S1 Supporting Information Contents Page

Title: Oppositines A and B, Sesquiterpene Pyridine Alkaloids from a Sri Lankan *Pleurostylia opposita*

Authors: Emily L. Whitson, S.M.V. Damayanthi Mala, Charles. A. Veltri, Tim S. Bugni, E. Dilip de Silva, Chris M. Ireland

Contents:

- S2 ¹H NMR Spectrum of Oppositine A (1) in CDCl₃
- S3 ¹³C NMR Spectrum of Oppositine A (1) in CDCl₃
- S4 ¹H NMR Spectrum of Oppositine B (2) in CDCl₃
- S5 ¹³C NMR Spectrum of Oppositine B (2) in CDCl₃
- T1 HMBC, COSY, ROESY data for (1)

S2 ¹H NMR Spectrum for Oppositine A (1) in CDCl₃

S3 ¹³C NMR Spectrum for Oppositine A (1) in $CDCI_3$

S4 ¹H NMR Spectrum for Oppositine B (2) in CDCl₃

S5 ¹³C NMR Spectrum for Oppositine B (**2**) in $CDCI_3$

				Oppositine B (2)			
position	δ_{C}	$\delta_{\rm H}$ mult (<i>J</i> , Hz)	HMBC (H \rightarrow C)	COSY	ROESY	δ _C	$\delta_{\rm H}$ mult (<i>J</i> in Hz)
1	73.5	5.88, d (4.1)	9, 10, 15, 16	2	2, 9, 12	74.0	6.00, d (4.0)
2	70.0 ^a	5.22, dd (4.1, 2.4)	3, 4, 10, 21	1, 3	1, 3, 22	70.4	5.33, br d (4.0)
3	75.7	5.01, d (2.4)	1, 2/4, 5, 14, 12'	2	2, 14	74.9	4.83, br s
4	70.0^{a}					36.9	2.72, q (7.9)
5	94.0					90.7	
6	73.7	7.00, br s	5, 7, 8, 10, 11, 23	7	7, 14, 15a	74.2	6.65, br s
7	50.8	2.32, d (4.1)	5, 6, 8, 9	6, 8	6, 8, 12, 13b	50.2	2.41, d (3.8)
8	68.9	5.51, dd (5.8, 4.1)	6, 9, 10, 25	7, 9	7, 9, 12	69.0	5.53, dd (5.9, 3.8)
9	71.4	5.38, d (5.8)	9, 10, 15, 27	8	1, 8, 12	71.5	5.37, d (5.9)
10	52.5					50.9	
11	85.0					82.9	
12	18.0	1.71, s	7, 11, 13	13a	7, 8, 9, 13b	18.1	1.65, s
13a	69.8	5.96, d (11.9)	11, 12, 13'	12, 13b	7, 13b, 24, OH-4	68.8	5.67, d (11.3)
13b		3.59, d (11.9)	11, 12, 13'	13a	7, 12, 13a, OH-4		3.47, d (11.3)
14	22.9	1.56, br d (1.4)	3, 4, 5	OH-4	3, 6, 9, 15a, OH-4	14.9	1.24, d (7.9)
15a	60.1	5.35, d (13.5)	9, 10, 29	15b	6, 14, 15b, 22	60.2	5.28, d (13.2)
15b		4.63, d (13.5)	5, 9, 10, 29	15a	14, 15a, 18, 22, 28		4.63, d (13.2)
16	164.6					164.7	
17	129.1					129.3	
18	129.5	7.80, dd (7.9, 1.3)	16, 17, 20	19, 20	15b, 19, 28	129.5	7.85, br d (7.7)
19	128.5	7.38, t (7.9)	18, 20	18, 20	18, 20	128.5	7.39, br t (7.7)
20	133.5	7.52, tt (7.9, 1.3)	18, 19	18, 19	19	133.4	7.53, br t (7.7)
21	168.4					168.7	
22	20.9	2.13, s	2, 21			20.9	2.09, s
23	170.0^{a}					169.7	
24	21.6	2.19, s	6, 23			21.6	2.21, s
25	170.0 ^a					170.0	

Table 1.	NMR	data for	Oppositines	A (1)	and B	(2)(500)	MHz,	CDCl ₃)
----------	-----	----------	-------------	-------	-------	----------	------	---------------------

26	21.0	2.10, s	8,25			21.1	2.12, s
27	168.9					168.9	
28	19.9	1.38, s	27		18	19.9	1.42, s
29	170.4					170.2	
30	21.4	2.31, s	29			21.4	2.23, s
2'	168.1					165.4	
3'	124.9					127.4	
4′	138.2	8.39, dd (8.0, 1.9)	2', 6', 13'	5', 6'	5', 8b'	138.0	8.20, br d (6.8)
5'	120.8	7.26, dd (8.0, 4.6)	3', 4', 6'	4', 6'	4', 6'	120.9	7.24 (6.8, 3.9)
6'	153.8	8.82, dd (4.6, 1.9)	2', 4', 5'	4', 5'	5'	152.6	8.78, br d (3.9)
7'	42.2	4.32, dddd (11.7, 9.5, 4.9, 2.7)	10', 11'	8a', 8b', 10a'/11a', 10b'/11b'	8b', 9', 10a'/11a', 10b'/11b', OH-4	42.1	4.00, m
8a'	28.8	1.98, ddd (13.1, 7.4, 2.7)	7', 9'	8b', 9'	7', 8b', 9', 10b'/11b'	29.0	1.98, m (7.2)
8b'		1.72, m (7.4)	2', 7', 9'	8a', 9'	7', 8a', 9', 10a'/11a'		1.79, m (7.2)
9'	11.9	0.68, t (7.4)	7', 8'	8a', 8b'	7', 8a', 8b'	12.0	0.76, t (7.2)
10a'	31.8 ^b	2.26, m	7', 11', 12'	7', 10b', 11a', 11b'	7', 10b'/11b'	30.3 ^b	2.20, m
10b'		1.87, m	2', 7', 11', 12'	7', 10a', 11a', 11b'	13b, 14, 7', 8b', 10a'/11a'		1.87, m
11a'	31.3 ^b	2.26, m	7', 10', 12'	7', 10a', 10b', 11b'	7', 10b'/11b'	30.7 ^b	2.23, m
11b'		1.87, m	2', 7', 10', 12'	7', 10a', 10b', 11a'	13b, 14, 7', 8b', 10a'/11a'		1.80, m
12'	172.2					172.8	
13'	166.4					165.5	
OH-4		4.96, br d (1.4)	4, 14	14	13a, 13b, 7'		

^asignals overlapping. ^bassignments may be reversed.