Effects of bases and halides on the amination of chloroaarenes catalyzed by $\mathbf{P d}\left[\mathbf{P}\left(t \mathbf{B u}_{3}\right)\right]_{2}$

Shashank Shekhar and John F. Hartwig
Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 065208107
E-mail: john.hartwig@yale.edu

Supporting Information

The full rate equations for the catalytic cycles of Scheme S1-S7 were derived by the schematic method developed for deriving the steady-state concentrations of enzyme-containing species based on the determinant method. ${ }^{1}$

Scheme S1

rate $=\frac{k_{1} k_{2} k_{3}\left[\mathrm{Pd}_{\text {tot }}\right][\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]}{k_{2} k_{3}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]+k_{1} k_{3}[\mathrm{ArCl}]+k_{1} k_{2}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}][\mathrm{ArCl}]}$

$$
\begin{equation*}
\text { rate }=k_{1}\left[\mathrm { Pd } \left({\left.\left.\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}\right][\mathrm{ArCl}]}^{2}\right.\right. \tag{S1}
\end{equation*}
$$

The simplified equation S 2 was based on the following set of assumptions. First, $k_{2} k_{3}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}] \gg k_{1} k_{3}[\mathrm{ArCl}]$ because the reaction of the arylpalladium bromide complex with amine and base ($\left.k_{2}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\right)$ is much faster than oxidative addition of chloroarenes to the $\mathrm{L}_{2} \mathrm{Pd}(0)$ species $\left(k_{1}[\mathrm{ArCl}]\right)$ and the k_{3} term is present in both terms. The reaction of amine and base with $\mathbf{4}$ occurs within minutes at room temperature, but oxidative addition of ArCl to $\mathbf{3}$ requires hours at $50{ }^{\circ} \mathrm{C}$. Second, $k_{2} k_{3}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}] \gg k_{1} k_{2}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}][\mathrm{ArCl}]$ because the reductive elimination $\left(k_{3}\right)$ is much faster than oxidative addition $\left(k_{1}[\mathrm{ArCl}]\right)$ and the $k_{2}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]$ terms are present in both terms. The reductive elimination of N-alkyl arylamines from $\mathrm{P} t \mathrm{Bu}_{3}$ complexes occurs rapidly at room temperature. Finally, we approximate $\left[\mathrm{Pd}_{\text {tot }}\right]$ as $\left[\mathrm{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}\right]$ because $\operatorname{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}$ is the only palladium complex observed during the catalytic reaction by NMR spectroscopy.

Scheme S2
$\mathrm{Pd}\left(\mathrm{PtBu}_{3}\right)_{2}$

rate $\left.=\frac{k_{1} k_{2} k_{3} k_{4}\left[\mathrm{Pd}_{\text {tot }}\right][\mathrm{ArCl}][\mathrm{NHR}}{1} \mathrm{R}_{2}\right][\mathrm{NaOR}] ~\left(k_{-1} k_{3} k_{4}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\left[\mathrm{PtBBu}_{3}\right]+k_{1} k_{3} k_{4}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]+k_{1} k_{2} k_{4}[\mathrm{ArCl}]+k_{1} k_{2} k_{3}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}][\mathrm{ArCl}]\right]$
rate $=\frac{k_{1} k_{2}\left[\mathrm{Pd}\left(\mathrm{PtBu}_{3}\right)_{2}\right][\mathrm{ArCl}]}{k_{-1}\left[\mathrm{PtBu}_{3}\right]}=k_{\mathrm{obs}}$
Equation S3 was simplified to equation S4 by making the following approximations. First, $k_{-1} k_{3} k_{4}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1} k_{2} k_{4}[\mathrm{ArCl}]$ because the rate of formation of the amido complex $\left(k_{3}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\right)$ is much greater than the rate of ligand dissociation $\left(k_{1}\right)$, the rate of ligand reassociation $\left(k_{-1}[\mathrm{~L}]\right)$ is approximately equal to the rate of the oxidative addition step $\left(k_{2}[\mathrm{ArCl}]\right),{ }^{2}$ and k_{4} is present in both terms. The reaction of amine and base with $\left[\mathrm{Pd}\left(\mathrm{P}_{\mathrm{B}} \mathrm{Bu}_{3}\right)(\mathrm{Ar})(\mathrm{Cl})\right]$ occurs rapidly at room temperature, but the dissociation of $\mathrm{P} t \mathrm{Bu}_{3}$ from $\mathrm{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}$ requires several hours at $100^{\circ} \mathrm{C} .{ }^{3}$

