An Activated Equivalent of Lactide towards Organocatalytic RingOpening Polymerization

Olivier Thillaye du Boullay, ${ }^{\dagger}$ Emmanuel Marchal, ${ }^{\dagger}$ Blanca Martin-Vaca, ${ }^{\dagger}$ Fernando P. Cossío, ${ }^{\S}$ and Didier Bourissou, ${ }^{,+\dagger}$

SUPPLEMENTARY INFORMATION

Contents
Computational Studies S2
Synthetic procedures and Spectroscopic data S5
References S11

Computational Studies

Computational Methods. All the calculations reported were performed in the gas phase within Density Functional Theory, ${ }^{1}$ using the hybrid three-parameter functional customarily denoted as B3LYP. ${ }^{2}$ The standard $6-31 G^{*}$ basis set 3 as implemented in the GAUSSIAN 03^{4} suite of programs has been used in all cases.

Table S1. Total energies ${ }^{\text {a,b }}$ in atomic units of stationary points associated with eqs. (1) and (2).

Structure	E	H_{298}	G_{298}
$\mathbf{1 a}$	-534.219521	-534.209128	-534.254153
$\mathbf{2 a}$	-649.907658	-649.892817	-649.949498
$\mathbf{1 b}$	-455.664465	-455.656770	-455.695793
$\mathbf{2 b}$	-382.788891	-382.779657	-382.821946
$\mathrm{CH}_{3} \mathrm{OH}$	-115.662941	-115.658706	-115.685664
CO_{2}	-188.570806	-188.566881	-188.586719

${ }^{\mathrm{a}}$ Computed at the B3LYP/6-31G(g)+ZPVE level. ${ }^{\mathrm{b}} \mathrm{H}$ and G computed at 298 K .

Cartesian coordinates of fully optimized compounds 1a,b and 2a,b.

1a

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	8	0	0.257670	-1.353787	-0.108155
2	6	0	1.264898	-0.465214	0.436634
3	6	0	1.038579	0.965259	-0.055690
4	8	0	-0.257668	1.353797	-0.108094
5	6	0	-1.264896	0.465215	0.436673
6	6	0	-1.038584	-0.965300	-0.055548
7	8	0	1.924120	1.716213	-0.375687
8	8	0	-1.924128	-1.716175	-0.375721
9	6	0	-2.622726	1.012378	0.038565
10	6	0	2.622738	-1.012396	0.038598
11	1	0	1.162677	-0.466042	1.532690
12	1	0	-1.162737	0.466068	1.532735
13	1	0	-3.410443	0.378694	0.452012
14	1	0	-2.723813	1.022428	-1.049833
15	1	0	-2.738154	2.031086	0.417962
16	1	0	3.410443	-0.378708	0.452063
17	1	0	2.723873	-1.022471	-1.049795
18	1	0	2.738142	-2.031094	0.418027

2a

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	8	0	3.558674	-0.567865	-0.733786
2	6	0	2.684409	0.112240	0.141292
3	6	0	1.301519	0.186651	-0.492698
4	8	0	0.489558	1.058068	0.136119
5	8	0	0.973840	-0.487910	-1.448468
6	6	0	2.599111	-0.577093	1.512700
7	6	0	-0.877905	1.080296	-0.303449
8	6	0	-1.572689	-0.201543	0.166452
9	6	0	-1.522066	2.328905	0.291719
10	8	0	-1.122850	-0.988465	0.965409
11	8	0	-2.777727	-0.308643	-0.423388
12	6	0	-3.545937	-1.469382	-0.053529
13	1	0	2.988010	-1.058925	-1.353298
14	1	0	3.055469	1.137109	0.275375
15	1	0	1.969165	-0.008298	2.203150
16	1	0	3.607321	-0.660940	1.928478
17	1	0	2.180221	-1.582919	1.406687
18	1	0	-0.906986	1.103378	-1.396259
19	1	0	-2.567502	2.393281	-0.021235
20	1	0	-0.992687	3.221099	-0.054653
21	1	0	-1.478617	2.299711	1.384892
22	1	0	-4.474986	-1.395725	-0.618687
23	1	0	-3.745849	-1.468823	1.020989
24	1	0	-3.004167	-2.380857	-0.317439

