A helical, aromatic, peptide nanotube

Marco Crisma, ${ }^{*}, \dagger$ Claudio Toniolo, ${ }^{\dagger}$ Soledad Royo, \ddagger Ana I. Jiménez, \ddagger and Carlos Cativiela ${ }^{*, \ddagger}$
${ }^{\ddagger}$ Department of Organic Chemistry, ICMA, University of Zaragoza - CSIC, 50009 Zaragoza (Spain)
${ }^{\dagger}$ Institute of Biomolecular Chemistry, CNR, Department of Chemistry, University of Padova, 35131 Padova (Italy)

Supporting Information

General remarks:

NMR spectra of peptide $\mathbf{1}$ were recorded on a Bruker Avance DRX 400 spectrometer at room temperature, using the residual non-deuterated solvent signal as the internal standard; chemical shifts (δ) are expressed in ppm and coupling constants (J) in Hertz. Peak assignment was made according to the information provided by COSY, HSQC and HMBC experiments. The IR spectrum was registered on a Mattson Genesis FTIR spectrophotometer; $v_{\max }$ is given for the main absorption bands. The optical rotation was measured at room temperature using a JASCO P-1020 polarimeter. The high-resolution mass spectrum was obtained on a Bruker Microtof-Q spectrometer. The melting point was determined on a Gallenkamp apparatus. The preparation and characterization of compounds Boc- $(S, S) \mathrm{c}_{3} \mathrm{diPhe}-\mathrm{OH}^{\mathrm{S} 1}$ and Boc$(R, R) \mathrm{c}_{3}$ diPhe- $\mathrm{NH}^{i} \mathrm{Pr}^{\mathrm{S} 2}$ were already reported.

