5)   | C(10B)-C(5B)-C(2B)   | 119.9(5) |
| C(12A)-C(11A)-N(2A)  | 109.8(5)   | C(7B)-C(6B)-C(5B)    | 120.9(5) |
| C(11A)-C(12A)-C(13A) | 107.7(5)   | C(8B)-C(7B)-C(6B)    | 121.6(5) |
| C(14A)-C(13A)-C(12A) | 106.6(5)   | C(7B)-C(8B)-C(9B)    | 118.7(5) |
| C(13A)-C(14A)-N(2A)  | 110.2(5)   | C(8B)-C(9B)-C(10B)   | 120.0(5) |
| N(3A)-C(15A)-C(16A)  | 110.7(5)   | C(9B)-C(10B)-C(5B)   | 121.8(5) |
| C(15A)-C(16A)-C(17A) | 106.3(5)   | C(12B)-C(11B)-N(2B)  | 109.8(5) |
| C(18A)-C(17A)-C(16A) | 106.2(5)   | C(11B)-C(12B)-C(13B) | 107.2(5) |
| C(17A)-C(18A)-N(3A)  | 111.2(5)   | C(14B)-C(13B)-C(12B) | 107.0(5) |
| N(1A)-C(19A)-C(24A)  | 118.9(4)   | C(13B)-C(14B)-N(2B)  | 110.3(5) |
| N(1A)-C(19A)-C(20A)  | 119.1(4)   | N(3B)-C(15B)-C(16B)  | 110.3(4) |
| C(24A)-C(19A)-C(20A) | 122.0(5)   | N(3B)-C(15B)-Mo(2)   | 76.7(3)  |
| C(21A)-C(20A)-C(19A) | 117.5(5)   | C(16B)-C(15B)-Mo(2)  | 71.8(3)  |
| C(21A)-C(20A)-C(25A) | 120.0(5)   | C(15B)-C(16B)-C(17B) | 107.1(5) |
| C(19A)-C(20A)-C(25A) | 122.5(5)   | C(15B)-C(16B)-Mo(2)  | 74.2(3)  |
| C(22A)-C(21A)-C(20A) | 121.0(5)   | C(17B)-C(16B)-Mo(2)  | 76.3(3)  |
| C(21A)-C(22A)-C(23A) | 120.9(5)   | C(18B)-C(17B)-C(16B) | 106.0(5) |
| C(24A)-C(23A)-C(22A) | 121.0(5)   | C(18B)-C(17B)-Mo(2)  | 74.3(3)  |
| C(23A)-C(24A)-C(19A) | 117.5(5)   | C(16B)-C(17B)-Mo(2)  | 69.8(3)  |
| C(23A)-C(24A)-C(28A) | 121.0(5)   | C(17B)-C(18B)-N(3B)  | 111.1(4) |
| C(19A)-C(24A)-C(28A) | 121.5(5)   | C(17B)-C(18B)-Mo(2)  | 73.1(3)  |

| N(3B)-C(18B)-Mo(2)   | 74.0(3)  |
|----------------------|----------|
| N(1B)-C(19B)-C(24B)  | 118.7(5) |
| N(1B)-C(19B)-C(20B)  | 119.5(5) |
| C(24B)-C(19B)-C(20B) | 121.7(5) |
| C(21B)-C(20B)-C(19B) | 117.7(5) |
| C(21B)-C(20B)-C(25B) | 121.9(5) |
| C(19B)-C(20B)-C(25B) | 120.3(4) |
| C(22B)-C(21B)-C(20B) | 121.4(5) |
| C(21B)-C(22B)-C(23B) | 120.6(5) |
| C(22B)-C(23B)-C(24B) | 120.8(5) |
| C(23B)-C(24B)-C(19B) | 117.7(5) |
| C(23B)-C(24B)-C(28B) | 120.2(5) |
| C(19B)-C(24B)-C(28B) | 122.1(5) |
| C(20B)-C(25B)-C(26B) | 114.4(4) |
| C(20B)-C(25B)-C(27B) | 108.3(4) |
| C(26B)-C(25B)-C(27B) | 110.3(5) |
| C(24B)-C(28B)-C(29B) | 111.7(4) |
| C(24B)-C(28B)-C(30B) | 110.7(4) |
| C(29B)-C(28B)-C(30B) | 110.4(4) |
| C(2T)-C(1T)-C(6T)    | 117.9(5) |
| C(2T)-C(1T)-C(7T)    | 120.9(5) |
| C(6T)-C(1T)-C(7T)    | 121.2(5) |
| C(3T)-C(2T)-C(1T)    | 121.3(6) |
| C(4T)-C(3T)-C(2T)    | 120.9(6) |
| C(3T)-C(4T)-C(5T)    | 118.5(6) |
| C(6T)-C(5T)-C(4T)    | 120.3(5) |
| C(1T)-C(6T)-C(5T)    | 121.2(5) |
|                      |          |

