Supporting Information for

Total Synthesis of Potential Anti-tumor Agent, (-)-Dictyostatin

P. Veeraraghavan Ramachandran,** Amit Srivastava and Debasis Hazra

560 Oval Drive, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084

E-mail: chandran@purdue.edu
Contents (100 pages):

1. Experimental procedures and product characterization data ($\mathrm{pp} \mathrm{S} 2-\mathrm{S} 27$).
2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (pp S28-S100).

General Experimental Procedures.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded at $25{ }^{\circ} \mathrm{C}$ on Varian Inova spectrometers at the indicated frequencies using CDCl_{3} as the solvent unless otherwise mentioned. All dry reactions were performed in a flame dried glassware under a dry N_{2} atmosphere. All dry solvents were distilled before used. All flash chromatography was performed using standard grade silica gel (Sorbant Technologies, particle size: 40-63 $\mu \mathrm{m}$, 230 X 400 mesh).

General Procedure for pinane-based crotylboration:

To a $-78{ }^{\circ} \mathrm{C}$ solution of t-BuOK (1.0 M in THF, $191 \mathrm{~mL}, 191 \mathrm{mmol}$) in THF (300 mL), was added via cannula, cis-2-Butene ($35 \mathrm{~mL}, 367.5 \mathrm{mmol}$). After 5 minutes, a $-78{ }^{\circ} \mathrm{C}$ cooled solution of $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in Hexanes, 76.4 mL , 191 mmol) in THF (100 mL) was added dropwise via cannula. The reaction mixure was warmed to $-55^{\circ} \mathrm{C}$, stirred there for 45 minutes and again cooled to $-78^{\circ} \mathrm{C}$. A $-40^{\circ} \mathrm{C}$ cooled solution of (+)-Ipc $\mathrm{I}_{2} \mathrm{BOMe}(70 \mathrm{~g}$, 220.5 mmol) in THF (200 mL) was added dropwise, via cannula and the reaction mixture was stirred for $1 \mathrm{~h} . \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(31.4 \mathrm{~mL}, 250 \mathrm{mmol})$ was added dropwise followed by the dropwise addition of a $-78{ }^{\circ} \mathrm{C}$ cooled solution of aldehyde $12(30 \mathrm{~g}, 147 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ via cannula. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 4 h and then oxidized by a slow addition of 3 M NaOH solution ($88.2 \mathrm{~mL}, 264.6 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}_{2}$ (30% solution, $88 \mathrm{~mL}, 264.6 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, warming to rt and then refluxing for 4 h . Layers were separated and the aqueous layer was extracted with ether ($3 \times 200 \mathrm{~mL}$). Combined organic layers were washed with brine (100 mL), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (2:98::EtOAc:Hexanes) to give homoallylic alcohol ($33.7 \mathrm{~g}, 129.6 \mathrm{mmol}, 88 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: 5.95-5.83 (m, 1H), 5.15-5.09 (m, $2 H), 3.98-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.24$ (brs, 1H), 2.36-2.24 (m, 1H), 1.73-1.66 $(\mathrm{m}, 2 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 140.7,115.1,74.9,62.7,43.9,35.6,25.9,25.8,18.1,15.8,-5.4$; EI-MS: 189 (M$\left.\mathrm{C}_{4} \mathrm{H}_{7}\right)^{+}$; CI-MS: $245(\mathrm{M}+\mathrm{H})^{+}, 189\left[\left(\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{8}\right)^{+}, 100 \%\right]$.

To a $-78{ }^{\circ} \mathrm{C}$ solution of $\mathbf{6}(4.1 \mathrm{~g}, 16.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$, was added 2,6-Lutidine ($3.81 \mathrm{~mL}, 32.78 \mathrm{mmol}$) dropwise followed by the addition of TBSOTf ($15.4 \mathrm{~mL}, 67.2$ mmol). Reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , quenched with satd. NaHCO_{3} (25 mL) and warmed to rt . Layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x50 mL). Organic layers were combined, washed with brine (50 mL), dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by flash column chromatography (3:97::EtOAc:Hexanes) to furnish TBS ether ($5.4 \mathrm{~g}, 15.12 \mathrm{mmol}, 90 \%$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: 5.91-5.80 (m, 1H), 5.11-5.04 (m, $2 \mathrm{H}), 3.86(\mathrm{dt}, J=6.0 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.66(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.63$ $(\mathrm{m}, 2 \mathrm{H}), 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.94(\mathrm{~m}, 18 \mathrm{H}), 0.14-0.11(\mathrm{~m}, 12 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 140.9,114.4,72.3,60.2,43.3,36.3,26.0,25.7,18.2,14.7,-2.8$, 4.4, -5.2; EI-MS: $303\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7}\right)^{+} ; 359(\mathrm{M}+\mathrm{H})^{+}$.

3,5-Bis-(tert-butyl-dimethyl-silyloxy)-2-methyl-pentanal, 7: To a solution of the intermediate alkene ($4.75 \mathrm{~g}, 13.25 \mathrm{mmol}$) in $t-\mathrm{BuOH}$ and water (56 mL and 14 mL), was added NMO (50% by wt. In water, $4.12 \mathrm{~mL}, 19.89 \mathrm{mmol}$) and $\mathrm{OsO}_{4}(100 \mathrm{mg}, 0.3977$ mmol) and reaction mixture was stirred at rt for 12 h before it was quenched with addition of granular sodium bisulfite (500 mg). After stirring for 15 min , reaction mixture was filtered and filtrate was concentrated in vacuo. Residue was diluted with EtOAc (150 mL) and brine (50 mL). Layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). Combined organic layers were dried over MgSO_{4} and concentrated
in vacuo. The crude diol was taken in acetone and water (56 mL and 14 mL) and solid sodium meta periodate ($5.7 \mathrm{~g}, 26.51 \mathrm{mmol}$) was added. The white suspension was stirred at rt for 1 h before it was filtered and filtrate was concentrated in vacuo. The residue was diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ and water (50 mL). Layers were separated and aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 50 \mathrm{~mL}$). Organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (10:90::EtOAc:Hexanes) to yield aldehyde 7 ($3.4 \mathrm{~g}, 9.54 \mathrm{mmol}, 72 \%$, from 6a) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.80(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.24-4.19 (m, 1H), $3.74(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.57(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.17$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.14-0.10(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 204.9,70.4,59.1,51.6,37.7,25.9,25.8,10.2,-4.3,-4.7,-5.3$.

4,6-Bis-(tert-butyl-dimethyl-silyloxy)-3-methyl-hex-1-yne, 8: A solution of 7 (150 mg , $0.41 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.18 \mathrm{~mL}, 1.24 \mathrm{mmol})$ was taken in $1.0 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to 0 ${ }^{\circ} \mathrm{C}$. In a separate flask, $\mathrm{CBr}_{4}(317 \mathrm{mg}, 0.95 \mathrm{mmol})$ solution in $2.0 \mathrm{mLCH} \mathrm{Cl}_{2}$ was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{PPh}_{3}(502 \mathrm{mg}, 1.91 \mathrm{mmol})$ was added. This solution was added, dropwise via cannula, to the aldehyde solution. After stirring at $0{ }^{\circ} \mathrm{C}$ for 45 minutes, half of the solvent was evaporated in vacuo and crude residue was filtered on a short pad of silica gel (2% $\mathrm{EtOAc} / \mathrm{Hexanes}$) to give dibromide ($192 \mathrm{mg}, 0.37 \mathrm{mmol}$), which was taken in 4.0 mL THF and cooled to $-78{ }^{\circ} \mathrm{C} . n-\mathrm{BuLi}(2.5 \mathrm{M}$ in Hexanes, $0.6 \mathrm{~mL}, 1.48 \mathrm{mmol})$ was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h , before it was quenched with 2.0 mL water and warmed to rt . Layers were separated and aqueous later was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. Combined organic layers were washed with brine (25 mL), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (2:98::EtOAc:Hexanes) to furnish alkyne 8 ($124 \mathrm{mg}, 0.35 \mathrm{mmol}, 85 \%$ from 7), as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: 3.98-3.93 (m, 1H), 3.80$3.67(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.63$ $(\mathrm{m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 18 \mathrm{H}), 0.13-0.11(\mathrm{~s}, 12 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 86.3,70.8,69.7,60.0,35.9,32.0,25.9,25.8,18.3,18.1,14.7,-4.5,-4.6$, -5.2: EI-MS: $303\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{5}\right)^{+}$, CI-MS: $357(\mathrm{M}+\mathrm{H})^{+}$.