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	0.790865	-0.607575	0.462239
2	6	0	0.679802	0.863402	0.090926
3	6	0	1.734023	-1.388752	-0.442960
4	8	0	1.536956	1.692241	0.016976
5	8	0	-0.651573	1.105013	-0.176697
6	6	0	-1.385604	-0.066303	-0.021253
7	8	0	-2.559386	-0.142618	-0.194902
8	8	0	-0.565675	-1.076246	0.347365
9	1	0	1.092494	-0.695835	1.512323
10	1	0	1.749107	-2.441615	-0.149375
11	1	0	2.743284	-0.976876	-0.350533
12	1	0	1.418026	-1.317429	-1.488063

2b

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	8	0	2.025024	-0.899834	-0.231996
2	6	0	1.123085	0.170398	-0.408613
3	6	0	-0.283658	-0.298095	-0.046338
4	8	0	-1.224377	0.614117	-0.326438
5	6	0	-2.575333	0.241264	0.008091
6	8	0	-0.507635	-1.384165	0.453380
7	6	0	1.536852	1.384591	0.435156
8	1	0	1.514364	-1.612265	0.196261
9	1	0	1.109684	0.461980	-1.469447
10	1	0	-3.192644	1.088799	-0.289313
11	1	0	-2.664644	0.055884	1.081381
12	1	0	-2.867167	-0.659676	-0.537224
13	1	0	0.878451	2.239124	0.250906
14	1	0	2.562683	1.662763	0.177113
15	1	0	1.509498	1.133499	1.500985

Synthetic procedures and Spectroscopic data

Materials. All reactions were performed under an inert atmosphere of argon, using standard Schlenk techniques. Solvents were dried and distilled prior to use: toluene ($>99.9 \%$), THF ($>99.9 \%$) and diethyl ether ($>99.9 \%$) over sodium, pentane ($>99 \%$) over calcium dihydride and dichloromethane ($>99.95 \%$) over phosphorus pentoxide. Dimethylaminopyridine (DMAP) (99\%, ALDRICH) was purified by recrystallization in toluene and stored under argon. n-Pentanol (99+\%), neo-Pentanol (99%) and i-Propanol ($99+\%$) were dried over sodium and distilled before use.

Characterizations. ${ }^{1} \mathrm{H}$ NMR measurements were used to determine the monomer conversion and the chain end groups. Spectra were recorded in CDCl_{3} on BRUKER Avance 300,400 and 500 MHz spectrometers at room temperature. ${ }^{1} \mathrm{H}$ chemical shifts are reported in ppm relative to $\mathrm{Me}_{4} \mathrm{Si}$ as an external standard. Monomer conversion was determined from the relative intensities of the methyl signals for the monomer (doublet at $\delta 1.72 \mathrm{ppm}$) and polymer (doublet at $\delta 1.54 \mathrm{ppm}$). The degree of polymerization DP was determined from the relative integration of the signals for the lactate units and chain ends.

The number-average and weight-average molar masses (M_{n} and M_{w}, respectively) and polydispersity indexes $\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)$ of the polyester samples were determined by size exclusion chromatography (SEC) at $35^{\circ} \mathrm{C}$ with a Waters 600 liquid chromatograph equipped with a Waters 2410 Refractive Index Detector. Tetrahydrofuran (THF) was used as the eluent and the flow rate was set up at $1.0 \mathrm{~mL} / \mathrm{min}$. A Waters pre-column and a Waters STYRAGEL column (HR 4E, 50-100,000 g/mol) were used. Calibrations were performed using polystyrene standards (400-100,000 g/mol).