|        | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Mo(1)  | 15(1)           | 15(1)           | 15(1)           | 0(1)            | 1(1)            | 1(1)            |
| Mo(2)  | 14(1)           | 15(1)           | 18(1)           | -1(1)           | 2(1)            | 0(1)            |
| N(1A)  | 15(2)           | 14(3)           | 13(2)           | 2(2)            | 2(2)            | 0(2)            |
| N(2A)  | 13(2)           | 17(3)           | 18(3)           | 3(2)            | -2(2)           | 2(2)            |
| N(3A)  | 14(2)           | 12(3)           | 18(3)           | -1(2)           | 0(2)            | 4(2)            |
| N(1B)  | 15(3)           | 20(3)           | 11(2)           | 5(2)            | 0(2)            | 0(2)            |
| N(2B)  | 18(2)           | 16(3)           | 19(3)           | -3(2)           | 6(2)            | 0(2)            |
| N(3B)  | 19(3)           | 12(3)           | 18(3)           | -3(2)           | 1(2)            | -1(2)           |
| C(1A)  | 17(3)           | 19(3)           | 13(3)           | 2(2)            | 1(2)            | 6(2)            |
| C(2A)  | 21(3)           | 20(3)           | 21(3)           | 5(3)            | 3(3)            | 1(3)            |
| C(3A)  | 38(4)           | 25(3)           | 28(3)           | 5(3)            | 17(3)           | 1(3)            |
| C(4A)  | 21(3)           | 25(3)           | 32(4)           | 5(3)            | 6(3)            | -1(3)           |
| C(5A)  | 9(3)            | 20(3)           | 24(3)           | -3(3)           | 7(2)            | -6(2)           |
| C(6A)  | 22(3)           | 26(4)           | 25(3)           | 2(3)            | 11(3)           | -2(3)           |
| C(7A)  | 28(4)           | 23(4)           | 29(4)           | -6(3)           | 9(3)            | -1(3)           |
| C(8A)  | 22(3)           | 17(3)           | 47(4)           | 11(3)           | 14(3)           | 3(3)            |
| C(9A)  | 22(3)           | 34(4)           | 21(3)           | 17(3)           | 5(3)            | 2(3)            |
| C(10A) | 23(3)           | 31(4)           | 17(3)           | 9(3)            | 6(3)            | 2(3)            |
| C(11A) | 15(3)           | 24(4)           | 24(4)           | 0(3)            | 4(3)            | -2(3)           |
| C(12A) | 25(3)           | 25(4)           | 24(4)           | -9(3)           | 5(3)            | -4(3)           |
| C(13A) | 23(3)           | 14(3)           | 37(4)           | -4(3)           | 4(3)            | -2(3)           |
| C(14A) | 16(3)           | 27(4)           | 22(3)           | 7(3)            | 3(3)            | 8(3)            |
| C(15A) | 14(3)           | 16(3)           | 18(3)           | -2(2)           | -1(2)           | -1(2)           |
| C(16A) | 24(3)           | 16(3)           | 19(3)           | -8(3)           | -2(3)           | 5(3)            |
| C(17A) | 20(3)           | 37(4)           | 15(3)           | -5(3)           | 5(3)            | 3(3)            |
| C(18A) | 21(3)           | 24(3)           | 19(3)           | 3(3)            | 5(3)            | 0(3)            |
| C(19A) | 12(3)           | 18(3)           | 17(3)           | 4(3)            | 1(3)            | -1(2)           |
| C(20A) | 18(3)           | 21(3)           | 30(4)           | 2(3)            | 11(3)           | -3(3)           |
| C(21A) | 17(3)           | 25(3)           | 32(4)           | 6(3)            | 6(3)            | 4(3)            |
| C(22A) | 12(3)           | 34(4)           | 35(4)           | 9(3)            | -1(3)           | -2(3)           |
| C(23A) | 20(3)           | 35(4)           | 25(3)           | 2(3)            | -3(3)           | -3(3)           |