7,9-Bis-(tert-butyl-dimethyl-silyloxy)-6-methyl-nona-2,4-dienoic acid ethyl ester, 11: To a suspension of $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(90 \mathrm{mg}, 0.3275 \mathrm{mmol})$ in 1.0 mL THF, was added dropwise a solution of $\mathbf{8}(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ dropwise. The clear solution was stirred at rt for 45 minutes and then THF $(0.5 \mathrm{~mL})$ solution of anhydrous $\mathrm{ZnCl}_{2}(51 \mathrm{mg}, 0.37$ mmol) was added dropwise. After 5 minutes, a THF (0.5 mL) solution of $\mathbf{1 0}$ and Pd catalyst was added dropwise. After stirring at rt for 1 h , solvent was removed, diluted with 50 mL of 10% ether/pentane, filtered and concentrated in vacuo. The crude product was purified with flash column chromatography ($3: 97:$ EtOAc:Hexanes) to provide $E, Z-$ diene ester 11 ($75 \mathrm{mg}, 0.16 \mathrm{mmol}, 70 \%$ from 8) as a colorless oil.

To a solution of $\mathbf{1 1}(80 \mathrm{mg}, 0.17 \mathrm{mmol})$ in 1.5 mL MeOH at $0^{\circ} \mathrm{C}$, was added p TSA (3.2 $\mathrm{mg}, 0.017 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 1.5 h before it was quenched with $0.5 \mathrm{~mL} \mathrm{Et}_{3} \mathrm{~N}$. The sovent was evaporated in vacuo and the crude product was purified via a flash column chromatography ($20: 80:: \mathrm{EtOAc}:$ Hexanes) to furnish the intermediate 1^{0} alcohol ($50.4 \mathrm{mg}, 0.15 \mathrm{mmol}, 84 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.37(\mathrm{dd}, J=15.4 \mathrm{~Hz}, 11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.99(\mathrm{dd}, J=15.4 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.88-3.82 (m, 1H), 3.75-3.67 (m, 2H), 2.59-2.49 (m, 1H), 1.86 (s, 1H), 1.73-1.58 (m,
$2 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}$, $3 \mathrm{H}) ;$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 166.4,146.7,145.0,126.8,116.1,73.6$, 59.9, 59.8, 42.6, 35.5, 25.7, 17.9, 14.6, 14.2, -4.4, -4.6; ESI: $365.13(\mathrm{M}+\mathrm{Na})^{+}$.

7-(tert-Butyl-dimethyl-silyloxy)-6-methyl-9-oxo-nona-2,4-dienoic acid ethyl ester, 2: To a suspension of DMP reagent ($699 \mathrm{mg}, 1.65 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(345 \mathrm{mg}, 4.11$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ solution of the intermediate alcohol ($470 \mathrm{mg}, 1.37 \mathrm{mmol}$) and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h before the solvent was partially evaporated in vacuo. The crude product was purified via a flash column chromatography (15:85::EtOAc:Hexanes) to yield aldehyde 2 (440 $\mathrm{mg}, 1.29 \mathrm{mmol}, 94 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.77(\mathrm{~s}, 1 \mathrm{H})$, 7.38 (dd, $J=15.3 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=16.3 \mathrm{~Hz}, 7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.14(\mathrm{~m}, 3 \mathrm{H}), 2.59-2.40(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 201.5,166.3,145.2,144.6,127.5,116.7,70.8,59.8,48.1,43.2$, 25.7, 17.9, 14.8, 14.2, -4.6, -4.6; EI-MS: $295\left(\mathrm{M}-\mathrm{OC}_{2} \mathrm{H}_{5}\right)^{+}$; CI-MS: $341(\mathrm{M}+\mathrm{H})^{+} ; 297$ $\left[(\mathrm{M}+\mathrm{H})-\mathrm{OC}_{2} \mathrm{H}_{4}\right)^{+}$.

To a solution of $\mathbf{1 3}(12.4 \mathrm{~g}, 33.29 \mathrm{mmol})$ in t-BuOH and water (135 mL and 34 mL), was added NMO (50% by wt. In water, $10.3 \mathrm{~mL}, 49.94 \mathrm{mmol}$) and $\mathrm{OsO}_{4}(170 \mathrm{mg}, 0.67$ mmol) and reaction mixture was stirred at rt for 12 h before it was quenched with addition of granular sodium bisulfite (1 g). After stirring for 15 min , reaction mixture was filtered and filtrate was concentrated in vacuo. Residue was diluted with EtOAc (250 mL)
and brine (100 mL). Layers were separated and aqueous layer was extracted with EtOAc (3 x 100 mL). Combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude diol was taken in acetone and water (135 mL and 34 mL) and solid sodium meta periodate ($14.2 \mathrm{~g}, 66.58 \mathrm{mmol}$) was added. The white suspension was stirred at rt for 1 h before it was filtered and filtrate was concentrated in vacuo. The residue was diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and water $(75 \mathrm{~mL})$. Layers were separated and aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 75 \mathrm{~mL})$. Organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (10:90::EtOAc:Hexanes) to yield the intermediate aldehyde (9.4 g, 25.1 mmol, 75%, from 13) as colorless oil.

To a $0{ }^{\circ} \mathrm{C}$ cooled solution of the intermediate aldehyde ($9.4 \mathrm{~g}, 25.1 \mathrm{mmol}$) in 100 mL EtOH , was added NaBH_{4}, reaction mixture was warmed to rt and stirred for 45 minutes before the solvent was evaporated and residue was diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$. Layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 75$ mL). Combined organic layer was washed with brine (100 mL), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified with flash column chromatography (15:85::EtOAc:Hexanes) to give the intermediate alcohol (9.35 g, 24.8 mmol, 99%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.83-3.80(\mathrm{~m}, 1 \mathrm{H})$, 3.76-3.71 (m, 1H), 3.64-3.46 (m, 3H), 2.27 (brs, 1H), 2.01-1.88 (m, 2H), 0.96-0.95 (m, $21 \mathrm{H}), 0.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 74.2, 66.5, 65.6, 40.0, 38.6, 26.0, 25.9, 18.3, 14.1, 11.9, -4.0, -4.2, -5.2, -5.3; EIMS: $73\left[\mathrm{Si}_{\left.\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}, 100 \%\right] \text {; CI-MS: } 377(\mathrm{M}+\mathrm{H})^{+} \text {. } ~}^{\text {. }}\right.$