Electrospray-ionization mass spectra (ESI-MS) were performed on a Perkin Elmer Sciex API-365 spectrometer operating in positive ion mode. Samples were dissolved in acetonitrile, doped with traces of ammonium hydroxide and infused with a syringe pump at $5 \mathrm{~mL} / \mathrm{min}$.

Control experiment for Lactide Polymerization.

L-Lactide ($89 \mathrm{mg}, 0.65 \mathrm{mmol}$, 10 equiv) was dissolved in dichloromethane (0.2 mL) and a DCM solution of neo-Pentanol and DMAP ($0.63 \mathrm{~mL}, 0.10 \mathrm{~mol} . \mathrm{L}^{-1}, 1$ equiv) was added. The reaction mixture was stirred at $35^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR. The reaction was stopped after $96 \mathrm{~h}\left(93 \%\right.$ conversion showed by ${ }^{1} \mathrm{H}$ NMR).
$\mathrm{DP}_{\mathrm{NMR}}=19$
SEC (THF): $M_{n}=2980, M_{w} / M_{n}=1.24$

Procedure for the preparation of(-) 5-methyl-1,3-dioxolane-2,4-dione (L-lacOCA).

*** CAUTION: phosgene is volatile and highly toxic ${ }^{* * *}$
A solution of diphosgene ($40 \mathrm{mmol}, 2.82 \mathrm{~mL}$) in 10 mL of anhydrous THF was added dropwise (20 min) at $0^{\circ} \mathrm{C}$ over a stirred suspension of L-lactic acid lithium salt ($40 \mathrm{mmol}, 3.90 \mathrm{~g}$) in 60 mL of anhydrous THF under dry atmosphere. The homogeneous reaction mixture was stirred at room temperature for 2.5 h . THF was removed under reduced pressure and trapped with liquid nitrogen. ${ }^{* * *}$ CAUTION: The latter solution was carefully neutralized at $0^{\circ} \mathrm{C}$ with aqueous ammoniac diluted in ethanol. ${ }^{* * *}$ Dry diethyl ether $(30+20$ mL) was added to the residue and the lithium salts were removed by filtration. Recristallisation from diethyl ether afforded colourless crystals ($2.18 \mathrm{~g}, 47 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 5.15\left(\mathrm{q}, \mathrm{CHCH}_{3}, 7.2 \mathrm{~Hz}\right) ; 1,73\left(\mathrm{~d}, \mathrm{CHCH}_{3}, 7.2 \mathrm{~Hz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 170.5(\mathrm{CHCOO}) ; 147.7(\mathrm{OCOO}) ; 85.0\left(\mathrm{CHCH}_{3}\right) ; 23.4\left(\boldsymbol{C H}_{3}\right)$
$\mathrm{mp}: 65-67^{\circ} \mathrm{C}, \quad[\alpha]_{\mathrm{D}}=-17,4\left(1 \mathrm{~g} / \mathrm{L}, \mathrm{CHCl}_{3}\right)$
This procedure differs from that reported by Kricheldorf ${ }^{5}$ in that:
i) 1 equivalent of diphosgene can be used instead 3 eq of phosgene
ii) the addition of a base (N -methylmorpholine) is not necessary
iii) diethyl ether is a good recristallisation solvent (instead of the mixture of ethyl acetate and carbon tetrachloride)

General Procedure for L-lacOCA Polymerization.

L-lacOCA ($157 \mathrm{mg}, 1.35 \mathrm{mmol}, 50$ equiv) was dissolved in dichloromethane (1.6 mL) and a DCM solution of neo-Pentanol and DMAP ($0.14 \mathrm{~mL}, 0.19 \mathrm{~mol} . \mathrm{L}^{-1}, 1$ equiv) was added. The reaction mixture was stirred at room temperature until CO_{2} no longer evolved. The complete monomer consumption was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The reaction mixture was diluted with $\mathrm{DCM}(4 \mathrm{~mL})$ and washed with cold $2 \mathrm{~N} \mathrm{HCl}(2 \mathrm{x}$ 5 mL), brine (5 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation to give the polymer as a white solid ($100 \mathrm{mg}, 99 \%$).
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.60-1.40\left(\mathrm{~m}, 148 \mathrm{H}, \mathrm{OCHCH}_{3}\right), 3.80(\mathrm{~d}, \mathrm{~J}=10.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.88\left(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.30\left(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCHCH}_{3}\right), 5.16(\mathrm{q}$, $\mathrm{J}=6.9 \mathrm{~Hz}, 49 \mathrm{H}, \mathrm{OCHCH} 3$).
$\mathrm{DP}_{\mathrm{NMR}}=50$
SEC (THF): $M_{n}=5930, M_{w} / M_{n}=1.13$

