Supporting Information

Mild preparation of alkenes from phenyl sulfides: one-pot elimination of phenylthio group via sulfilimine at ambient temperature

Jun-ichi Matsuo,* Takaaki Kozai, Hiroyuki Ishibashi*

Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi, Kanazawa 920-1192, Japan

Table of contents

General	3
Preparation of phenyl sulfides (6, 11a-e, 13, 16, and 17a-c)	3-9
Typical procedure for elimination of phenyl sulfides	9
Spectral data of alkenes (9, 12a-e)	<u>9-11</u>
Typical procedure for preparation of α , β -unsaturated	
carbonyl compounds	11
Spectral data of α , β -unsaturated carbonyl	
compounds (18a-c)	11-12
Spectra (¹ H and ¹³ C) of 19	13-14
Spectra (¹ H and ¹³ C) of 20	15-16
Spectra (1 H and 13 C) of 6	17-18
Spectra (¹ H and ¹³ C) of 9	19-20
Spectra (¹ H and ¹³ C) of 11a	21-22
Spectra (¹ H and ¹³ C) of 12a	23-24
Spectra (¹ H and ¹³ C) of 11b	25-26
Spectra (¹ H and ¹³ C) of 12b	27-28
Spectra (¹ H and ¹³ C) of 11c	29-30
Spectra (¹ H and ¹³ C) of 12c	31-32
Spectra (¹ H and ¹³ C) of 11d	33-34
Spectra (¹ H and ¹³ C) of 12d	35-36
Spectra (¹ H and ¹³ C) of 11e	37-38
Spectra (¹ H and ¹³ C) of 12e	<u>39-40</u>
Spectra (¹ H and ¹³ C) of 13	41-42
Spectra (¹ H and ¹³ C) of 16	43-44
Spectra (¹ H and ¹³ C) of 17a	45-46
Spectra (¹ H and ¹³ C) of 18a	47-48
Spectra (¹ H and ¹³ C) of 17b	49-50
Spectra (¹ H and ¹³ C) of 18b	51-52
Spectra (¹ H and ¹³ C) of 17c	53-54
Spectra (¹ H and ¹³ C) of 18c	55-56

General. Infrared (IR) spectra were recorded on a Shimadzu FTIR-8100. ¹H NMR spectra were recorded on a JEOL EX270 (270 MHz) or a JEOL GSX500 (500 MHz) spectrometer; chemical shifts (δ) are reported in parts per million relative to tetramethylsilane. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. ¹³C NMR spectra were recorded on a JEOL JNM EX270 (67.5 MHz) or a JEOL GSX500 (125 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in parts per million relative to tetramethylsilane with the solvent resonance as the internal standard (CDCl₃; δ 77.0 ppm). High resolution mass spectra (HRMS) were recorded on a JEOL JMS-SX-102A mass spectrometer. Elemental analysis was recorded on a Yanaco CHN Corder MT-5. Analytical TLC was performed on Merck precoated TLC plates (silica gel 60 GF254, 0.25 mm). Silica-gel column chromatography was carried out on silica gel 60N (Kanto Kagaku Co., Ltd., spherical, neutral, 63–210 μm). Preparative thin-layer chromatography (PTLC) was carried out on silica gel Wakogel B-5F. THF, toluene, and Et₂O were distilled under argon from sodium/benzophenone ketyl. CH2Cl2, CH3CN, MeNO2, and DMF were freshly distilled from CaH2. Potassium carbonate, CsF , and molecular sieves 4A were dried in vacuo at 150 °C for 5 h. Diisopropylethylamine, DBU, and t-BuOK were used without purification. All elimination reactions were carried out under nitrogen in dried glassware with magnetic stirring.

Dry *O*-mesitylenesulfonylhydroxylamine (MSH) was prepared by Johnson's procedure.¹ Phenyl sulfides (**6** and **11a-c**) were prepared by the following method (Scheme 2). Phenyl sulfides (**13** and **16**) were prepared by the reported procedure.² Phenyl sulfides (**17a-c**) were prepared by benzenesulfenylation of the corresponding carbonyl compounds according to Trost's procedure.³

Scheme 2. Preparation of phenyl sulfides (6 and 11a-c).

¹ Johnson, C. R.; Kirchhoff, R. A.; Corkins, H. G. J. Org. Chem. 1974, 39, 2458–2459.

² Tsujihara, K.; Harada, K.; Furukawa, N.; Oae, S. *Tetrahedron* **1971**, *27*, 6101-6108.

³ Trost, B. M.; Salzman, T. N.; Hiroi, K. J. Am. Chem. Soc. 1976, 98, 4887–4902.

To a stirred solution of 1,5-pentanediol (5.0 g, 48 mmol) and triethylamine (7.4 mL, 53 mmol) in dry CH_2Cl_2 (80 mL) was added a solution of benzoyl chloride (5.6 mL, 48 mmol) in CH_2Cl_2 (5 mL) at 0 $^{\circ}C$, and the mixture was stirred for 20 min at 0 $^{\circ}C$ and for 50 min at room temperature. The mixture was extracted with ether, and the organic extracts were washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 3/1) to afford **19**⁴ (4.51 g, 21.7 mmol, 45%) as a colorless oil.