1,3-Bis-(tert-butyl-dimethyl-silyloxy)-5-iodo-2,4-dimethyl-pentane, 14: To a stirred solution of $\mathrm{PPh}_{3}(976 \mathrm{mg}, 3.72 \mathrm{mmol})$ and $\operatorname{Im}(362 \mathrm{mg}, 5.31 \mathrm{mmol})$ in THF (5 mL) and $\mathrm{CH}_{3} \mathrm{CN}$ at rt , was added $\mathrm{I}_{2}(944 \mathrm{mg}, 3.72 \mathrm{mmol})$. After 10 minutes, a THF (5 mL) solution of the intermediate alcohol ($1.0 \mathrm{~g}, 2.66 \mathrm{mmol}$) was added dropwise. After stirring at rt for 1 h , solvent was removed in vacuo, residue was dissolved in minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, diluted with n-Pentane (25 mL) and filtered. The filtrate was concentrated and the above sequence was repeated thrice. Solvent was removed in vacuo, diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and washed with satd. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ (by dissolving 1 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ in 20 mL water) and brine (20 mL). The organic layer was dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography ($2: 98::$ EtOAc:Hexanes) to obtain iodide $\mathbf{1 4}(1.18 \mathrm{~g}$, $2.42 \mathrm{mmol}, 91 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.77$ (dd, $J=$ $6.3 \mathrm{~Hz}, 3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=9.9 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.17(\mathrm{~m}$, $2 \mathrm{H}), 2.07-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.93(\mathrm{~m}, 21 \mathrm{H})$, $0.14(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 75.7,65.1,40.3,39.5$, $26.1,26.0,18.5,18.3,15.0,14.8,14.3,-3.6,-3.9,-5.2,-5.3$; ESI: $487.88(\mathrm{M}+\mathrm{H})^{+}$

5,7-Bis-(tert-butyl-dimethyl-silyloxy)-2,4,6-trimethyl-heptanoic acid (2-hydroxy-1-methyl-propyl)-methyl-amide, 15: To a suspension of dry $\mathrm{LiCl}(1.22 \mathrm{~g}, 28.7 \mathrm{mmol})$ in 10.0 mL THF, was added diisopropylamine ($1.23 \mathrm{~mL}, 8.81 \mathrm{mmol}$) and cooled to $-78{ }^{\circ} \mathrm{C}$ before $n \mathrm{BuLi}(2.5 \mathrm{M}, 3.28 \mathrm{~mL}, 8.2 \mathrm{mmol})$ was added dropwise. The reaction was warmed to $0{ }^{\circ} \mathrm{C}$, stirred for 30 min , again cooled to $-78^{\circ} \mathrm{C}$ and a solution of amide $(951 \mathrm{mg}, 4.3$ mmol) in 10 mL THF was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for

1 h and then warmed to rt and stirred there for 10 min before it was cooled to $0{ }^{\circ} \mathrm{C}$. A solution of $\mathbf{1 4}(1.0 \mathrm{~g}, 2.05 \mathrm{mmol})$ in 3.0 mL THF was then added dropwise, reaction was warmed to rt and stirred there for 32 h . Reaction was quenched with satd. NaHCO_{3} (25 mL), layers were separated and the aqueous layer was extracted with EtOAc ($4 \times 25 \mathrm{~mL}$). Combined organic layers were dried over MgSO_{4}, solvent was evaporated in vacuo and the crude product was purified with flash column chromatography (25:75::EtOAc:Hexanes) to furnish amide $15(1.11 \mathrm{~g}, 1.91 \mathrm{mmol}, 93 \%)$ as white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.42-7.28(\mathrm{M}, 5 \mathrm{H}), 4.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (brs, $1 \mathrm{H}), 3.78-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.75$ $(\mathrm{m}, 2 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}), 0.97-0.93(\mathrm{~m}, 21 \mathrm{H}), 0.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.10-0.09(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 179.0,142.7,128.3,127.5,126.2,65.7,40.6,39.9,34.2,33.2$, $26.2,26.0,18.5,18.3,14.5,14.3,13.5,-3.5,-3.8,-5.1,-5.2$.

To a $-78{ }^{\circ} \mathrm{C}$ cooled solution of diisopropylamine ($1.17 \mathrm{~mL}, 8.33 \mathrm{mmol}$) in 5.0 mL THF, was added n - $\mathrm{BuLi}(2.5 \mathrm{M}$ in Hexanes, $3.03 \mathrm{~mL}, 7.57 \mathrm{mmol})$ dropwise before the mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred there for 30 min . Solid $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}$ ($266 \mathrm{mg}, 7.76 \mathrm{mmol}$) was added to the reaction mixture, which was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , at rt for 30 min and again cooled to $0{ }^{\circ} \mathrm{C}$. Solution of $\mathbf{1 5}(1.1 \mathrm{~g}, 1.89 \mathrm{mmol})$ in 10.0 mL THF was then added dropwise, the reaction mixture was warmed to rt and then stirred there for 18 h before it was quenched with brine (25 mL). Layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 25 \mathrm{~mL}$). Combined organic layers were dried over MgSO_{4} and solvent was evaporated in vacuuo. The crude product was purified by flash column chromatography (8:92::EtOAc:Hexanes) to yield alcohol the intermediate alcohol (722 $\mathrm{mg}, 1.72 \mathrm{mmol}, 91 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.74-3.69$ (m, 1H), 3.60-3.53 (m, 2H), $3.45(\mathrm{dd}, J=9.9 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.35(\mathrm{~m}, 1 \mathrm{H}), 1.98$ (brs, 1H), 1.88-1.68 (m, 4H), 1.48-1.39 (m, 1H), $0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95-0.94(\mathrm{~m}$,
$21 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.09-0.08(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):$ $76.3,67.9,65.7,40.5,38.6,33.1,32.9,26.2,25.9,18.4,18.3,17.6,14.9,14.4,-3.7,-3.9$, 5.2, -5.3; EI-MS: $301\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}$; CI-MS: $419(\mathrm{M}+\mathrm{H})^{+}$.

To a stirred solution of the intermediate alcohol ($200 \mathrm{mg}, 0.48 \mathrm{mmol}$) in 4.0 mL THF, $\mathrm{PPh}_{3}(175 \mathrm{mg}, 0.67 \mathrm{mmol})$ and 2-mercaptobenzothiazole ($104 \mathrm{mg}, 0.62 \mathrm{mmol}$) were added at rt . The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ before DIAD ($0.15 \mathrm{~mL}, 0.76$ mmol) was added dropwise. The reaction was warmed to rt and stirred there for 2 h . Solvent was removed and the crude product was purified with flash column chromatography (1:99::EtOAc:Hexanes) to give the intermediate sulfide ($270 \mathrm{mg}, 0.48$ mmol, 100%) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.72(\mathrm{~m}, 1 \mathrm{H})$, 3.66-3.55 (m, 2H), 3.52-3.46 (m, 1H), 3.16-3.09 (m, 1H), 2.14-2.07 (m, 1H), 1.94-1.84 $(\mathrm{m}, 2 \mathrm{H}), 1.63-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-0.96(\mathrm{~m}$, $24 \mathrm{H}), 0.15-0.10(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 167.5,153.3,135.2$, $125.9,124.1,121.4,120.9,76.4,65.6,42.0,40.7,40.4,33.0,30.9,26.3,26.0,20.3,18.5$, 18.3, 14.7, 14.4, -3.6, -3.9, -5.2, -5.3; ESI: $568.85(\mathrm{M}+\mathrm{H})^{+}, 590.02(\mathrm{M}+\mathrm{Na})^{+}$.

2-[5,7-Bis-(tert-butyl-dimethyl-silyloxy)-2,4,6-trimethyl-heptane-1-sulfonyl]

benzothiazole, 3: To a stirred solution of intermediate ($260 \mathrm{mg}, 0.46 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added $\mathrm{NaHCO}_{3}(115 \mathrm{mg}, 1.37 \mathrm{mmol})$ and m CPBA ($205 \mathrm{mg}, 1.19 \mathrm{mmol}$) ar rt and stirred for 8 h . Then another 0.91 mmol of $m \mathrm{CPBA}$ and 1.37 mmol of NaHCO_{3} were
added and the reaction was further stirred for another 8 h before it was filtered and stirred with satd. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ for 15 min . Layers were separated, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 25 \mathrm{~mL}$), combined organic layers were dried over MgSO_{4} and solvent was removed in vacuo. The crude product was purified by flash column chromatography (6:94::EtOAc:Hexanes) to furnish sulfone 3 ($255 \mathrm{mg}, 0.43 \mathrm{mmol}, 93 \%$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.56(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{dd}, J=$ $14.4 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.29$ (m, 1H), 1.83-1.69 (m, 2H), 1.44-1.35 (m, 1H), 1.29-1.22 $(\mathrm{m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87-0.85(\mathrm{~m}, 21 \mathrm{H}), 0.73(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.023-$ $0.02(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 166.7,152.7,136.8,128.0,127.6$, $125.4,122.4,65.5,60.4,42.6,40.4,33.0,26.4,26.1,21.0,18.4,18.3,14.4,14.0,-3.7$, 4.0, -5.2, -5.3; ESI: $622.16(\mathrm{M}+\mathrm{Na})^{+}$.