Procedure for the determination of the relationship between DP and monomer conversion

Polymerization was carried out in an NMR tube $\left(\mathrm{CDCl}_{3}\right.$ solution, 29 mg of L-lacOCA, 100 equiv) and monitored by ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ at $25^{\circ} \mathrm{C}$. At $\mathrm{t}=0$, a DCM solution of neo-Pentanol and DMAP ($12 \mu \mathrm{~L}, 1$ equiv) was added. NMR spectra were recorded ($\mathrm{NS}=1$) every 2 minutes during the first 30 minutes then every 5 minutes until completion.

Influence of the reaction time on the polymer

A PLA with $M_{\mathrm{n}}=9130$ and $M_{\mathrm{w}} / M_{\mathrm{n}}=1.14$ just after complete monomer consumption was kept under the polymerization conditions (dichloromethane, $25^{\circ} \mathrm{C}, \mathrm{DMAP}$) for 3 days. No significant changes could be detected by $\operatorname{SEC}\left(M_{\mathrm{n}}=9100\right.$ and $\left.M_{\mathrm{w}} / M_{\mathrm{n}}=1.16\right)$.

Table S2. L-lacOCA polymerization with the initiator/DMAP system. ${ }^{a}$

Entry	Initiator	$[\mathbf{M}]_{0} /[\mathbf{I}]_{0}$	$\mathbf{T i m e}^{\boldsymbol{b}}$	$\mathbf{D P}_{(\mathbf{N M R})}{ }^{\boldsymbol{c}}$	$\boldsymbol{M}_{\mathrm{n}}{ }^{\boldsymbol{d}}$	$\boldsymbol{M}_{\mathrm{w}} / \boldsymbol{M}_{\mathrm{n}}{ }^{\boldsymbol{d}}$
1	neo-Pentanol	11	<5	12	1220	1.22
2	neo-Pentanol	20	5	20	2110	1.20
3	neo-Pentanol	50	20	50	5810	1.15
4	neo-Pentanol	100	90	97	11980	1.16
5	neo-Pentanol	200	120	197	24460	1.21
6	neo-Pentanol	400	480	386	39510	1.27
7	neo-Pentanol	600	1140	592	62290	1.18
8	n-Pentanol	20	5	20	2620	1.19
9	i-Propanol	20	5	21	2510	1.34
10	Cholesterol	20	5	21	2610	1.21
11	2-Bromoethanol	20	5	18	1870	1.17

${ }^{a}$ Polymerizations of L-lacOCA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were carried out at $25^{\circ} \mathrm{C}$ with an initiator to catalyst ratio of 1 . In all experiments conversion were higher than 96%. ${ }^{b}$ In minutes. ${ }^{c}$ Calculated by relative integration of the methyl signals (polymer and ester chain end) in ${ }^{1} \mathrm{H}$ NMR experiments. ${ }^{d}$ Obtained from Size Exclusion Chromatography (in tetrahydrofuran, THF) using polystyrene standards.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of a polylactide sample obtained by polymerization of L lactic O-carboxyanhydride (L-lacOCA) with neo-PentOH as initiator $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right.$, $[L \text {-lacOCA }]_{0} /[$ neoPentOH $\left.]_{0} /[\mathrm{DMAP}]_{0} 10 / 1 / 1,[\mathrm{LA}]_{0}=0.9 \mathrm{M}\right)$.