Synthesis of Boc- $(\boldsymbol{S}, \boldsymbol{S}) \mathbf{c}_{3} \mathbf{d i P h e}-(\boldsymbol{R}, \boldsymbol{R}) \mathbf{c}_{3} \mathbf{d i P h e}-\mathbf{N H}^{i} \mathbf{P r}(\mathbf{1})$. To a solution of Boc-($(S, S) \mathrm{c}_{3}$ diPhe-OH ($304 \mathrm{mg}, 0.86 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, HOAt ($59 \mathrm{mg}, 0.43 \mathrm{mmol}$), $\mathrm{HATU}^{\mathrm{S} 3}(327 \mathrm{mg}, 0.86 \mathrm{mmol})$ and DIEA $(0.57 \mathrm{~mL}, 3.44$ mmol) were added. After $10 \mathrm{~min}, \mathrm{HCl} \cdot \mathrm{H}-(R, R) \mathrm{c}_{3} \mathrm{diPhe}-\mathrm{NH}^{i} \mathrm{Pr}$ [obtained by treatment of the corresponding Bocprotected amino acyl isopropylamide ($355 \mathrm{mg}, 0.90 \mathrm{mmol}$) with a 3 N solution of HCl in dry EtOAc] was added. The reaction mixture was stirred at room temperature for 4 days and then evaporated in vacuo. The residue was dissolved in EtOAc (300 mL) and the solution was washed with $10 \% \mathrm{KHSO}_{4}(3 \times 100 \mathrm{~mL})$, water $(2 \times 100 \mathrm{~mL}), 5 \% \mathrm{NaHCO}_{3}(2 \times 100$ mL), water ($2 \times 100 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. Recrystallization of the crude product from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE}$ afforded the title compound ($489 \mathrm{mg}, 0.78 \mathrm{mmol}, 90 \%$ yield) as a white solid.
$\mathrm{mp}: 122-123^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE}\right)$
$[\alpha]^{26}$ D: -65.6 (c $\left.0.50, \mathrm{MeOH}\right)$
$R_{f}: 0.69\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 8 / 2\right)$
IR (nujol): v $3420,3368,1700,1643 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H},{ }^{i} \operatorname{Pr} \mathrm{CH}_{3}\right), 1.02\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H},{ }^{i} \operatorname{Pr} \mathrm{CH}_{3}\right), 1.26(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}$ $\left.\mathrm{CH}_{3}\right), 2.44\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{c}_{3} \mathrm{diPhe} \mathrm{H}^{\beta}\right), 3.03\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{c}_{3} \mathrm{diPhe} \mathrm{H}^{\beta}\right), 3.72\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{c}_{3} \mathrm{diPhe} \mathrm{H}^{\beta}\right)$, $3.79\left(\mathrm{~m}, 1 \mathrm{H},{ }^{i} \mathrm{Pr} \mathrm{CH}\right), 3.99$ (br d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{c}_{3} \mathrm{diPhe} \mathrm{H}^{\beta}$), 4.64 (br s, $1 \mathrm{H}, \mathrm{c}_{3} \mathrm{diPhe} \mathrm{NH}$), 6.49 (br s, $\left.1 \mathrm{H}, \mathrm{c}_{3} \mathrm{diPhe} \mathrm{NH}\right)$, 6.85 (m, 1H, NH ${ }^{i} \operatorname{Pr}$), 7.10-7.50 (m, 20H, Ar).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.29\left({ }^{i} \mathrm{PrCH}_{3}\right), 22.37\left({ }^{i} \mathrm{Pr} \mathrm{CH}_{3}\right), 28.07\left(\mathrm{Boc} \mathrm{CH}_{3}\right)$, $32.70\left(\mathrm{c}_{3} \mathrm{diPhe} \mathrm{C}^{\beta}\right), 33.34\left(\mathrm{c}_{3} \mathrm{diPhe}\right.$ C^{β}), $37.35\left(\mathrm{c}_{3} \mathrm{diPhe} \mathrm{C}^{\beta}\right.$), $38.53\left(\mathrm{c}_{3} \mathrm{diPhe} \mathrm{C}^{\beta}\right), 41.65\left({ }^{i} \operatorname{Pr~CH}\right), 46.63\left(\mathrm{c}_{3} \mathrm{diPhe} \mathrm{C}^{\alpha}\right), 48.54\left(\mathrm{c}_{3} \mathrm{diPhe} \mathrm{C}^{\alpha}\right), 80.91$ (Boc C), 126.70, 127.23, 127.27, 127.64, 127.86, 128.23, 128.48, 128.57, 128.98, 129.00, 129.09, 129.15, 134.11, 134.35, $134.88,135.60$ (Ar), 156.07 (Boc CO), 166.46 (c_{3} diPhe CO), 169.65 (c_{3} diPhe CO).
HRMS (ESI) $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 630.332633, found 630.333899 .

Abbreviations

Boc, tert-butyloxycarbonyl; DIEA, N, N-diisopropylethylamine; HATU, $\{N$ - [(dimethylamino)-1 $H-1,2,3$-triazolo[4,5- $b]$ pyridin-1-yl-methylene $]-N-$
methylmethanaminium hexafluorophosphate N-oxide $\} ;$ HOAt, 1-hydroxy-7-azabenzotriazole; PE, petroleum ether; ${ }^{\text {i }}$ Pr, isopropyl.

References

(S1) Jiménez, A. I.; López, P.; Oliveros, L.; Cativiela, C. Tetrahedron 2001, 57, 6019-6026.
(S2) Royo, S.; De Borggraeve, W. M.; Peggion, C.; Formaggio, F.; Crisma, M.; Jiménez, A. I.; Cativiela, C.; Toniolo, C. J. Am. Chem. Soc. 2005, 127, 2036-2037.
(S3) Carpino, L. A. J. Am. Chem. Soc. 1993, 115, 4397-4398.

Figure S1. ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of peptide $\mathbf{1}$ in CDCl_{3}.

Figure $\mathrm{S} 2 .{ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of peptide $\mathbf{1}$ in CDCl_{3}.