4-[2,3-Bis-(tert-butyl-dimethyl-silyloxy)-1-methyl-propyl]-2-(4-methoxy-phenyl)-5-

methyl-[1,3]diOxane, 18: To a stirred solution of $\mathbf{1 7}(6.8 \mathrm{~g}, 16.7 \mathrm{mmol})$ in dry toluene $(100 \mathrm{~mL})$, was added anhydrous $\mathrm{MgSO}_{4}(17 \mathrm{~g})$, p-anisaldehyde ($3.8 \mathrm{~mL}, 33.44 \mathrm{mmol}$) and PPTS ($430 \mathrm{mg}, 1.67 \mathrm{mmol}$) and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 d before it was cooled to rt, filtered and solvent was evaporated in vacuo. The crude product was purified with flash column chromatography (7:93::EtOAc:Hexanes) to provide acetal $\mathbf{1 8}(8.3 \mathrm{~g}$, $15.8 \mathrm{mmol}, 95 \%$) as light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.50(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=11.1 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.89-3.84 (m, 6H), 3.78-3.72 (m, 1H), 3.64-3.57 (m, 1H), 2.18-2.08 (m, 2H), $1.14(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.22-0.17(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 159.6,131.5,127.1,113.3,100.4,81.4,76.5,73.3$, $65.7,55.1,37.9,30.5,26.0,25.9,18.4,18.1,12.3,10.1,-4.1,-4.8,-5.2,-5.4 ;$ ESI: 547.15 $(\mathrm{M}+\mathrm{Na})^{+}$.

To a $-78{ }^{\circ} \mathrm{C}$ cooled solution of $18(1 \mathrm{~g}, 1.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16.0 \mathrm{~mL})$, was added DIBAL-H ($1.4 \mathrm{~mL}, 7.6 \mathrm{mmol}$) dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for 15 min , the reaction was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred there for 2 h . Reaction was quenched with very slow addition of 3 M NaOH solution, until hydrogen evolution stops. Mixture was warmed to rt , layers were separated and the aquous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. Combined organic layers were washed with brine (25 mL), dried over MgSO_{4} and solvent was evaporated under vacuo. The crude product was purified by flash column chromatography ($15: 85:$:EtOAc:Hexanes) to furnish the intermediate primary alcohol ($900 \mathrm{mg}, 1.71 \mathrm{mmol}, 90 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.32$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.62-4.54(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.77-$ $3.72(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.50(\mathrm{~m}, 4 \mathrm{H}), 2.75$ (brs, 1H), 2.20-2.10 (m, 1H), 2.04-1.96 (m, 1H), $1.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.14-0.10$ $(\mathrm{m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 159.1,130.4,129.2,113.7,85.3,75.0$, $74.0,65.4,64.9,55.1,39.0,36.8,25.9,18.2,18.1,15.5,9.6,-3.9,-4.8,-5.4,-5.5$; ESI: $549.07(\mathrm{M}+\mathrm{Na})^{+}$.

5,6-Bis-(tert-butyl-dimethyl-silyloxy)-3-(4-methoxy-benzyloxy)-2,4-dimethyl-hexan-

1-benzyl ether, 19: To a $0{ }^{\circ} \mathrm{C}$ cooled solution of intermediate alcohol ($3.5 \mathrm{~g}, 6.65 \mathrm{mmol}$) and $\operatorname{BnBr}(1.18 \mathrm{~mL}, 9.98 \mathrm{mmol})$ in THF/DMF ($2: 1 ; 30 \mathrm{~mL}, 15 \mathrm{~mL}$), was added NaHMDS (1.0M in THF, $9.31 \mathrm{~mL}, 9.31 \mathrm{mmol}$) dropwise before the reaction was warmed to rt and stirred there for 2 h . Reaction was quenched with satd. NaHCO_{3} solution (25
mL) and diluted with water (25 mL). Layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 30 \mathrm{~mL}$). Combined organic layers were washed with brine (30 mL), dried over MgSO_{4} and the solvent was evaporated in vacuo. The crude product was purified with flash column chromatography (5:95::EtOAc:Hexanes) to obtain benzyl ether 19 ($4.01 \mathrm{~g}, 6.5 \mathrm{mmol}, 98 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: 7.49-7.37 (m, 5H), $7.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.68-4.56(\mathrm{~m}, 4 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.57(\mathrm{~m}, 5 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.08(\mathrm{~m}$, $1 \mathrm{H}), 1.21(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.20-$ $0.19(\mathrm{~m}, 6 \mathrm{H}), 0.15(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 158.9,138.8,131.3$, $128.9,128.2,127.4,127.3,113.6,81.7,74.8,74.1,73.0,72.3,65.7,55.2,38.5,36.7,25.9$, 18.3, 18.1, 15.7, 9.7-3.9, -4.7, -5.3, -5.4; ESI: $639.10(\mathrm{M}+\mathrm{Na})^{+}$.

To a $0^{\circ} \mathrm{C}$ cooled solution of $19(1.1 \mathrm{~g}, 1.78 \mathrm{mmol})$ in 15 mL MeOH at $0{ }^{\circ} \mathrm{C}$, was added p TSA ($17 \mathrm{mg}, 0.09 \mathrm{mmol}$) and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and rt for 6 h before it was quenched with $1.0 \mathrm{~mL} \mathrm{Et}_{3} \mathrm{~N}$. Sovent was evaporated in vacuo and the crude product was purified via a flash column chromatography ($20: 80:$:EtOAc:Hexanes) to furnish the intermediate primary alcohol ($571 \mathrm{mg}, 1.14 \mathrm{mmol}, 64 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.44-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.94$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.60-4.47(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.52(\mathrm{~m}, 6 \mathrm{H}), 2.24-2.14(\mathrm{~m}$, $1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H})$, $0.17-0.16(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 158.9,138.5,130.9,129.1$, $128.2,127.5,127.3,113.6,79.8,74.7,73.2,72.9,72.4,64.2,55.1,37.8,36.8,25.8,18.0$, 15.0, 10.4, -4.4, -4.6; ESI: $525.21(\mathrm{M}+\mathrm{Na})^{+}$.

6-Benzyloxy-2-(tert-butyl-dimethyl-silyloxy)-4-(4-methoxy-benzyloxy)-3,5-dimethylhexanal, 4: To a $0{ }^{\circ} \mathrm{C}$ cooled stirred suspension of DMP reagent ($1.82 \mathrm{~g}, 4.3 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(902 \mathrm{mg}, 10.74 \mathrm{mmol})$ in $20.0 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ solution of the intermediate alcohol ($1.8 \mathrm{~g}, 3.58 \mathrm{mmol}$) dropwise. The reaction mixture was stirred at rt for 1 h before the solvent was partially removed in vacuo and the crude product was purified by flash column chromatography (10:90::EtOAc:Hexanes) to obtain aldehyde $4(1.72 \mathrm{~g}, 3.44 \mathrm{mmol}, 96 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 9.62 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.4-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.59 (s, 2H), 4.49 (AB quartet, 2H), 4.05 (dd, $J=6.6 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86 (s, 3H), 3.74 (dd, $J=8.1 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69-3.57 (m, 2H), 2.35-2.24 (m, 1H), 2.22$2.09(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}$, $3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 201.9,158.8,138.5,130.8$, $128.9,128.2,127.3,113.5,79.3,78.2,72.9,72.8,72.2,55.1,40.5,36.4,25.7,18.1,15.0$, 9.7, -4.5, -5.2; ESI: $523.09(\mathrm{M}+\mathrm{Na})^{+}$.