Second, we deduced that $k_{-1} k_{3} k_{4}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\left[\mathrm{P} t \mathrm{Bu}_{3}\right]$ >> $k_{1} k_{2} k_{3}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}][\mathrm{ArCl}]$ because the reassociation of phosphine is much faster than the dissociation of phosphine $\left(k_{-1}\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1}\right)$ (vide supra), reductive elimination of the amine $\left(k_{4}\right)$ is much faster than oxidative addition of the chloroarene $\left(k_{2}[\mathrm{ArCl}]\right)$, and k_{3} is present in both terms. The equilibrium for dissociation of $\mathrm{P} t \mathrm{Bu}_{3}$ is known to be very small $\left(k_{-1}\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1}\right)$ and $k_{4} \gg k_{2}[\mathrm{ArCl}]$ for the same reason that was stated during the discussion of the mechanism in

Scheme 2. Third, $\left[\mathrm{Pd}_{\text {tot }}\right]=\left[\mathrm{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}\right]$ because $\operatorname{Pd}\left({\left.\mathrm{P} t \mathrm{Bu}_{3}\right)_{2} \text { is the only palladium complex }}^{\text {a }}\right.$ observed by NMR spectroscopy during the catalytic reaction.

Scheme S3

rate $=\frac{k_{1} k_{2} k_{3}\left[\mathrm{Pd}(\mathrm{PtBu})_{3}\right)_{2]}[\mathrm{ArCl}]}{k_{2}[\mathrm{ArCl}]+k_{-1}\left[\mathrm{PtBu} \mathrm{B}_{3}\right]}$

Equation S5 was simplified to equation S6 by making the following approximations. First, $k_{2} k_{3} k_{4}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1} k_{2} k_{3}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]$ because $k_{4}\left[\mathrm{P} t \mathrm{Bu} u_{3}\right]$ >> k_{1} and the other terms are present on both sides of the comparison. The associative displacement of amine by $\mathrm{P} t \mathrm{Bu}_{3}$ from the $\left(\mathrm{P} t \mathrm{Bu}_{3}\right) \mathrm{Pd}($ product) will be much faster than the ligand dissociation from 3. Second, $k_{2} k_{3} k_{4}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1} k_{2} k_{4}[\mathrm{ArCl}]\left[\mathrm{P} t \mathrm{Bu} u_{3}\right]$ because $k_{3}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}] \gg k_{1}$ and $k_{2} k_{4}[\mathrm{ArCl}]\left[\mathrm{P}_{t} \mathrm{Bu}_{3}\right]$ is present on both sides of the comparison. The reaction of amine and base with 7 occurs within seconds at room temperature
 (vide supra) Third, $k_{-1} k_{3} k_{4}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\left[\mathrm{P} t \mathrm{Bu}_{3}\right]^{2} \gg k_{1} k_{3} k_{4}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\left[\mathrm{P} t \mathrm{Bu}_{3}\right]$ because $k_{-1}\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1}$ as noted in discussing mechanisms in Scheme 2 and 3 and $k_{3} k_{4}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\left[\mathrm{P} t \mathrm{Bu}_{3}\right]$ is common to both sides of the comparison. Fourth, $\left[\mathrm{Pd}_{\text {tot }}\right]=$
$\left[\mathrm{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}\right]$ because $\operatorname{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}$ is the only palladium complex observed by NMR spectroscopy during the catalytic reaction.