¹H NMR (500 HHz, CDCl₃) δ 1.35 (brs, 1H), 1.51-1.57 (m, 2H), 1.63-1.69 (m, 2H), 1.79-1.85 (m, 2H), 3.68 (t, *J* = 6.4 Hz, 2H), 4.34 (t, *J* = 6.4 Hz, 2H), 7.42-7.45 (m, 2H), 7.54-7.57 (m, 1H), 8.04 (dd, *J* = 7.3, 1.2 Hz, 2H); ¹³C NMR (67.8 MHz, CDCl₃) δ 22.3, 28.5, 32.2, 62.5, 64.8, 128.2, 129.5, 130.3, 132.8, 166.6.

To a stirred solution of **19** (4.5 g, 21.7 mmol) and triehylamine (6.0 mL, 43 mmol) in CH_2Cl_2 (80 mL) was added methanesulfonyl chloride (4.5 mL, 58 mmol) at 0 °C, and the mixture was stirred for 30 min at 0 °C. After adding water, the mixture was extracted with ether, and organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude mesylate (8.45 g) was obtained as a pale yellow oil.

A suspension of thus obtained mesylate (8.45 g) and NaI (8.8 g, 58.7 mmol) in acetone (140 mL) was refluxed for 2 h, and aqueous Na₂SO₃ was added. After acetone was evaporated, the mixture was extracted with ethyl acetate, and organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 5/1) to afford **20**⁵ (5.1 g, 16.0 mmol, 54%) as a colorless oil. ¹H NMR (270 HHz, CDCl₃) δ 1.53-1.64 (m, 2H), 1.75-1.96 (m, 4H), 3.22 (t, *J* = 6.9 Hz, 2H), 4.34 (t,

J = 6.5 Hz, 2H), 7.42-7.59 (m, 3H), 8.04 (d, J = 8.1 Hz, 2H); ¹³C NMR (67.8 MHz, CDCl₃) δ 6.4, 27.0, 27.6, 32.9, 64.5, 128.3, 129.5, 130.3, 132.8, 166.5.

⁴ Iwasaki, F.; Maki, T.; Onomura, O.; Nakashima, W.; Matsumura, Y. *J. Org. Chem.* **2000**, *65*, 996-1002.

⁵ Kabalka, G. W.; Eugene Gooch III, E. J. Org. Chem. **1980**, 45, 3578-3580.

To a stirred suspension of NaH (0.68 g, 17 mmol) in DMF (50 mL) was added benzenethiol (1.8 mL, 17.6 mmol) and **20** (5.1 g, 16 mmol) at room temperature, and the mixture was refluxed for 1 h. After cooling to room temperature, water was added to the reaction mixture and the resulting mixture was extracted with ethyl acetate. The combined organic extracts were washed thoroughly with water, and brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ether = 50/1) to afford **6** (4.7 g, 15.6 mmol, 97%) as a colorless oil.

¹H NMR (270 HHz, CDCl₃) δ 1.59-1.82 (m, 6H), 2.96 (t, *J* = 7.0 Hz, 2H), 4.31 (t, *J* = 6.5 Hz, 2H), 7.16-7.35 (m, 8H), 8.02-8.05 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 25.2, 28.3, 28.8, 33.5, 64.7, 125.8, 128.3, 128.8, 129.1, 129.5, 130.4, 132.8, 136.6, 166.5; IR (CHCl₃, cm⁻¹) 1713, 1279, 1119; HRMS (EI) Calculated for C₁₈H₂₀O₂S: 300.11840. Found 300.11885.

A mixture of **6** (486 mg, 1.62 mmol), KOH (915 mg, 16.3 mmol), EtOH (1 mL), and H_2O (5 mL) was stirred for 2 h at room temperature. After evaporation of EtOH, the mixture was extracted with ether, and combined organic extracts were washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated. The crude product was purified by column chromatography on silica gel to afford 5-phenylthiopentanol (289 mg) as a colorless oil.

To a stirred suspension of NaH (60%, 88.6 mg, 2.22 mmol) in DMF (4 mL) was added a solution of 5-phenylthiopentanol (289 mg, 1.47 mmol) in DMF (1.5 mL) at room temperature, and the mixture was stirred for 20 min. *p*-Methoxybenzyl chloride (0.3 mL, 2.20 mmol) was then added and the mixture was stirred for 1 h at room temperature. After the addition of saturated aqueous NaHCO₃, the mixture was extracted with ether, and combined organic extracts were washed with water (four times) and brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel to afford **11a** as a colorless oil.

¹H NMR (500 HHz, CDCl₃) δ 1.47-1.69 (m, 6H), 2.91 (t, *J* = 7.3 Hz, 2H), 3.43 (t, *J* = 6.4 Hz, 2H), 3.80 (s, 3H), 4.41 (s, 2H), 6.87 (d, *J* = 8.5 Hz, 2H), 7.14-7.15 (m, 1H), 7.24-7.32 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 25.5, 29.0, 29.3, 33.5, 55.3, 69.8, 72.6, 113.8, 125.7, 128.8, 128.9, 129.2, 130.7,

136.9, 159.1; IR (CHCl₃, cm⁻¹) 1514, 1223, 1091, 1035; HRMS (EI) Calculated for $C_{19}H_{24}O_2S$: 316.14970. Found 316.14948.