5,11,13-Tris-(tert-butyl-dimethyl-silanyloxy)-3-(4-methoxy-benzyloxy)-2,4,8,10,12-pentamethyl-tridec-6-en-1-benzyl ether, 20: To $-60^{\circ} \mathrm{C}$ cooled stirred solution of $\mathbf{3}$ $(2.03 \mathrm{~g}, 3.37 \mathrm{mmol})$ in 20.0 mL DMF, was added NaHMDS (0.6 M in toluene, 7.77 mL , 4.66 mmol) dropwise. The reaction mixture was stirred at $-60^{\circ} \mathrm{C}$ for 1.5 h and then DMF
$(15.0 \mathrm{~mL})$ solution of $4(1.3 \mathrm{~g}, 2.29 \mathrm{mmol})$ was added dropwise. After stirring at $-60^{\circ} \mathrm{C}$ for 1 h , reaction was warmed to rt and stirred there for 12 h before it was quenched with water (25 mL). Layers were separated, aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3×30 mL), combined organic layers were washed with brine (30 mL), dried over MgSO_{4} and solvent was removed in vacuo. The crude product was purified with flash column chromatography (5:95::EtOAc:Hexanes) to furnish alkene $20(1.90 \mathrm{~g}, 2.0 \mathrm{mmol}, 80 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 7.34-7.27 (m, 2H), $7.21(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}$), $6.86(\mathrm{~d}, 8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.36$ (dd, $J=15.5 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.25$ (dd, $J=15.5 \mathrm{~Hz}$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.40(\mathrm{~m}, 4 \mathrm{H}), 4.01(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{dd}, J=9.8$ $\mathrm{Hz}, 4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=8.9 \mathrm{~Hz}, 3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 1 \mathrm{H})$, $2.20-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 30 \mathrm{H}), 0.81$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.048-0.01(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 158.9$, $138.8,137.7,131.6,131.5,128.8,128.2,127.4,127.3,113.6,81.0,77.1,75.8,73.7,72.9$, $72.5,65.6,55.2,42.9,42.2,40.5,37.1,34.1,33.2,26.2,25.9,22.0,18.5,18.2,15.5,14.4$, 13.4, 10.3, -3.5, -3.6, -3.8, -4.7, -5.2, -5.3 ; ESI: $907.65(\mathrm{M}+\mathrm{Na})^{+}$.

To a stirred solution of $\mathbf{2 0}(1.1 \mathrm{~g}, 1.24 \mathrm{mmol})$ in 50.0 mL cyclohexane, was added 10% $\mathrm{Pd}-\mathrm{C}(330 \mathrm{mg}, 30 \mathrm{wt} \%)$ and the reaction was stirred under 500 psi hydrogenic pressure for 1 d . pressure was released and reaction mixture was filtered over short pad of celite. The filtrate was concentrated and the crude product was purified by flash column chromatography ($20: 80:: \mathrm{EtOAc}:$ Hexanes) to provide 820 mg diol $(820 \mathrm{mg}, 1.21 \mathrm{mmol}$, $98 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.89-3.82(\mathrm{~m}, 1 \mathrm{H}), 3,70-3.57(\mathrm{~m}, 4 \mathrm{H}), 3.49$ $(\mathrm{dd}, J=6.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.50-$ $1.35(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.12-1.06(\mathrm{~m} 1 \mathrm{H}), 0.89(\mathrm{~m}, 36 \mathrm{H}), 0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}$,
$3 \mathrm{H}), 0.75(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.12-0.02(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: 82.7, 79.3, 76.4, 69.0, 65.6, 42.8, 40.5, 37.5, 36.1, 32.8, 32.2, 32.0, 30.2, 26.1, 25.9, 25.8, $20.0,18.4,18.2,17.9,14.5,14.4,13.6,4.6,-3.4,-3.7,-3.9,-4.5,-5.2,-5.3$: ESI: 699.35 $(\mathrm{M}+\mathrm{Na})^{+}, 677.04(\mathrm{M}+\mathrm{H})^{+}$.

To a stirred solution of diol ($450 \mathrm{mg}, 0.66 \mathrm{mmol}$) in dry toluene (7.0 mL), was added anhydrous $\mathrm{MgSO}_{4}(600 \mathrm{mg})$, p-anisaldehyde $(0.16 \mathrm{~mL}, 1.33 \mathrm{mmol})$ and PPTS (17 mg , 0.066 mmol) and the mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 3 d before it was cooled to rt , filtered and solvent was evaporated in vacuo. The crude product was purified with flash column chromatography (7:93::EtOAc:Hexanes) to provide the intermediate acetal (513 $\mathrm{mg}, 0.65 \mathrm{mmol}, 99 \%)$ as thick yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.38$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=11.1 \mathrm{~Hz}, 4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 3 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{dd}, J=9.7 \mathrm{~Hz}, 7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.12-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.12-$ $1.05(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.89(\mathrm{~m}, 30 \mathrm{H}), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.82$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.05-0.03(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 159.6,131.6,127.1,113.3,100.4,81.9,76.4,74.9,73.3,65.6,55.2$, 43.2, 40.7, 38.7, 32.4, 31.4, 31.0, 30.7, 30.5, 26.2, 25.9, 20.0, 18.5, 18.2, 18.0, 14.3, 14.2, $12.3,10.6,-3.6,-3.8,-4.2,-4.3,-5.2,-5.3$; ESI: $817.74(\mathrm{M}+\mathrm{Na})^{+}$.

To a $-78{ }^{\circ} \mathrm{C}$ cooled solution of acetal ($72 \mathrm{mg}, 0.091 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$, was added DIBAL-H ($0.162 \mathrm{~mL}, 0.91 \mathrm{mmol}$) dropwise. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 15 min , the reaction was warmed to $-45^{\circ} \mathrm{C}$ and stirred there for 12 h . Reaction was quenched with very slow addition of 3 M NaOH solution, until hydrogen evolution stops. Mixture was warmed to rt , layers were separated and the aquous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10 mL). Combined organic layers were washed with brine (10 mL), dried over MgSO_{4} and solvent was evaporated under vacuo. The crude product was purified by flash column chromatography (15:85::EtOAc:Hexanes) to furnish the intermediate primary alcohol (68 $\mathrm{mg}, 0.086 \mathrm{mmol}, 95 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.26(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.74-3.55(\mathrm{~m}$, $3 H), 3.49-3.36(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.48-$ $1.21(\mathrm{~m}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, $0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.06-0.03(\mathrm{~m}, 18 \mathrm{H}) ;$) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}):$ $159.2,130.4,129.2,113.8,85.7,76.4,75.2,73.7,65.6,65.1,55.1,42.9,40.6,40.5,36.9$, $32.5,32.0,31.8,30.4,26.1,25.9,20.1,18.4,18.2,18.1,15.7,14.3,14.2,10.0,-3.7,-3.8$, 3.9, -4.4, -5.3, -5.4; ESI: $819.46(\mathrm{M}+\mathrm{Na})^{+}$.

To a $0^{\circ} \mathrm{C}$ cooled stirred suspension of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ reagent ($79 \mathrm{mg}, 0.16 \mathrm{mmol}$) and NaHCO_{3} ($32 \mathrm{mg}, 0.38 \mathrm{mmol}$) in $0.5 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$, was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ solution of alcohol $(100 \mathrm{mg}, 0.125 \mathrm{mmol})$ dropwise. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h before the solvent was partially removed in vacuo and the crude product was purified by flash column chromatography (10:90::EtOAc:Hexanes) to obtain the intermediate aldehyde (96
$\mathrm{mg}, 0.121 \mathrm{mmol}, 97 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.88(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H}), 3.80-3.71(\mathrm{~m}, 3 \mathrm{H}), 3.56-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.51-$ $1.37(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.98-$ $0.97(\mathrm{~m}, 30 \mathrm{H}), 0.92(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.14-0.10(\mathrm{~m}, 18 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 204.8,159.2,130.5,129.2,113.8,81.9,76.5,74.3$, $73.8,65.9,65.7,55.3,49.4,43.0,41.0,40.7,32.6,32.1,31.6,30.4,26.2,26.0,20.1,18.5$, $18.3,18.2,15.3,14.3,12.0,10.4,-3.6,-3.7,-4.2,-5.1,-5.2$; ESI: $817.70(\mathrm{M}+\mathrm{Na})^{+}$.

