A helical, aromatic, peptide nanotube

Marco Crisma,*,† Claudio Toniolo,† Soledad Royo,‡ Ana I. Jiménez,‡ and Carlos Cativiela*,‡

[‡]Department of Organic Chemistry, ICMA, University of Zaragoza – CSIC, 50009 Zaragoza (Spain) [†]Institute of Biomolecular Chemistry, CNR, Department of Chemistry, University of Padova, 35131 Padova (Italy)

Supporting Information

General remarks:

NMR spectra of peptide **1** were recorded on a Bruker Avance DRX 400 spectrometer at room temperature, using the residual non-deuterated solvent signal as the internal standard; chemical shifts (δ) are expressed in ppm and coupling constants (*J*) in Hertz. Peak assignment was made according to the information provided by COSY, HSQC and HMBC experiments. The IR spectrum was registered on a Mattson Genesis FTIR spectrophotometer; v_{max} is given for the main absorption bands. The optical rotation was measured at room temperature using a JASCO P-1020 polarimeter. The high-resolution mass spectrum was obtained on a Bruker Microtof-Q spectrometer. The melting point was determined on a Gallenkamp apparatus. The preparation and characterization of compounds Boc-(*S*,*S*)c₃diPhe-OH^{S1} and Boc-(*R*,*R*)c₃diPhe-NHⁱPr^{S2} were already reported.

Synthesis of Boc-(*S*,*S*)c₃diPhe-(*R*,*R*)c₃diPhe-NHⁱPr (1). To a solution of Boc-(*S*,*S*)c₃diPhe-OH (304 mg, 0.86 mmol) in dry CH₂Cl₂ (4 mL) at 0°C, HOAt (59 mg, 0.43 mmol), HATU^{S3} (327 mg, 0.86 mmol) and DIEA (0.57 mL, 3.44 mmol) were added. After 10 min, HCl·H-(*R*,*R*)c₃diPhe-NHⁱPr [obtained by treatment of the corresponding Boc-protected amino acyl isopropylamide (355 mg, 0.90 mmol) with a 3N solution of HCl in dry EtOAc] was added. The reaction mixture was stirred at room temperature for 4 days and then evaporated *in vacuo*. The residue was dissolved in EtOAc (300 mL) and the solution was washed with 10% KHSO₄ (3×100 mL), water (2×100 mL), 5% NaHCO₃ (2×100 mL), water (2×100 mL), dried over anhydrous Na₂SO₄, filtered and evaporated to dryness. Recrystallization of the crude product from Et₂O/PE afforded the title compound (489 mg, 0.78 mmol, 90% yield) as a white solid.

mp: 122-123°C (Et₂O/PE)

 $[\alpha]_{D}^{26}$: -65.6 (*c* 0.50, MeOH)

*R*_f: 0.69 (CH₂Cl₂/EtOAc 8/2)

IR (nujol): v 3420, 3368, 1700, 1643 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 0.87 (d, J = 6.4 Hz, 3H, ^{*i*}Pr CH₃), 1.02 (d, J = 6.4 Hz, 3H, ^{*i*}Pr CH₃), 1.26 (s, 9H, Boc CH₃), 2.44 (d, J = 8.6 Hz, 1H, c₃diPhe H^β), 3.03 (d, J = 8.4 Hz, 1H, c₃diPhe H^β), 3.72 (d, J = 8.6 Hz, 1H, c₃diPhe H^β), 3.79 (m, 1H, ^{*i*}Pr CH), 3.99 (br d, J = 8.4 Hz, 1H, c₃diPhe H^β), 4.64 (br s, 1H, c₃diPhe NH), 6.49 (br s, 1H, c₃diPhe NH), 6.85 (m, 1H, NH^{*i*}Pr), 7.10–7.50 (m, 20H, Ar).

¹³C NMR (100 MHz, CDCl₃): δ 22.29 (ⁱPr CH₃), 22.37 (ⁱPr CH₃), 28.07 (Boc CH₃), 32.70 (c₃diPhe C^β), 33.34 (c₃diPhe C^β), 37.35 (c₃diPhe C^β), 38.53 (c₃diPhe C^β), 41.65 (ⁱPr CH), 46.63 (c₃diPhe C^α), 48.54 (c₃diPhe C^α), 80.91 (Boc C), 126.70, 127.23, 127.27, 127.64, 127.86, 128.23, 128.48, 128.57, 128.98, 129.00, 129.09, 129.15, 134.11, 134.35, 134.88, 135.60 (Ar), 156.07 (Boc CO), 166.46 (c₃diPhe CO), 169.65 (c₃diPhe CO).

HRMS (ESI) C₄₀H₄₄N₃O₄ [M+H]⁺: calcd 630.332633, found 630.333899.

Abbreviations

Boc, *tert*-butyloxycarbonyl; DIEA, *N*,*N*-diisopropylethylamine; HATU, {*N*-[(dimethylamino)-1*H*-1,2,3-triazolo[4,5-*b*]pyridin-1-yl-methylene]-*N*-methylmethanaminium hexafluorophosphate *N*-oxide}; HOAt, 1-hydroxy-7-azabenzotriazole; PE, petroleum ether; ¹Pr, isopropyl.

References

- (S1) Jiménez, A. I.; López, P.; Oliveros, L.; Cativiela, C. Tetrahedron 2001, 57, 6019-6026.
- (S2) Royo, S.; De Borggraeve, W. M.; Peggion, C.; Formaggio, F.; Crisma, M.; Jiménez, A. I.; Cativiela, C.; Toniolo, C. J. Am. Chem. Soc. 2005, 127, 2036–2037.
- (S3) Carpino, L. A. J. Am. Chem. Soc. 1993, 115, 4397-4398.

S2