To a stirred solution of 5-phenylthiopentanol (500 mg, 2.38 mmol) and diisopropylethylamine (1.24 mL, 7.12 mmol) in CH_2Cl_2 (5 mL) was added BOMCl (0.49 mL, 3.57 mmol) at 0 °C, and the mixture was stirred for 1.5 h at room temperature. After the addition of saturated aqueous NaHCO₃, the mixture was extracted with ethyl acetate, and combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel to afford **11b** as a colorless oil.

¹H NMR (270 HHz, CDCl₃) δ 1.48-1.71 (m, 6H), 2.92 (t, J = 7.3 Hz, 2H), 3.57 (t, J = 6.2 Hz, 2H), 4.59 (s, 2H), 4.74 (s, 2H), 7.13-7.18 (m, 1H), 7.24-7.35 (m, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 25.5, 29.0, 29.3, 33.5, 67.8, 69.3, 94.6, 125.7, 127.7, 127.8, 128.4, 128.8, 129.0, 136.8, 138.0; IR (CHCl₃, cm⁻¹) 2940, 1482, 1042; HRMS (EI) Calculated for C₁₉H₂₄O₂S: 316.14970. Found 316.14963.

To a stirred solution of 5-phenylthiopentanol (305 mg, 1.55 mmol) and imidazole (324 mg, 4.76 mmol) in DMF (3 mL) was added TBDPSCl (0.8 mL, 3.11 mmol) at room temperature, and the mixture was stirred for 9 h. After the addition of water, the mixture was extracted with ether, and combined organic extracts were washed with water and brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated. The crude product was purified by column chromatography on silica gel to afford **11c** (468 mg, 1.08 mmol, 69%) as a colorless oil.

¹H NMR (270 HHz, CDCl₃) δ 1.49 (m, 6H), 2.89 (t, *J* = 7.1 Hz, 2H), 3.65 (t, *J* = 6.0 Hz, 2H), 7.12-7.41 (m, 11H), 7.66-7.67 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 19.2, 25.0, 26.9, 28.9, 32.0, 33.6, 63.7, 125.6, 127.6, 128.8, 128.9, 129.5, 134.1, 135.5, 137.0; IR (CHCl₃, cm⁻¹) 2932, 1428, 1210, 1111, 505; HRMS (EI) Calculated for C₂₇H₃₄OSiS: 434.20997. Found 434.21087.

Compound 11d was prepared by the following procedure shown in Scheme 3.

Scheme 3. Preparation of 11d.

11d

Colorless plates: mp 91.0-91.5 °C (Hexanes-AcOEt); ¹H NMR (500 HHz, CDCl₃) δ 1.98 (quint, J = 6.8 Hz, 2H), 3.03 (t, J = 6.9 Hz, 2H), 3.60 (dt, J = 6.5, 6.8 Hz, 2H), 6.28 (brs, 1H), 7.18-7.51 (m, 8H), 7.72-7.74 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 28.9, 31.5, 39.0, 126.3, 126.8, 128.6, 129.0, 129.5, 131.4, 134.5, 136.0, 167.6; IR (CHCl₃, cm⁻¹) 1659, 1522, 699; Anal. Calcd for C₁₆H₁₇NOS: C, 70.81; H, 6.31; N, 5.16. Found: C, 70.46; H, 6.37; N, 5.21.

Compound **11e** was prepared by benzoylation of 2-phenylthioethanamine.⁶

11e

Colorless powder: mp 98.5-99.0 °C (Hexanes-AcOH); ¹H NMR (500 HHz, CDCl₃) δ 3.20 (t, *J* = 6.1 Hz, 2H), 3.69 (dt, *J* = 6.1, 6.1 Hz, 2H), 6.50 (brs, 1H), 7.20-7.51 (m, 8H), 7.69-7.70 (m, 2H); ¹³C NMR (67.8 MHz, CDCl₃) δ 33.7, 39.1, 126.6, 126.9, 128.5, 129.2, 129.9, 131.5, 134.3, 134.9, 167.5; IR (CHCl₃, cm⁻¹) 3011, 1659, 1520; Anal. Calcd for C₁₅H₁₅NOS: C, 70.01; H, 5.87; N, 5.44. Found: C, 69.98; H, 5.91; N, 5.39.

MeO SPh Ph Ph 13

Colorless solid: mp 96.5-97.5 (lit.⁷ 94.0-95.5 °C); ¹H NMR (270 HHz, CDCl₃) & 3.22 (s, 3H), 4.36 (d,

⁶ Ishibashi, H.; Uegaki, M.; Sakai, M.; Takeda, Y. *Tetrahedron* **2001**, *57*, 2115-2120.

⁷ Tsujihara, K.; Harada, K.; Furukawa, N.; Oae, S. *Tetrahedron* **1971**, *27*, 6101-6108.

J = 5.4 Hz, 1H), 4.61 (d, *J* = 5.4 Hz, 1H), 7.09-7.26 (m, 15H); ¹³C NMR (125 MHz, CDCl₃) δ 57.4, 60.2, 86.1, 126.8, 127.1, 127.5, 127.7, 127.9, 127.9, 128.6, 129.3, 131.9, 135.4, 138.7, 138.9.

