SUPPORTING INFORMATION

Preparation of Nitrogen-Substituted TiO₂ Thin Film Photocatalysts by the RF Magnetron Sputtering Deposition Method and their Photocatalytic Reactivity under Visible Light Irradiation

Masaaki Kitano,[†] Keisho Funatsu,[‡] Masaya Matsuoka,[‡] Michio Ueshima,[†] and Masakazu Anpo,[‡]*

[†]Industry-University Cooperation Organization, Osaka Prefecture University 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan

[‡]Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University

1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

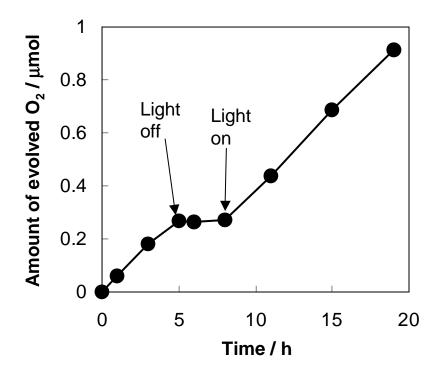


Figure S1: The reaction time profile of the photocatalytic evolution of O_2 from a 0.05 M AgNO₃ aqueous solution on Pt-loaded N-TiO₂(4) under visible light irradiation ($\lambda \ge 420$ nm).

Table S1: Surface and bulk nitrogen concentration of N-TiO₂(4) calcined at various temperatures.

Calcination	concentration of substituted N (%)	
temperature (K)	Surface ^a	Bulk^b
before calcination	5.95	6.00
473	3.75	6.00
673	2.15	5.95
773	0.00	2.25

^aEstimated from XPS peak areas of Ti 2p and N 1s for the top surface of the N-TiO₂(4) thin films. ^aEstimated from XPS peak areas of Ti 2p and N 1s for N-TiO₂(4) thin films etched by Ar⁺ ion sputtering for 5 min.