1-Methoxy-4-\{2-methyl-1-[2,8,10-tris-(tert-butyl-dimethyl-silyloxy)-1,5,7,9-tetramethyl-decyl]-hexa-3,5-dienyloxymethyl\}-benzene, 21: To a $0{ }^{\circ} \mathrm{C}$ cooled suspension of $\mathrm{CrCl}_{2}(155 \mathrm{mg}, 1.26 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$, was added a THF $(1.5 \mathrm{~mL})$ solution of the intermediate aldehyde ($100 \mathrm{mg}, 0.126 \mathrm{mmol}$) and allylsilane reagent (122 $\mathrm{mg}, 0.63 \mathrm{mmol}$), the reaction was warmed to rt and the purple suspension was stirred there for 20 h before it was quenched with $\mathrm{pH}-7$ buffer (4.0 mL). Layers were separated and the aqueous layer was extracted with $\mathrm{EtOAc}(4 \times 25 \mathrm{~mL})$. Combined organic layers were washed with brine (25 mL), dried over MgSO_{4} and concentrated in vacuo. The crude product was dissolved in THF (1.5 mL) and was added to a $\mathrm{KH}(51 \mathrm{mg}, 1.26$ mmol) suspension in THF (1.5 mL) at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 2.5 h , the reaction was quenched with slow addition of ice cold water until the hydrogen evolution stops. Reaction was warmed to rt , diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, layers were separated and aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 15 mL). Combined organic layers were washed with brine (15 mL), dried over MgSO_{4} and solvent was removed in vacuo. The crude product was purified with flash column chromatography (2:98::EtOAc:Hexanes) to furnish the diene 21 ($98 \mathrm{mg}, 0.12 \mathrm{mmol}, 95 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.58(\mathrm{ddd}, J=16.8$ $\mathrm{Hz}, 10.9 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J$ $=16.8, \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, 10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{AB}$ quartet, 2 H$), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.61(\mathrm{~m}$, $2 H), 3.47-3.31(\mathrm{~m}, 3 \mathrm{H}), 2.12-2.94(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.61-$ $1.23(\mathrm{~m}, 4 \mathrm{H}), 1.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.97-0.87(\mathrm{~m}, 33 \mathrm{H}), 0.09-0.03(\mathrm{~m}, 18 \mathrm{H}) ;$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 158.9,134.5,132.3,131.3,129.1,128.9,117.2,113.6$, 84.4, 75.0, 72.7, 65.7, 55.2, 43.0, 40.6, 40.4, 35.1, 32.5, 32.4, 31.7, 30.2, 26.2, 25.9, 20.0, $18.8,18.5,18.2,18.1,14.3,14.2,9.1,-3.5,-3.7,-3.8,-4.5,-5.2$; ESI: $841.71(\mathrm{M}+\mathrm{Na})^{+}$.

To a $0{ }^{\circ} \mathrm{C}$ cooled solution of $21(2.13 \mathrm{~g}, 2.61 \mathrm{mmol})$ in 17.0 mL MeOH and 9.0 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$, was added $p \mathrm{TSA}(50 \mathrm{mg}, 0.26 \mathrm{mmol})$ and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h before it was quenched with $2.0 \mathrm{~mL} \mathrm{Et}_{3} \mathrm{~N}$. Sovent was evaporated in vacuo and the crude product was purified via a flash column chromatography (20:80::EtOAc:Hexanes) to furnish the primary alcohol ($1.54 \mathrm{~g}, 2.19 \mathrm{mmol}, 84 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.58$ (ddd, $J=16.8 \mathrm{~Hz}, 10.7 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{t}, 11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (t, $\mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ (AB quartet, $2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 3 \mathrm{H}), 3.45-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15-2.91(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.48-1.31(\mathrm{~m}, 5 \mathrm{H}), 1.10$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95-0.81(\mathrm{~m}, 39 \mathrm{H}), 0.11-0.07(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 158.9,134.5,132.3,131.2,129.1,128.8,117.2,113.6,84.3,80.8,75.0,72.6$, 66.0, 55.2, 41.8, 40.4, 38.2, 35.1, 34.8, 32.3, 31.3, 30.3, 26.1, 25.9, 20.3, 18.8, 18.3, 18.1, 16.0, 14.9, 9.1, -3.5, -3.7, -3.9, -4.5; ESI: $727.54(\mathrm{M}+\mathrm{Na})^{+}$.

To a $0{ }^{\circ} \mathrm{C}$ cooled stirred suspension of DMP reagent ($488 \mathrm{mg}, 1.15 \mathrm{mmol}$) and NaHCO_{3} ($161 \mathrm{mg}, 1.9 \mathrm{mmol}$) in $2.5 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$, was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ solution of the alcohol ($450 \mathrm{mg}, 0.64 \mathrm{mmol}$) dropwise. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h before the solvent was partially removed in vacuo and the crude product was purified by flash column chromatography ($8: 92:: E t O A c: H e x a n e s)$ to obtain the intermediate aldehyde ($421 \mathrm{mg}, 0.6 \mathrm{mmol}, 94 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 9.76 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J 8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.58$ (ddd, $J=16.6 \mathrm{~Hz}, 10.7 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.99$ (t, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{t}, J=10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.17(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{AB}$ quartet, 2H), $3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=7.9 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-3.09$ $(\mathrm{m}, 1 \mathrm{H}), 2.48-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.31(\mathrm{~m}, 5 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.05$ (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92$ (s, 9H), 0.88 (s, 9H), 0.85 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.08-0.03(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 204.8,158.9,134.5,132.2,131.2,129.0,128.8,117.1,113.6,84.3,77.9$, $75.0,72.5,55.1,50.3,41.3,40.4,35.0,34.5,32.3,31.1,30.2,25.9,20.2,18.7,18.2,-3.6$, -3.8, -4.1, -4.5; ESI: $725.59(\mathrm{M}+\mathrm{Na})^{+}$.

1-\{1-[2,8-Bis-(tert-butyl-dimethyl-silyloxy)-11-iodo-1,5,7,9-tetramethyl-undec-10-enyl]-2-methyl-hexa-3,5-dienyloxymethyl\}-4-methoxy-benzene, 22: To a suspension of the Wittig salt ($170 \mathrm{mg}, 0.32 \mathrm{mmol}$) in 1.5 mL THF at rt , was added dropwise