Colorless solid: mp 57.0-57.5 (lit.⁷ 55.0-55.5 °C); ¹H NMR (500 HHz, CDCl₃) δ 3.29 (s, 3H), 4.45 (d, J = 7.6 Hz, 1H), 4.51 (d, J = 7.6 Hz, 1H), 7.07-7.13 (m, 10H), 7.19-7.21 (m, 5H), ¹³C NMR (125 MHz, CDCl₃) δ 57.2, 60.7, 87.1, 126.7, 127.0, 127.6, 127.8, 127.8, 127.9, 128.5, 128.9, 132.2, 135.1, 138.9, 139.3.

17a

Colorless oil; ¹H NMR (500 HHz, CDCl₃) δ 1.00 (t, J = 7.3 Hz, 3H), 1.77-1.82 (m, 1H), 1.88-1.94 (m, 1H), 3.59 (dd, J = 6.7, 8.3 Hz, 1H), 3.81 (s, 3H), 5.02 (d, J = 12.0 Hz, 1H), 5.05 (d, J = 12.2 Hz, 1H), 6.84-6.86 (m, 2H), 7.19-7.21 (m, 2H), 7.24-7.26 (m, 3H), 7.37-7.39 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 11.8, 25.1, 52.5, 55.2, 66.6, 113.8, 127.7, 127.7, 128.8, 130.1, 132.8, 133.4, 159.6, 172.1; IR (CHCl₃, cm⁻¹) 1728, 1516, 1250, 11215; HRMS (EI) Calculated for C₁₂H₁₄O₃: 206.09430. Found 206.09383.

17b

Colorless oil; ¹H NMR (500 HHz, CDCl₃) δ 1.25-1.38 (m, 3H), 1.46-1.48 (m, 1H), 1.62-1.73 (m, 4H), 2.10-2.13 (m, 2H), 3.80 (s, 3H), 5.02 (s, 2H), 6.86-6.88 (m, 2H), 7.21-7.24 (m, 4H), 7.30-7.32 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 23.4, 25.3, 34.2, 55.2, 55.5, 66.3, 113.8, 128.0, 128.5, 129.2, 130.1, 130.5, 136.9, 159.5, 172.5; IR (CHCl₃, cm⁻¹) 1725, 1516, 1250, 1130; HRMS (EI) Calculated for C₂₁H₂₄O₃S: 356.14462. Found 356.14476.

Colorless fine needles; ¹H NMR (500 HHz, CDCl₃) δ 0.91 (t, *J* = 7.3 Hz, 3H), 1.75-1.80 (m, 1H), 2.05-2.11 (m, 1H), 3.70 (dd, *J* = 5.6, 8.5 Hz, 1H), 4.18 (d, *J* = 14.6 Hz, 1H), 4.27 (d, *J* = 17.6 Hz, 1H), 4.58 (d, *J* = 17.6 Hz, 1H), 5.08 (d, *J* = 14.6 Hz, 1H), 7.10 (d, *J* = 7.3 Hz, 2H), 7.20-7.37 (m, 13H); ¹³C NMR (125 MHz, CDCl₃) δ 12.2, 26.2, 49.1, 49.5, 50.0, 126.3, 127.5, 127.6, 128.1, 128.5, 128.6, 128.9, 129.0, 132.9, 133.8, 136.8, 137.3, 171.7; IR (CHCl₃, cm⁻¹) 1646, 1439; Anal. Calcd for C₂₄H₂₅NOS: C, 76.76; H, 6.71; N, 3.73. Found: C, 76.58; H, 6.75; N, 3.69.

Typical procedure for one pot elimination of phenyl sulfides to alkenes (Table 3, entry 1)

To a stirred solution of **11a** (46.1 mg, 0.146 mmol) in dry CH_2Cl_2 (1 mL) was added MSH (37.6 mg, 0.175 mmol) at room temperature. After the mixture was stirred for 30 min, K_2CO_3 (203.1 mg, 1.47 mmol) was added at room temperature, and the mixture was stirred for 6 h. The reaction was quenched with saturated aqueous NaHCO₃ solution (5 mL), and the mixture was extracted with AcOEt. The organic extracts were washed with 0.12 N aqueous NaOCl solution (3 mL), 10% aqueous Na₂S₂O₃ solution (3 mL), and brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by thin layer chromatography on silica gel (hexane/ethyl acetate = 15/1 then 10/1) to afford **12a** (25 mg, 0.121 mmol, 83%) as a pale yellow oil.

Characterization data for olefins (9 and 12a-e) are listed below.

Colorless oil; ¹H NMR (500 HHz, CDCl₃) δ 1.85-1.91 (m, 2H), 2.22 (dt, *J* = 6.7, 7.3 Hz, 2H), 4.34 (t, *J* = 6.7 Hz, 2H), 5.02 (d, *J* = 10 Hz, 1H), 5.07 (dd, *J* = 17, 1.5 Hz, 1H), 5.81-5.90 (m, 1H), 7.44 (t, *J* = 7.3 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 8.05 (d, *J* = 7.3 Hz, 2H); ¹³C NMR (67.8 MHz, CDCl₃) δ 27.9, 30.2, 64.3, 115.4, 128.3, 129.5, 130.4, 132.8, 137.5, 166.6.