Scheme S4

rate $=\frac{k_{1} k_{2} k_{3}\left[\mathrm{Pd}_{\mathrm{tot}}\right][\mathrm{ArCl}][\mathrm{NaOR}]}{k_{-1}\left(k_{3}[\mathrm{NaOR}]+k_{-2}\right)\left[\mathrm{PtBu}_{3}\right]}$
Equation S7 was simplified to equation S8 by making the following approximations. First, $k_{3} k_{4} k_{5} k_{-1}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1} k_{3} k_{4} k_{5}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]$ because the equilibrium constant for dissociation of phosphine from $\mathbf{3}$ is known to be very small ($k_{-1}\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1}$) (vide supra), as explained earlier. Second, $k_{1} k_{2} k_{4} k_{5}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right] \gg k_{1} k_{2} k_{3} k_{5}[\mathrm{ArCl}][\mathrm{NaOR}]$ because the reaction of palladium-alkoxide or -aryloxo complex 7 , with amine $\left(k_{4}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]\right) \gg$ the reaction of base with the palladium-aryl halide complex 7 ($k_{3}[\mathrm{NaOR}]$). If this were not the case, then the intermediate 7 , would accumulate during the catalytic reactions. Third, $k_{1} k_{2} k_{4} k_{5}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right] \gg k_{1} k_{2} k_{3} k_{4}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]$ because $k_{5} \gg k_{3}[\mathrm{NaOR}]$. The reductive elimination of amine $\left(k_{5}\right)$ must be faster than reaction of the palladium-alkoxide complex 7, with amine ($\left.k_{4}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]\right)$ to prevent accumulation of the intermediate 8, and $k_{4}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right] \gg k_{3}[\mathrm{NaOR}]$ as explained above. This implies that k_{5} must be greater than $k_{3}[\mathrm{NaOR}]$. Fourth, $k_{4} k_{5} k_{-1} k_{-2}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1} k_{4} k_{5} k_{-2}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]$ because $k_{-1}\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1}$, as
explained earlier. Fifth, $k_{4} k_{5} k_{-1} k_{-2}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1} k_{2} k_{4} k_{5}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]$ because $k_{-1}\left[\mathrm{P} t \mathrm{Bu}_{3}\right]$ $\sim k_{2}[\mathrm{ArCl}]^{50}$ and $k_{-2} \gg k_{1}$. The approximation $k_{-2} \gg k_{1}$ is valid because the reductive elimination of aryl chlorides from 7 can be observed ${ }^{4}$ but free phoshine is never observed in ${ }^{31} \mathrm{P}$ NMR spectra of $\operatorname{Pd}\left(\mathrm{P}_{t} \mathrm{Bu}_{3}\right)_{2}$ even at elevated temperatures. Finally, $\left[\mathrm{Pd}_{\text {tot }}\right]=\left[\mathrm{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}\right]$ because $\operatorname{Pd}(\mathrm{Pt} \mathrm{Bu})_{2}$ is the only palladium complex observed during the catalytic reaction by NMR spectroscopy.

Scheme 55

rate $=\frac{k_{1} k_{2} k_{3} k_{4} k_{5}\left[\mathrm{Pd}_{\text {tot }}\right][\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]}{k_{1} k_{3} k_{4} k_{5}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]+k_{1} k_{4} k_{5} k_{-2}[\mathrm{NaOR}]+k_{3} k_{4} k_{5} k_{-1}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\left[\mathrm{PtBu} u_{3}\right]+}$
$k_{4} k_{5} k_{-1} k_{-2}[\mathrm{NaOR}]\left[\mathrm{Pt} \mathrm{Bu}_{3}\right]+k_{1} k_{2} k_{4} k_{5}[\operatorname{ArCl}][\mathrm{NaOR}]+k_{1} k_{2} k_{3} k_{5}[\operatorname{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]+k_{1} k_{2} k_{3} k_{4}[\operatorname{ArCI}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]$
rate $=\frac{k_{1} k_{2} k_{3}\left[\mathrm{Pd}_{\text {tot }}\right][\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]}{k_{-1}\left(k_{3}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]+k_{-2}\right)\left[\mathrm{PtBu}_{3}\right]}$