Table 4. Anisotropic displacement parameters ( $\approx^2 x \ 10^3$ ) for {Mo(NAr)(CHR)(NC\_4H\_4)\_2}\_2. Theanisotropic displacement factor exponent takes the form:  $-2\pi^2$ [  $h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}$  ]

| C(24A) | 16(3) | 26(4) | 26(4) | 5(3)   | 5(3)  | -4(3) |
|--------|-------|-------|-------|--------|-------|-------|
| C(25A) | 19(3) | 25(3) | 28(4) | 0(3)   | 9(3)  | 5(3)  |
| C(26A) | 27(3) | 38(4) | 29(4) | -6(3)  | 9(3)  | 4(3)  |
| C(27A) | 30(4) | 30(4) | 41(4) | -7(3)  | 8(3)  | 4(3)  |
| C(28A) | 23(3) | 43(4) | 26(4) | -8(3)  | -7(3) | 5(3)  |
| C(29A) | 99(4) | 47(3) | 44(3) | 1(3)   | 44(3) | 13(3) |
| C(30A) | 99(4) | 47(3) | 44(3) | 1(3)   | 44(3) | 13(3) |
| C(1B)  | 17(3) | 15(3) | 26(3) | -2(3)  | 4(2)  | 0(2)  |
| C(2B)  | 16(3) | 24(3) | 23(3) | 6(3)   | 7(3)  | 0(3)  |
| C(3B)  | 37(4) | 21(3) | 31(4) | 2(3)   | 12(3) | -4(3) |
| C(4B)  | 24(3) | 24(3) | 22(3) | -3(3)  | -1(3) | 1(3)  |
| C(5B)  | 13(3) | 14(3) | 24(3) | 8(3)   | 1(3)  | 9(3)  |
| C(6B)  | 21(3) | 25(3) | 25(3) | 1(3)   | 6(3)  | -3(3) |
| C(7B)  | 19(3) | 23(3) | 35(4) | -6(3)  | -7(3) | -5(3) |
| C(8B)  | 28(4) | 26(4) | 23(3) | -2(3)  | 3(3)  | 2(3)  |
| C(9B)  | 22(3) | 32(4) | 20(3) | -1(3)  | 2(3)  | 3(3)  |
| C(10B) | 14(3) | 18(3) | 33(4) | 2(3)   | 4(3)  | -6(2) |
| C(11B) | 22(3) | 23(3) | 31(4) | 6(3)   | 13(3) | -2(3) |
| C(12B) | 27(3) | 34(4) | 28(4) | 1(3)   | 17(3) | -4(3) |
| C(13B) | 28(3) | 29(4) | 18(3) | -6(3)  | 4(3)  | 2(3)  |
| C(14B) | 18(3) | 17(3) | 23(3) | -3(3)  | 2(3)  | -1(2) |
| C(15B) | 22(3) | 20(3) | 17(3) | 0(2)   | 4(3)  | 8(3)  |
| C(16B) | 19(3) | 23(3) | 15(3) | 0(2)   | 9(3)  | 0(3)  |
| C(17B) | 13(3) | 19(3) | 18(3) | 2(3)   | -1(2) | 1(2)  |
| C(18B) | 17(3) | 17(3) | 18(3) | 0(2)   | 0(3)  | 4(2)  |
| C(19B) | 21(3) | 6(3)  | 21(3) | -1(2)  | 1(3)  | 2(2)  |
| C(20B) | 18(3) | 10(3) | 25(3) | -6(2)  | 3(3)  | 3(2)  |
| C(21B) | 21(3) | 22(3) | 24(4) | -2(3)  | 8(3)  | -3(3) |
| C(22B) | 15(3) | 18(3) | 30(4) | -2(3)  | 0(3)  | -1(2) |
| C(23B) | 31(4) | 25(4) | 17(3) | 0(3)   | 0(3)  | -6(3) |
| C(24B) | 18(3) | 15(3) | 20(3) | 1(2)   | 2(3)  | -4(2) |
| C(25B) | 12(3) | 31(4) | 19(3) | -8(3)  | 0(2)  | 5(3)  |
| C(26B) | 35(4) | 53(4) | 25(4) | -11(3) | 6(3)  | 8(3)  |
| C(27B) | 29(4) | 36(4) | 18(3) | 7(3)   | 3(3)  | -6(3) |
| C(28B) | 19(3) | 27(3) | 14(3) | 1(3)   | -3(2) | -7(3) |
| C(29B) | 43(4) | 34(4) | 19(3) | 1(3)   | 12(3) | -4(3) |