⁸ Nishimura, T.; Kakiuchi, N.; Onoue, T.; Ohe, K.; Uemura, S. J. Chem. Soc., Perkin Trans. 1, **2000**, 1915-1918.

PMBO 12a

Colorless oil; ¹H NMR (500 HHz, CDCl₃) δ 1.70 (quint, *J* = 7.3 Hz, 2H), 2.13 (dt, *J* = 7.1, 7.5 Hz, 2H), 3.46 (t, *J* = 6.6 Hz, 2H), 3.81 (s, 3H), 4.43 (s, 2H), 4.94-5.05 (m, 2H), 5.76-5.86 (m, 1H), 6.86-6.89 (m, 2H), 7.25-7.28 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 29.0, 30.3, 55.3, 69.4, 72.5, 113.8, 114.7, 129.2, 130.7, 138.3, 159.1; IR (CHCl₃, cm⁻¹) 1514, 1209, 1095, 1036; HRMS (EI) Calculated for C₁₃H₁₈O₂: 206.13068. Found 206.13094.

Colorless oil; ¹H NMR (500 HHz, CDCl₃) δ 1.54-1.74 (m, 2H), 2.13-2.17 (m, 2H), 3.60 (t, *J* = 6.6 Hz, 2H), 4.60 (s, 2H), 4.76 (s, 2H), 4.97-5.06 (m, 2H), 5.79-5.87 (m, 1H), 7.28-7.30 (m, 3H), 7.35 (d, J = 4.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 28.9, 30.3, 67.4, 69.3, 94.6, 114.8, 127.7, 127.9, 128.4, 138.0, 138.1; IR (CHCl₃, cm⁻¹) 2941, 1454, 1041, 916; HRMS (EI) Calculated for C₁₃H₁₈O₂: 206.13068. Found 206.12908.

TBDPSO

¹H NMR (270 HHz, CDCl₃) δ 1.05 (s, 9H), 1.66 (quint, J = 7.9 Hz, 2H), 2.13-2.17 (m, 2H), 3.67 (t, J = 6.4 Hz, 2H), 4.93 (d, J = 10.3 Hz, 1H), 4.99 (dd, J = 15.9, 1.2 Hz, 1H), 5.76-5.84 (m, 1H), 7.36-7.43 (m, 6H), 7.66-7.68 (m, 4H); ¹³C NMR (67.8 MHz, CDCl₃) δ 19.2, 26.9, 30.1, 31.8, 63.3, 114.5, 127.6, 127.6, 129.5, 134.1, 135.5, 135.6, 138.5.

¹H NMR (500 HHz, CDCl₃) δ 4.07-4.10 (m, 2H), 5.18 (dd, *J* = 10.4, 1.2 Hz, 1H), 5.26 (dd, *J* = 17.1, 1.2 Hz, 1H), 5.91-5.97 (m, 1H), 6.33 (brs, 1H), 7.41-7.51 (m, 3H), 7.77-7.79 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 42.4, 116.6, 126.9, 128.5, 131.4, 134.1, 134.5, 167.3.

⁹ Dakin, L.A.; Langille, N. F.; Panek, J. S. J. Org. Chem. **2002**, 67, 6812-6815.

¹⁰ Fisher, L. E.; Muchowski, J. M.; Clark, R. D. J. Org. Chem. **1992**, 57, 2700-2705.

Colorless powder: mp 102.5-103.0 °C; ¹H NMR (500 HHz, CDCl₃) δ 4.54 (d, *J* = 8.8 Hz, 1H), 4.77 (d, *J* = 15.9 Hz, 1H), 7.17-7.24 (m, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.75 (brs, 1H), 7.81 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 96.0, 127.1, 128.8, 129.0, 132.1, 133.5, 164.5; IR (CHCl₃, cm⁻¹) 1674, 1644, 1507, 1485, 1267; Anal. Calcd for C₉H₉NO: C, 73.45; H, 6.16; N, 9.52. Found: C, 73.55; H, 6.26; N, 9.50.

Typical procedure for the one-pot elimination of α -phenylthio carbonyl compounds to α , β -unsaturated carbonyl compounds (Table 4, entry 1)

To a stirred solution of **17a** (55.3 mg, 0.175 mmol) in dry CH_2Cl_2 (1 mL) was added MSH (43.3 mg, 0.201 mmol) at 0 °C, and the mixture was stirred for 45 min at 0 °C. Compound **17a** was not detected by TLC analysis after that period. Potassium carbonate (245 mg, 1.77 mmol) was added, and the mixture was stirred for 0 °C for 30 min and for 6 h at room temperature. The reaction was quenched with saturated aqueous NaHCO₃ solution, and the mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by thin layer chromatography on silica gel (benzene/hexane = 4/1) to afford **18a** (31.3 mg, 0.152 mmol, 87%) as a pale yellow oil.

Colorless oil; ¹H NMR (500 HHz, CDCl₃) δ 1.87 (dd, J = 1,7, 6.8 Hz, 3H), 3.81 (s, 3H), 5.10 (s, 2H), 5.87 (dq, J = 1.7, 13.9 Hz, 1H), 6.89 (d, J = 8.8 Hz, 2H), 6.99 (qd, J = 6.8, 15.5 Hz, 1H), 7.30-7.32 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 17.9, 55.2, 65.7, 113.9, 122.6, 128.3, 130.0, 144.9, 159.6, 166.4; IR (CHCl₃, cm⁻¹) 1713, 1659, 1615, 1516, 1250, 1172, 1103, 1036, 970; HRMS (EI) Calculated for C₁₂H₁₄O₃: 206.09430. Found 206.09383.