NaHMDS (0.6 M in toluene, $0.47 \mathrm{~mL}, 0.285 \mathrm{mmol}$) and the dark red solution was stirred at rt for 15 min before it was cooled to $-78^{\circ} \mathrm{C}$. HMPA ($0.1 \mathrm{~mL}, 0.57 \mathrm{mmol}$) was added followed by dropwise addition of THF $(1.0 \mathrm{~mL})$ solution of the aldehyde $(50 \mathrm{mg}, 0.071$ mmol). After stirring at $-78{ }^{\circ} \mathrm{C}$ for 10 min , reaction mixture was warmed to rt and stirred there for 1 h before it was quenched with satd. $\mathrm{NH}_{4} \mathrm{Cl}(5.0 \mathrm{~mL})$ solution. The solid was filtered off, filtrate was diluted with $\mathrm{Et}_{2} \mathrm{O}(10.0 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 10 \mathrm{~mL})$, combined organic layers were washed with brine (15 mL), dried over MgSO_{4} and solvent was removed in vacuo. The crude product was purified with flash column chromatography ($2: 98:: \mathrm{EtOAc}: H e x a n e s$) to provide the vinyl iodide $22(44 \mathrm{mg}, 0.053 \mathrm{mmol}, 75 \%)$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.59$ (ddd, $J=16.7 \mathrm{~Hz}, 10.6 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=7.23 \mathrm{~Hz}, 1 \mathrm{H})$, $6.01(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{AB}$ quartet, 2 H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.43(\mathrm{~m}, 1 \mathrm{H})$, 3.36-3.30 (m, 1H), 3.05-3.92 (m, 1H), 2.72-3.62 (m, 1H), 1.69-1.51 (m, 2H), 1.39-1.17 $(\mathrm{m}, 7 \mathrm{H}), 1.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91-0.83(\mathrm{~m}, 27 \mathrm{H}), 0.81(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.08-0.05(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 159.0,144.2$, 134.6, 132.3, 131.4, 129.1, 128.9, 117.2, 113.7, 84.5, 81.2, 79.2, 76.6, 75.1, 72.6, 55.3, $43.3,41.4,40.4,35.3,35.1,32.4,31.2,30.4,30.3,26.2,26.0,20.4,18.9,18.4,18.2,17.8$, 15.9, 9.2, -3.4, -3.5, -3.6, -4.4.

(2Z,4E,6R,7S,9S,10Z,12S,13R,14S,16S,19R,20R,21S,22S,23Z)-9-Hydroxy-21-(4-methoxy-benzyloxy)-7,13,19-tris(tert-butyl-dimethylsilyloxy)-6,12,14,16,20,22-
hexamethyl-hexacosa-2,4,10,23,25-pentaenoic acid ethyl ester, 23: To a $-78{ }^{\circ} \mathrm{C}$ cooled solution of $t-\mathrm{BuLi}\left(1.7 \mathrm{M}\right.$ in pentane, $0.235 \mathrm{~mL}, 0.399 \mathrm{mmol}$) in $0.3 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$, was added a $\mathrm{Et}_{2} \mathrm{O}(0.6 \mathrm{~mL})$ solution of vinyl iodide $22(150 \mathrm{mg}, 0.181 \mathrm{mmol})$. After stirring at -78 ${ }^{\circ} \mathrm{C}$ for 1.5 h , dimethylzinc (2.0 M in toluene, $0.145 \mathrm{~mL}, 0.29 \mathrm{mmol}$) was added dropwise and the reaction mixture was further stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min before a $\mathrm{Et}_{2} \mathrm{O}(0.8 \mathrm{~mL})$ solution of aldehyde $2(62 \mathrm{mg}, 0.18 \mathrm{mmol})$ was added dropwise. After stirring for 1 h at $78{ }^{\circ} \mathrm{C}$, the reaction was quenched with water (3.0 mL), warmed to rt and diluited with $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL})$. Layers were separated, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 15 mL), combined organic layers were washed with brine, dried over MgSO_{4} and solvent was removed in vacuo. The crude product was purified by flash column chromatography (10:90::EtOAc:Hexanes) to furnish the Z-allyl alcohol 23 ($66 \mathrm{mg}, 0.063 \mathrm{mmol}, 80 \%$ based on recovered aldehyde 2) as a light yellow oil. Aldehyde 2 ($35 \mathrm{mg}, 0.103 \mathrm{mmol}$, 57%) was recovered. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45$ (dd, $J=15.6,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~m}, 2 \mathrm{H}), 6.63$ (ddd, $J=16.8,10.5$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{t}, J$ $=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=11.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{AB}$ quartet, 2 H$), 4.24(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~m}$, $2 \mathrm{H}), 2.25(\mathrm{brs}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~m}, 7 \mathrm{H}), 1.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.131(\mathrm{~m}$, $18 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,159.0,147.1,145.2,135.7,134.5,132.3$, $131.4,129.1,128.9,126.9,117.3,116.2,113.7,84.4,79.6,75.1,72.7,64.7,59.9,55.3$, $42.8,42.0,40.4,40.0,36.3,35.1,34.1,32.5,31.5,30.3,26.3,26.0,25.9,20.2,19.8,18.8$, 18.5, 18.2, 18.1, 14.7, 14.5, 14.3, 9.2, -3.1, -3.7, -3.6, -4.4; LRMS (ESI) calcd for $\mathrm{C}_{60} \mathrm{H}_{108} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na} 1063.72(\mathrm{M}+\mathrm{Na})^{+}$, found 1063.67.

Confirmation of the stereochemistry of 23 using Rychnovsky's rule: 23 was converted to the 1,3-diol and the acetonide using TBAF and 2,2dimethoxypropane/pTSA, respectively. The tertiary carbon of the acetonide was observed at $\delta 100.51 \mathrm{ppm}$ and the methyl carbons at $\delta 24.45 \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ spectrum. Selective deprotection of the TBS ether at C7 was possible since it has a neighboring carbon with an anti-methyl group, whereas the TBS ethers at C13 and C19 have synmethyl groups on adjacent carbons.

23

To a $-78{ }^{\circ} \mathrm{C}$ cooled solution of $23(35 \mathrm{mg}, 0.034 \mathrm{mmol})$ in $0.25 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added 2,6-Lutidine ($0.015 \mathrm{~mL}, 0.135 \mathrm{mmol}$) followed by the addition of TBSOTf $(0.015 \mathrm{~mL}$, 0.067 mmol). After stirring at $-78{ }^{\circ} \mathrm{C}$ for 30 min , the reaction was quenched with dropwise addition if satd. $\mathrm{NaHCO}_{3}(1.5 \mathrm{~mL})$ and warmed to rt . The mixture was diluted with 10.0 mL DCM, layers were separated and the aqueous layer was extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10mL). Combined organic layers were washed with brine (10.0 mL), dried over MgSO_{4} and solvent was removed in vacuo. The crude product was purified with flash column chromatography (8:92::EtOAc:Hexane) to obtain the TBS ether (37.7 mg , $0.033 \mathrm{mmol}, 99 \%$) as a colorless oil.

To a $0{ }^{\circ} \mathrm{C}$ cooled solution of the PMB ether ($12 \mathrm{mg}, 0.0104 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ and $\mathrm{pH}-7$ buffer $(0.03 \mathrm{~mL})$, was added $\mathrm{DDQ}(3.2 \mathrm{mg}, 0.0135 \mathrm{mmol})$ and the the reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h before it was quenched with satd. $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL})$ and dilited with $10.0 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$). Combined organic layers were washed brine (15.0 mL), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (5:95::EtOAc:Hexanes) to provide the intermediate secondary alcohol $(9.6 \mathrm{mg}, 0.008 \mathrm{mmol}, 90 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.44$ (dd, $J=15.0 \mathrm{~Hz}, 11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{ddd}, J=16.5 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, 10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=15.3 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.42(\mathrm{~m}, 2 \mathrm{H}), 5.36-5.24(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.56$ $(\mathrm{m}, 1 \mathrm{H}), 4.25(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.02-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.51(\mathrm{~m}$, $1 \mathrm{H}), ~ 3.43-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.44$ (brs, 1H), 2.61-2.82 (m, 4H), 1.52-1.46 (m, 6H), $1.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.87(\mathrm{~m}, 51 \mathrm{H}), 0.16-0.08(\mathrm{~m}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 166.5,147.1,145.3,135.4,132.6,132.3,129.9,126.8,117.7$, $116.0,79.9,77.8,72.1,66.5,59.8,43.5,42.3,41.5,37.6,36.1,35.6,35.0,32.1,31.5$,
30.6, 29.7, 26.3, 26.0, 20.4, 19.5, 18.5, 18.1, 17.7, 15.3, 14.3, 13.2, 6.8, -2.9, -3.3, -3.6, 4.1, -4.3; LRMS (ESI) calcd for $\mathrm{C}_{58} \mathrm{H}_{114} \mathrm{O}_{7} \mathrm{Si}_{4} \mathrm{Na} 1057.66(\mathrm{M}+\mathrm{Na})^{+}$, found 1057.66.