Equation S9 was simplified to equation S10 by making the following approximations. First, $k_{3} k_{4} k_{5} k_{-1}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1} k_{3} k_{4} k_{5}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]$ because $k_{-1}\left[\mathrm{P}^{2} \mathrm{Bu}_{3}\right] \gg k_{1}$ as noted above for the discussion of mechanims in Schemes 2-5 and $k_{3} k_{4} k_{5}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]$ is present on both sides of the comparison. Second, $k_{1} k_{2} k_{4} k_{5}[\mathrm{ArCl}][\mathrm{NaOR}] \gg$ $k_{1} k_{2} k_{3} k_{5}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]$ because the deprotonation of amine in 7 ' $\left(k_{4}[\mathrm{NaOR}]\right)$ is much faster than the reaction of $\mathbf{3}$ with amine $\left(k_{3}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]\right)$ to form the four coordinate complex $\mathbf{7}^{\prime} \boldsymbol{\prime}$. If this
were not the case, then the intermediate $7^{\prime \prime}$, would accumulate during the catalytic reactions. The term $k_{1} k_{2} k_{5}[\mathrm{ArCl}]$ is present on both sides of the comparison. Third, $k_{1} k_{2} k_{4} k_{5}[\mathrm{ArCl}][\mathrm{NaOR}] \gg$ $k_{1} k_{2} k_{3} k_{4}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]$ because $k_{5} \gg k_{3}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]$ and $k_{4}[\mathrm{NaOR}] \gg k_{3}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]$ and $k_{1} k_{2}[\mathrm{ArCl}]$ is common to both sides of the comparison. The reductive elimination of product amine from $\mathbf{8}\left(k_{5}\right)$ must be much faster than deprotonation of amine in $\mathbf{7}^{\prime \prime}\left(k_{4}[\mathrm{NaOR}]\right)$ to prevent accumulation of the intermediate $\mathbf{8}$ during stoichiometric reactions of the arylpalladium halide complex with amine and base. $k_{4}[\mathrm{NaOR}] \gg k_{3}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]$ for reasons explained above. Fourth, $k_{4} k_{5} k_{-1} k_{-2}[\mathrm{NaOR}]\left[\mathrm{P}_{t} \mathrm{Bu}_{3}\right] \gg k_{1} k_{4} k_{5} k_{-2}[\mathrm{NaOR}]$ because $k_{-1}\left[\mathrm{P}_{t} \mathrm{Bu}_{3}\right] \gg k_{1}$ as explained above and $k_{4} k_{5} k_{-2}[\mathrm{NaOR}]$ is common to both sides of the comparison. Fifth, $k_{4} k_{5} k_{-1} k_{-2}[\mathrm{NaOR}]\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg$ $k_{1} k_{2} k_{4} k_{5}[\mathrm{ArCl}][\mathrm{NaOR}]$ because $k_{-1}\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \sim k_{2}[\mathrm{ArCl}]^{50}$ and $k_{-2} \gg k_{1}$, as explained for the discussion of mechanism 5 and $k_{4} k_{5}[\mathrm{NaOR}]$ is present on both sides of the comparison. Sixth, $\left[\mathrm{Pd}_{\text {tot }}\right]=\left[\mathrm{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}\right]$ because $\operatorname{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}$ is the only palladium complex observed during the catalytic reaction by NMR spectroscopy.

Scheme S6

$\operatorname{Pd}(\mathrm{PtBu})_{3}$
$\mathrm{k}_{-1}^{3} \| \mathrm{k}_{1}$

rate $=\frac{k_{1} k_{2} k_{3} k_{4} k_{5}\left[\mathrm{Pd}_{\text {tot }}\right]\left[\mathrm{ArCl}_{1}\right]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]}{k_{1} k_{3} k_{4} k_{5}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]+k_{1} k_{4} k_{5} k_{-2}[\mathrm{NaOR}]+k_{1} k_{5} k_{-2} k_{-3}+k_{3} k_{4} k_{5} k_{-1}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\left[\mathrm{PtBu} \mathrm{B}_{3}\right]+}$ $k_{4} k_{5} k_{-1} k_{-2}[\mathrm{NaOR}]\left[\mathrm{PtBu} u_{3}\right]+k_{5} k_{-1} k_{-2} k_{-3}\left[\mathrm{PtBu} u_{3}\right]+k_{1} k_{2} k_{4} k_{5}[\mathrm{ArCl}][\mathrm{NaOR}]+k_{1} k_{2} k_{5} k_{-3}[\mathrm{ArCl}]+$ $k_{1} k_{2} k_{3} k_{5}\left[\mathrm{ArCl}_{1}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]+k_{1} k_{2} k_{3} k_{4}\left[\mathrm{ArCl}_{]}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\right.\right.$
rate $=\frac{k_{1} k_{2} k_{3} k_{4}\left[\mathrm{Pd}_{\text {tot }}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\right.}{k_{-1}\left(k_{-2} k_{-3}+k_{3} k_{4}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]+k_{-2} k_{4}[\mathrm{NaOR}]\left[\mathrm{PtBu}_{3}\right]\right.}$