18b

Colorless oil; ¹H NMR (500 HHz, CDCl₃) δ 1.56-1.67 (m, 4H), 2.15-2.19 (m, 2H), 2.25-2.28 (m, 2H), 3.80 (s, 3H), 5.11 (s, 2H), 6.87-6.90 (m, 2H), 6.99-7.01 (m, 1H), 7.30-7.32 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 21.4, 22.0, 24.1, 25.7, 55.2, 65.7, 113.9, 128.6, 129.8, 130.3, 139.9, 159.5, 167.4; IR (CHCl₃, cm⁻¹) 1703, 1516, 1213; HRMS (EI) Calculated for C₁₅H₁₈O₃: 246.12560. Found 246.12470.

Colorless oil; ¹H NMR (500 HHz, CDCl₃) δ 1.86 (dd, J = 1,8, 6.8 Hz, 3H), 4.50 (s, 2H), 4.63 (s, 2H), 6.28-6.32 (m, 1H), 7.04-7.11 (m, 1H), 7.16-7.35 (m, 10H); ¹³C NMR (125 MHz, CDCl₃) δ 18.2, 48.4, 49.8, 121.6, 126.5, 127.3, 127.6, 128.3, 128.5, 128.9, 136.8, 137.4, 142.9, 167.3; IR (CHCl₃, cm⁻¹) 1661, 1613, 1449, 1210, 963; HRMS (EI) Calculated for C₁₈H₁₉ON: 265.14667. Found 265.14695.

BzO-OH

BZO-OH 13C.als BZO-OH 13C.als BZO-OH 13C 13C BCM 67.80 MHz 135.00 KHz 5200.00 Hz 32768 135.00 KHz 5200.00 Hz 32768 135.00 KHz 5200.00 Hz 135.00 KHz 5200.00 Hz 12.200 sec 1.700 sec 1.2100 sec 1.2100 sec 1.2100 sec 26.0 c CDCL3 77.00 ppm 0.12 Hz	Bz0 OH
DFILE COMNT DATIM OBNUC EXMOD OBFRQ OBFRQ OBFR OBFR OBFIN POINT POINT POINT POINT PVI IRNUC CTEMP PVI IRNUC CTEMP SLVNT EXREF BF RGAIN	· · ·
782.22	
	60.0 50.0 40.0 3
18.307 000.77 €845.31 187.00 000.77 000.77 000.77 000.77 000.77 000.77 000.77 000.77 000.77 000.77 000.77	
897.821 - 09 <u>k.621 - </u>	30.0 120.0 110.0 100.0
848.881	

BZO-OH 13C

BZO-I

BZO-I

S-Ph

÷

SPh-256

Sat Aug 26 16:42:1 13C BCM 67.80 MHz 135.00 KHz 5200.00 Hz 32768 18306.64 Hz 32768 1.7900 sec 1.7900 sec 1.2100 sec 1.2100 sec 1.700 ppm 0.12 Hz 26.2 c 26.2 c 27.00 ppm 0.12 c 26.2 c 26.2 c 26.2 c 26.2 c 27.0 c 26.2 c 26.2 c 26.2 c 26.2 c 26.2 c 27.0 c 26.2 c 27.0 c 26.2 c 27.0 c 26.2 c 27.0 c 2	Bzo 6		
COMNT DATIM DATIM COBFIC COBFIC COBFIC OBFIC OBFIC OBFIC OBFIC FREQU FREQU FREQU FREQU FWI FWI FWI FWI FWI FWI FWI FWI FWI FWI			
826.72	-		Mdd
231.05 30.157	_		
64.343		- 112	
66°.92			
Ф98.ЗII ——			
070-071			
078.281 078.281			
669.991			
	20		

PMB 13C.als PMB 13C Wed Aug 30 21:33:07 2006 13C BCM 125.65 MHz 115.00 KHz 115.00 Hz 65536 31250.00 Hz 65536 31250.00 Hz 256 2.0972 sec 2.000 sec 1.H 2.44 c 5.40 usec 1.H 2.4.4 c 5.40 usec 1.H 2.4.4 c 5.40 usec 1.H 2.2.12 2.00 ppm 0.22 Hz 0.22 Hz	PMB0 11a	
DFILE DATIM DATIM DATIM OBNUC EXMOD OBFIN POINT FREQU SCANS SCANS POINT FREQU FREQU RVI FREQU RVI FREQU SCANS FREGU RNUC CTEMP BF RCAIN	<u> </u>	-1
ь • • • • • • • • • • • • • • • • • • •	PPM	
000.77 − 55.260 55.260 − 69.834		
997.511		
388.361 7105.021 888.361	50.0 140.0 130.0 120	
721.631		
	22	