| C(30B) | 23(3) | 31(4) | 23(3) | 2(3) | 2(3)  | 0(3)   |
|--------|-------|-------|-------|------|-------|--------|
| C(1T)  | 25(4) | 28(4) | 21(3) | 6(3) | 3(3)  | 0(3)   |
| C(2T)  | 26(4) | 44(4) | 20(3) | 2(3) | 4(3)  | -12(3) |
| C(3T)  | 25(4) | 52(5) | 31(4) | 3(3) | 7(3)  | 8(4)   |
| C(4T)  | 42(4) | 37(4) | 23(4) | 4(3) | 11(3) | 13(3)  |
| C(5T)  | 36(4) | 30(4) | 23(3) | 5(3) | 8(3)  | -5(3)  |
| C(6T)  | 19(3) | 30(4) | 28(3) | 4(3) | 7(3)  | 3(3)   |
| C(7T)  | 47(4) | 26(4) | 38(4) | 5(3) | 12(3) | -5(3)  |
|        |       |       |       |      |       |        |

|        | Х    | у     | Z    | U(eq) |
|--------|------|-------|------|-------|
|        |      |       |      |       |
| H(10B) | 2855 | 10063 | 3872 | 20    |
| H(10C) | 3369 | 9623  | 2878 | 43    |
| H(10D) | 3820 | 8899  | 3417 | 43    |
| H(10E) | 4018 | 9918  | 3071 | 43    |
| H(11C) | 4184 | 10700 | 4880 | 39    |
| H(11D) | 4511 | 10573 | 4281 | 39    |
| H(11E) | 4314 | 9552  | 4629 | 39    |
| H(57A) | 3579 | 11962 | 4681 | 28    |
| H(25A) | 3386 | 13723 | 4385 | 32    |
| H(44A) | 3175 | 14258 | 3192 | 34    |
| H(19A) | 3113 | 13009 | 2296 | 31    |
| H(39A) | 3344 | 11255 | 2592 | 28    |
| H(58A) | 2807 | 7886  | 3099 | 25    |
| H(17A) | 2543 | 6029  | 2802 | 30    |
| H(9A)  | 2634 | 5062  | 3960 | 30    |
| H(50A) | 2955 | 6357  | 4945 | 27    |
| H(28A) | 2690 | 11330 | 5083 | 20    |
| H(15A) | 2252 | 11831 | 6039 | 26    |
| H(10L) | 2236 | 10175 | 6781 | 28    |
| H(11A) | 2672 | 8757  | 6252 | 26    |
| H(10F) | 5280 | 6704  | 5734 | 30    |
| H(10A) | 5570 | 7248  | 6910 | 34    |
| H(10K) | 5055 | 8465  | 7352 | 34    |
| H(27A) | 4017 | 7529  | 4433 | 28    |
| H(61A) | 4871 | 8256  | 4333 | 47    |
| H(61B) | 4683 | 7296  | 3787 | 47    |
| H(61C) | 5167 | 7134  | 4515 | 47    |
| H(10H) | 3997 | 5788  | 4860 | 50    |
| H(10I) | 4629 | 5616  | 4841 | 50    |
| H(10J) | 4147 | 5784  | 4111 | 50    |