Figure S2. Electrospray-ionization mass spectrum (Region $\mathrm{m} / \mathrm{z} 150$ to 1700) of polyester prepared by polymerization of L-lacOCA with neo-Pentanol $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right.$, $\left.[\mathrm{OCA}]_{0} /[\mathrm{ROH}]_{0} /[\mathrm{DMAP}]_{0} 10 / 1 / 1\right)$

Figure S3. GPC profile of a polylactide sample obtained by polymerization of L-lactic O-carboxyanhydride (L-lacOCA) with neo-PentOH as initiator $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right.$, $[L \text {-lacOCA }]_{0} /[\text { neo-PentOH }]_{0} /[\mathrm{DMAP}]_{0} 50 / 1 / 1$, $\left.[\mathrm{LA}]_{0}=0.9 \mathrm{M}\right)$.

GPC Sample Results

	Retention Time	$\mathbf{M n}$	$\mathbf{M w}$	$\mathbf{M P}$	Polydispersity
1	8.184	5806	6691	6670	1.15

Second-feed experiment: 50 equiv. of L-lacOCA were polymerized with neo-Pentanol/DMAP (1/1) in dichloromethane at $25^{\circ} \mathrm{C}$. After 45 minutes, CO_{2} no longer evolved and SEC analysis indicated the formation of a PLA with $M_{\mathrm{n}}=5120 \mathrm{~g} / \mathrm{mol}$ and $M_{\mathrm{w}} / M_{\mathrm{n}}=1.13$. Polymerization was then restarted with 50 equiv. of L lacOCA to afford, after additional 60 minutes, a PLA with $M_{\mathrm{n}}=10400 \mathrm{~g} / \mathrm{mol}$ and $M_{\mathrm{w}} / M_{\mathrm{n}}=1.14$.

Figure S4. GPC traces of the PLAs obtained after the first (a) and second (b) feeds of L-lacOCA.

Figure S5. Normal (a) and homonuclear decoupled (b) ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of a polymer sample prepared by polymerization of L-lacOCA initiated with n-Pentanol $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right.$, [L lacOCA $]_{0} /[\mathrm{ROH}]_{0} /[\mathrm{DMAP}]_{0}=100 / 1 / 1$

Procedure for Lactide Polymerization initiated with 2-bromoethanol.

Lactide ($483 \mathrm{mg}, 3.35 \mathrm{mmol}, 10$ equiv) was dissolved in dichloromethane (5 mL). The initiator ($24 \mu \mathrm{~L}$ of 2bromoethanol, 1 equiv) and the catalyst (40 mg of DMAP, 1 equiv) were added successively. The reaction mixture was stirred at $35^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR. The reaction was stopped after 5 days (93% conversion showed by ${ }^{1} \mathrm{H}$ NMR). The ${ }^{1} \mathrm{H}$ NMR spectrum revealed the alkylation of about 30% of the DMAP leading to a mixture of brominated and pyridinium chain ends.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of polymer samples prepared by polymerization of a) L lacOCA initiated with 2-bromoethanol $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right.$, $\left.[L-\mathrm{lacOCA}]_{0} /[\mathrm{ROH}]_{0} /[\mathrm{DMAP}]_{0}=20 / 1 / 1\right)$ and b) L lactide initiated with 2-bromoethanol $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 35^{\circ} \mathrm{C}\right.$, $\left.[\text { lactide }]_{0} /[\mathrm{ROH}]_{0} /[\mathrm{DMAP}]_{0}=10 / 1 / 1\right)$.

References

(1) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
(2) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1998, 37, 785-789. (c) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 12001211.
(3) (a) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; pp 76-87. (b) Ditchfield, R.; Hehre, W. J; Pople, J. A. J. Chem. Phys. 1971, 54, 724-728. (c) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 22572261.
(4) Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; AlLaham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.
(5) Kricheldorf, H. R.; Jonté, J. M. Polym. Bulletin 1983, 9, 276-281.