PMB 13C

tk_186 C.als tk_186 Wed Aug 09 12:38:14 2006 13C BCM 125.65 MHz 115.00 KHz 10404.00 Hz 65536 31250.00 Hz 55536 31250.00 Hz 200 2.0972 sec 5.40 usec 1H 25.1 c CDCL3 0.12 Hz 26 26 21 c 21 c 26 277.00 ppm 0.12 Hz	PMB0	
DFILE COMNT DATIM DATIM OBNUC EXMOD OBSET OBSET OBSET OBSET OBSET OBSET POINT FREQU SCANS PD FWI IRNUC SLVNT EXREF BF BF RGAIN		0
296.87	Mdd	0.0 20.0 10.0 0
902 02		50.0 40.0 3
22.25	-	60.09
052.77 050.77 07.000 <td< td=""><td></td><td>90.0 80.0 70.0</td></td<>		90.0 80.0 70.0
867.811		120.0 110.0 100.
061 <u>621</u> •••2·081 —		130.0
138.320		150.0 140.0
721.921 ——		0.0 180.0 170.0 160.0
	24	00.0 190
		Ñ

BOM 13C.als BOM 13C. Wed Aug 30 21:10:02 2006 13C BCM 125.65 MHz 115.00 KHz 10404.00 Hz 65536 31250.00 Hz 65536 31250.00 Hz 256 2.0972 sec 2.0000 sec 1H 24.4 c 1H 24.4 c 0.22 Hz 0.22 Hz 0.22 Hz	dt dt
DFILE COMNT DATIM DBATIM OBNUC EXMOD OBFIN POINT FREQU SCANS POINT FREQU SCANS SCANS SCANS SCANS FREF PD IRNUC CTEMP RGAIN	0
215.52 28.985 28.985 29.202	50.0 40.0 30.0 20.0 10.0 0
908.75 000.77 000.77 000.77 222.806 	
94 646 94 646	
996.721	26

BOM 13C

OBFRQ 1.3C OBFRQ 125.65 MHz OBFRQ 125.65 MHz OBFIN 10404.00 Hz OBFN 10404.00 Hz OBFN 10404.00 Hz OBFN 10404.00 Hz POINT 65536 FREQU 31250.00 Hz SCANS 2.0972 sec PD 2.0000 sec PWI 1.40 usec IRNUC 1.1 FWI 2.0000 sec PWI 5.40 usec RCAIN 2.0000 sec PWI 5.40 usec RCAIN 2.0000 sec PWI 1.1 SLVNT CDCL3 EXREF 0.12 Hz RGAIN 2.6	BOMO 3 12b
348.08	50
92.17 	
CF8.FII	
299.721 	150 125
	28

TBDPS-SPh

tk_189 TBDPS

DFILE COMN DATIN OBNU	POINT POINT POINT POINT PPD PPD PPD PPD PPD PPD PPD PPD PPD PP	
622.61		
26.865		
31.828		
062.60		
006 65		
977.87 000.77		-e
V 30 22		
		1
20G.P11		
129.504		
139'005 132'221 138'243		· ••••••••••••••••••••••••••••••••••••

amide

amide 13C.als amide 13C Wed Aug 30 20:47:26 2006 13C BCM 125.65 MHz 115.00 KHz 10404.00 Hz 65536 31250.00 Hz 256 2.0972 sec 2.0972 sec 5.40 usec 1H 24.6 c CDCL3 77.00 ppm 0.22 Hz	BZ N H 11d	
DFILE COMNT DATIM DATIM OBNUC EXMOD OBFRQ OBFRQ OBSET OBSET POINT FREQU SCANS PD PVI FREQU SLVNT EXREF BF SLVNT RGAIN		0
9k7.97 — 178.82 — 178.82 — 31.540 346 347 357 36400 3640 3640 36400 36400 36400 36400 36400 36400		70.0 60.0 50.0 40.0 30.0 20.0 10.0 0
νgς.77 000-7700000000		10.0 100.0 90.0 80.0
050-950 050		0.0 150.0 140.0 130.0 120.0 1
799.791 ———	34	0.0 190.0 180.0 170.0 16
-		20

amide 13C

tk_181 1

tk_181 C.als tk_181 Tue Aug 08 11:23:02 2006 13C BCM 125.65 MHz 115.00 Hz 65536 31250.00 Hz 65536 31250.00 Hz 256 31250.00 Hz 256 2.0972 sec 2.000 sec 2.000 sec 2.000 sec 2.000 sec 2.000 sec 2.000 ppm 0.12 Hz 27 17.00 ppm 0.12 Hz 27 12d	
DFILE COMNT DATIM EXMOD OBFRQ OBFRQ OBFR OBFIN PD PD PD PD PD PD PD PD PD PD PD PD PD	
	25 PPM
42.384	20
9¥2'92 000'22 	00 75
629.911	
- 134.456 	125
	120
078 291	175
36	500

tk_216 13C

tk 218 13C.als tk 218 13C Fri Sep 29 22:09:42 2006 13C BCM 125.65 MHz 115.00 KHz 10404.00 Hz 65536 31250.00 Hz 483 2.0972 sec 5.40 usec 1H 2.0000 sec 5.40 usec 1H 25.9 c CDCL 3 2.00 Hz	BZ 12e 13e	
DFILE COMNT DATIM DATIM OBNUC EXMOD OBFRQ OBFRQ OBFRQ OBFRQ OBFIN POINT FREQU SCANS PD PD PD PD PD PD PD PD PD RGAIN RGAIN		<u> </u>
947.97 —		70.0 60.0 50.0 40.0 30.0 20.0 10.0
000 <u>° 44</u> Þ <u>Š</u> Ž 22		0.0 80.0
730.721 — 220.96		0 120.0 110.0 100.0 5
	40	0.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0