Table 5. Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters ( $\approx^2 x \ 10^3$ )for {Mo(NAr)(CHR)(NC\_4H\_4)\_2}\_2.

| H(8A)  | 3697  | 9403  | 6426 | 40 |
|--------|-------|-------|------|----|
| H(20B) | 4091  | 11058 | 6811 | 88 |
| H(20C) | 4264  | 10663 | 6120 | 88 |
| H(20D) | 4701  | 10588 | 6896 | 88 |
| H(48A) | 3868  | 9852  | 7630 | 88 |
| H(48B) | 4475  | 9327  | 7804 | 88 |
| H(48C) | 3928  | 8609  | 7549 | 88 |
| H(46A) | 1943  | 10649 | 3805 | 23 |
| H(12A) | 2150  | 12128 | 3113 | 44 |
| H(12B) | 1664  | 12928 | 2729 | 44 |
| H(12C) | 1671  | 11763 | 2421 | 44 |
| H(65A) | 542   | 11688 | 3216 | 37 |
| H(65B) | 702   | 11499 | 2482 | 37 |
| H(65C) | 699   | 12665 | 2790 | 37 |
| H(22A) | 2138  | 13367 | 3911 | 28 |
| H(91A) | 2239  | 14364 | 4934 | 35 |
| H(52A) | 1689  | 14067 | 5696 | 32 |
| H(81A) | 1038  | 12698 | 5443 | 31 |
| H(86A) | 929   | 11697 | 4417 | 27 |
| H(24A) | 1988  | 10030 | 2290 | 29 |
| H(10G) | 2020  | 8948  | 1248 | 34 |
| H(80A) | 1582  | 7186  | 1376 | 31 |
| H(54A) | 1273  | 7257  | 2474 | 24 |
| H(11F) | 1755  | 9717  | 5047 | 24 |
| H(55A) | 839   | 8696  | 4726 | 22 |
| H(11G) | 970   | 7075  | 3981 | 21 |
| H(11B) | 1952  | 7195  | 3831 | 22 |
| H(45A) | -1213 | 10197 | 2784 | 26 |
| H(20A) | -1442 | 10263 | 1550 | 27 |
| H(41A) | -771  | 9965  | 950  | 31 |
| H(26A) | 143   | 9915  | 3963 | 26 |
| H(90A) | -598  | 11048 | 4028 | 57 |
| H(90B) | -496  | 10170 | 4640 | 57 |
| H(90C) | -1011 | 10062 | 3937 | 57 |
| H(71A) | -37   | 8115  | 3668 | 43 |
| H(71B) | -666  | 8251  | 3707 | 43 |

| H(71C) | -159 | 8371  | 4417 | 43 |
|--------|------|-------|------|----|
| H(78A) | 690  | 9456  | 1795 | 26 |
| H(83A) | 452  | 11105 | 1239 | 47 |
| H(83B) | 5    | 10554 | 586  | 47 |
| H(83C) | 657  | 10323 | 718  | 47 |
| H(31A) | 169  | 7937  | 1313 | 40 |
| H(31B) | 486  | 8388  | 764  | 40 |
| H(31C) | -168 | 8597  | 629  | 40 |
| H(2TA) | 5656 | 4024  | 3438 | 37 |
| H(3TA) | 5359 | 5660  | 3693 | 43 |
| H(4TA) | 5983 | 7059  | 3986 | 40 |
| H(5TA) | 6920 | 6779  | 4021 | 36 |
| H(6TA) | 7220 | 5121  | 3794 | 31 |
| H(7TA) | 7060 | 3354  | 3471 | 55 |
| H(7TB) | 6456 | 3131  | 2935 | 55 |
| H(7TC) | 6582 | 2826  | 3764 | 55 |
|        |      |       |      |    |