To a stirred solution of the intermediate ester ($22 \mathrm{mg}, 0.02127 \mathrm{mmol}$) in THF (1.1 mL) and $\mathrm{EtOH}(2.6 \mathrm{~mL})$, was added $\mathrm{KOH}(1 \mathrm{~N}$ solution in water, $0.21 \mathrm{~mL}, 0.21 \mathrm{mmol})$ and the reaction was refluxed (bath temp. $52{ }^{\circ} \mathrm{C}$) for 1 d before it was cooled and the solvent was removed in vacuo. The residue was diluted with $\mathrm{Et}_{2} \mathrm{O}(10.0 \mathrm{~mL})$ and satd. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5.0 \mathrm{~mL})$, layers were separated and aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. Organic layers were combined, dried over MgSO_{4} and the solvent was removed in vacuo. The crude product was purified by flash column chromatography (20:80::EtOAc:Hexanes) to provide the seco acid ($21.2 \mathrm{mg}, 0.021 \mathrm{mmol}, 99 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: $7.41(\mathrm{dd}, J=15.3 \mathrm{~Hz}, 11.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.69(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.16(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=15.9$ $\mathrm{Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.43(\mathrm{~m}, 2 \mathrm{H}), 5.35-5.25(\mathrm{~m}, 2 \mathrm{H}), 5.18$ $(\mathrm{d}, ~ J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.53$ $(\mathrm{m}, 1 \mathrm{H}), 3.43-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.1 .62(\mathrm{~m}, 4 \mathrm{H})$, $1.59-1.22(\mathrm{~m}, 7 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 0.98-0.89(\mathrm{~m}, 51 \mathrm{H}), 0.17-0.09(\mathrm{~m}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}):$ 170.6, 148.3, 147.4, 135.3, 132.7, 132.3, 130.0, 126.9, 117.8, 115.0, 79.9, 77.7, 72.0, $66.4,43.5,42.6,41.5,37.7,36.0,35.7,34.9,32.1,31.5,30.6,30.3,29.7,26.3,26.0,20.4$, $19.4,18.5,18.1,17.7,15.3,13.5,6.9,-2.9,-3.3,-3.6,-4.1,-4.3$; LRMS (ESI) calcd for $\mathrm{C}_{56} \mathrm{H}_{110} \mathrm{O}_{7} \mathrm{Si}_{4} \mathrm{Na} 1029.72(\mathrm{M}+\mathrm{Na})^{+}$, found 1029.40

To a $0{ }^{\circ} \mathrm{C}$ cooled solution of the seco acid ($16 \mathrm{mg}, 0.016 \mathrm{mmol}$) in THF (2.0 mL), was added $\mathrm{Et}_{3} \mathrm{~N}(13 \mu \mathrm{~L}, 0.096 \mathrm{mmol})$ followed by 2,4,6-trichlorobenzoyl chloride ($13 \mu \mathrm{~L}$, $0.08 \mathrm{mmol})$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min before it was added to a 4-DMAP ($19.5 \mathrm{mg}, 0.16 \mathrm{mmol}$) solution in 8.0 mL toluene at rt . The reaction was stirred at rt for 20 h before the solvent was removed in vacuo, diluted with ether (20.0 mL) and water (15.0 mL). Layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 15 mL). Combined organic layers were washed with brine (15.0 mL), dried over MgSO_{4} and the solvent was removed under vacuo. The crude product was purified with flash column chromatography ($3: 97:$ EtOAc:Hexanes) to obtain the intermediate macrolactone ($12.8 \mathrm{mg}, 0.0128 \mathrm{mmol}, 80 \%$) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.06(\mathrm{dd}, J=15.0 \mathrm{~Hz}, 11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{t}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.71-5.61 (m, 1H), $5.46(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=11.1 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J$ $=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.57$ $(\mathrm{m}, 1 \mathrm{H}), 4.11-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.18(\mathrm{~m}$, $1 \mathrm{H}), 2.71-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.42-$ $1.19(\mathrm{~m}, 11 \mathrm{H}), 1.10(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.86$ (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.18-0.11(\mathrm{~m}, 24 \mathrm{H})$; LRMS (ESI) calcd for $\mathrm{C}_{56} \mathrm{H}_{108} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na} 1011.71(\mathrm{M}+\mathrm{Na})^{+}$, found 1011.48.

8(S),10(S),14(R),20(R)-Tetrahydroxy-7(R),13(S),15(S),17(S),21(S)-pentamethyl-22(S)-(1(S)-methylpenta-2,4-dienyl)oxacyclodocosa-3,5,11-trien-2-one, 1: To a $0{ }^{\circ} \mathrm{C}$ cooled solution of the macrolactone in ($4.8 \mathrm{mg}, 0.0048 \mathrm{mmol}$) in 0.5 mL THF, was added $\mathrm{HCl}(3 \mathrm{~N}$ in $\mathrm{MeOH}, 1.1 \mathrm{~mL})$. The reaction mixture was warmed to rt and stirred there for 12 h before it was diluted with water $(4.0 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(4.0 \mathrm{~mL})$. Layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 4.0 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and the solvent was removed in vacuo. The crude product was purified flash column chromatography ($30: 70::^{i} \mathrm{PrOH}: H e x a n e s$) to obtain (-)-Dictyostatin, $1(1.5 \mathrm{mg}, 0.0028 \mathrm{mmol}, 58 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.17$ $(\mathrm{dd}, J=15.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dt}, J=10.3,16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.14(\mathrm{dd}, J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.51$ (t, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 2 \mathrm{H}), 5,21(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H})$, $4.02(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=8.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H})$, $2.57(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.21$ (m, 1H), $1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~m}$, $1 \mathrm{H}), 0.66(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 166.5,144.9,143.4,133.4$, $133.0,131.9,129.8,129.6,127.0,117.1,116.5,78.9,72.2,68.8,64.0,63.3,42.2,40.8$, $39.3,39.0,34.3,34.2,33.8,31.2,29.7,29.3,20.3,17.9,16.6,14.7,12.1,8.9$; LRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Na} 555.37(\mathrm{M}+\mathrm{Na})^{+}$, found 555.25.

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6}$ in CDCl_{3}

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{6}$ in CDCl_{3}

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound 7 in CDCl_{3}

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{8}$ in CDCl_{3}

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{8}$ in CDCl_{3}

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound 2 in CDCl_{3}

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 2}$ in CDCl_{3}

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 2}$ in CDCl_{3}

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 3}$ in CDCl_{3}

$$
T B S O \sim \overbrace{-}^{\substack{\text { OBS } \\ \vdots}}=
$$

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound 13 in CDCl_{3}

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of compound 14 in CDCl_{3}

S49

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 4}$ in CDCl_{3}

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound 15 in CDCl_{3}

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3}$ in CDCl_{3}

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3}$ in CDCl_{3}
/ C.

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of compound 16 in CDCl_{3}

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 6}$ in CDCl_{3}

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound 17 in CDCl_{3}

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of compound 18 in CDCl_{3}
TBSa TBS O-

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 8}$ in CDCl_{3}

DH-VI/42

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of compound 19 in CDCl_{3}
TBSa

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound 19 in CDCl_{3}

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4}$ in CDCl_{3}

$75 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{NMR}$ of compound 4 in CDCl_{3}

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of compound 20 in CDCl_{3}

DH-VII/ 66
TBSOT: TBSO TBSO OPMB

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of compound 21 in CDCl_{3}

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound 21 in CDCl_{3}

$D H-\underline{V 1 I} / 69$

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of compound 22 in CDCl_{3}

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound 22 in CDCl_{3}

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of compound 23 in CDCl_{3}

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound 23 in CDCl_{3}

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{OD}$