tk_218 13C

ak_90

preE 13C

pre cis 13C.als pre cis Thu Sep 07 18:50:23 2006 13C BCM 125.65 MHz 125.00 Hz 65536 31250.00 Hz 532 2.0972 sec 5.40 usec 1H 5.40 usec 1H 24.7 c CDCL3 77.00 ppm 0.12 Hz	
DFILE COMNT DATIM DATIM DATIM OBNUC EXMOD OBFRQ OBFIN POINT FREQU SCANS ACQTM PD IRNUC CTEMP PV IRNUC CTEMP PD RGAIN RGAIN	o
	ебо.0 50.0 40.0 30.0 20.0 10.0 0
β2.77 — 000 .77 847.87 —	
929.521 106.921 929.721 680.78 	ининининининининининининининининининин
127 795 127 795 128.920 128.920 128.920 128.920 128.920 128.920 128.920 128.920 139.281	
44	200.0

pre cis

ester

ester

	ester orefin 13C.als ester orefin 13C Fri Sep 15 19:58:17 2006 13C BCM 125,65 MHz 115,00 KHz 115,00 KHz 10404.00 Hz 65536 31250.00 Hz 387 387 5.40 usec 1H 2.0972 sec 5.40 usec 1H 25.2 c CDCL3 77.00 ppm 0.31 Hz 25	PMB0 18a
206721	DFILE COMNT COMNT COMNT EXMOD OBFRQ OBFRQ OBFIN POINT FREQU SCANS SCANS SCANS SCANS SCANS FREQU FREQU FREQU FREQU RCAIN RCAIN	
887.99	200.71 ———	инциппппппппппппппппппппппппппппппппппп
282/99 9 99/29/2 9 900/22 9 92/29/2 9 669/611 9 965/271 9 905/871 9 995/671 9 995/671 9 995/871 9 996/871 9 997/991 9 898/W1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	65.233	
94/ 92 0000 12 992 12 995 7271 996 7271 996 7271 996 7271 996 7271 996 7271 996 7271 996 7271 996 7271 997 651 998 7441 998 7441 999 7071 997 051 051 051 051 051 051 051 051 051 051	- 65.732	
669°611 905°721 906°821 906°621 898°741 906°71 898°741 906°71 898°741 906°71 898°741 906°71 898°741 906°71 909°7691 901°71 909°7691 901°71 909°7691 901°71 909°7691 901°71 909°7691 901°71 909°7691 901°71 909°7691 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 901°71 <	9V1.92 000.77 A.S.S.A.	100 90 80 70
969 721	66 8[.]CH	
898.1/1 05 898.601 09 898.601 09 991 00 100 00 <t< td=""><td>122.596 128.306 129.963</td><td>0 130</td></t<>	122.596 128.306 129.963	0 130
	898.111	
48		
48	₽66.354	0 130 170 1
A1		48

tk_250 13C.als tk_250 Thu Oct 19 18:49:26 2006 13C BCM 125.65 MHz 125.65 MHz 10404.00 Hz 65536 31250.00 Hz 144 2.0972 sec 5.0000 sec 5.40 usec 1H 2.0972 sec 5.0000 sec 5.40 usec 1H 26.6 c CDCL3 77.00 ppm 0.25 Hz	17b	
DFILE COMNT DATIM DATIM OBNUC EXMOD OBFRQ OBBRN OBBRN OBBRN POINT FREQU SCANS ACQTM PWI IRNUC CTEMP PWI IRNUC CTEMP PWI RGAIN RGAIN		
		Ndd
53°453		
34.202		
22:333		2(
		_
977.97 000.77 77.000		75
		- 8
		_
Þ22 EH		-
841-221		125
026 130.024 130.024 130.024 130.024 130.024		
		15
669 691		-
984.271		175
		-
L	50	g

tk.258 13C.als tk.258 13C. Mon Oct 16 23:25:51 2006 13C BCM 125.65 MHz 115.00 KHz 115.00 Hz 65536 31250.00 Hz 42 31250.00 Hz 65536 31250.00 Hz 65536 31250.00 Hz 65536 31250.00 Hz 65536 31250.00 Hz 5.40 usec 1H 2.000 ppm 0.20 Hz 27.00 ppm 0.20 Hz	18b		
DFILE COMNT DATIM DATIM DATIM EXMOD OBBRO OBBRO OBBRO OBBRO OBBRO POINT FREQU SCANS	ā 		
747.82			ар жабта ара раста улу улу та улу РРМ 40 30 20 10 0
85.248 ————		and the second se	11111111111111111111111111111111111111
	***** <u>*</u>		
000.77			111111111 80 7
010-01		بر میں اور	
			120
782.051 –			130
133.935			140
			150
			091
Þ&Þ.731 —			
			180 I
			1190
	52		- <u>50</u> -

tk_258 13C

.

tk_240 13C

tk_242 13C