Equation S11 was simplified to equation S12 by making the following approximations. First, $k_{3} k_{4} k_{5} k_{-1}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1} k_{3} k_{4} k_{5}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]$ because $k_{-1}\left[\mathrm{P} t \mathrm{Bu} u_{3}\right] \gg k_{1}$, as noted above for the discussion of mechanism in Schemes 2-6 and $k_{3} k_{4} k_{5}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]$ is common to both sides of the comparison. Second, $k_{1} k_{2} k_{4} k_{5}[\mathrm{ArCl}][\mathrm{NaOR}] \gg$ $k_{1} k_{2} k_{3} k_{5}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]$ because $k_{4}[\mathrm{NaOR}] \gg k_{3}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]$, as noted for the discussion of mechanism in Scheme 6 and $k_{1} k_{2}[\mathrm{ArCl}]$ is present on both sides of the comparison. Third, $k_{1} k_{2} k_{4} k_{5}[\mathrm{ArCl}][\mathrm{NaOR}] \gg k_{1} k_{2} k_{3} k_{4}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]$ because $k_{5} \gg k_{3}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]$, as noted for the discussion of mechanism in Scheme 6 and $k_{1} k_{2} k_{4}[\mathrm{ArCl}][\mathrm{NaOR}]$ is present on both sides of the comparison. Fourth, $k_{4} k_{5} k_{-1} k_{-2}[\mathrm{NaOR}]\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1} k_{4} k_{5} k_{-2}[\mathrm{NaOR}]$ because $k_{-1}\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1}$ as explained earlier in this paper and $k_{4} k_{5} k_{-2}[\mathrm{NaOR}]$ is present on both sides of the comparison. Fifth, $k_{5} k_{-1} k_{-2} k_{-3}\left[\mathrm{P}_{\mathrm{t}} \mathrm{Bu}_{3}\right] \gg k_{1} k_{5} k_{-2} k_{-3}$ because $k_{-1}\left[\mathrm{P}_{t} \mathrm{Bu}_{3}\right] \gg k_{1}$ as explained earlier and $k_{5} k_{-2} k_{-3}$ is common to both sides of the comparison. Sixth, $k_{4} k_{5} k_{-1} k_{-2}[\mathrm{NaOR}]\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg$ $k_{1} k_{2} k_{4} k_{5}[\mathrm{ArCl}][\mathrm{NaOR}]$ because $k_{-1}\left[\mathrm{Pt} \mathrm{Bu}_{3}\right] \sim k_{2}[\mathrm{ArCl}]$ and $k_{-2} \gg k_{1}$, as noted for the discussion of mechanisms in Schemes 5 and 6 and $k_{4} k_{5}[\mathrm{NaOR}]$ is common to both sides of the comparison. Seventh, $\left[\mathrm{Pd}_{\text {tot }}\right]=\left[\mathrm{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}\right]$ because $\operatorname{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}$ is the only palladium complex observed during the catalytic reaction by NMR spectroscopy.

Scheme S7

Equation S13 was simplified by making the following approximations. First, $k_{1} k_{2} k_{4} k_{5}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}] \gg k_{1} k_{2} k_{3} k_{4}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}][\mathrm{ArCl}]$ because $k_{5} \gg k_{3}[\mathrm{ArCl}]$ and $k_{1} k_{2} k_{4}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]$ is present on both sides of the comparison. The reductive elimination to form arylamine from $\operatorname{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)$-complexes $\left(k_{5}\right)$ is much faster than oxidative addition of ArCl to $\operatorname{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}\left(k_{3}[\mathrm{ArCl}]\right)$. Second, $k_{1} k_{2} k_{4} k_{5}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}] \gg k_{1} k_{2} k_{3} k_{5}[\mathrm{ArCl}][\mathrm{NaOR}]$ because $k_{4}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right] \gg k_{3}[\mathrm{ArCl}]$ and $k_{1} k_{2} k_{5}[\mathrm{NaOR}]$ is present on both sides of the comparison. If the reaction with amine were slower than the oxidative addition, then the intermediate 7 would accumulate during the catalytic reactions. Third, $k_{4} k_{5} k_{-1} k_{-2}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg$ $k_{1} k_{2} k_{4} k_{5}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{NaOR}]$ because $k_{-1} k_{-2}\left[\mathrm{P}_{t} \mathrm{Bu}_{3}\right] \gg k_{1} k_{2}[\mathrm{NaOR}]$ and $k_{4} k_{5}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]$ is present on
both sides of the comparison. $k_{-1}\left[\mathrm{P}_{\mathrm{t}} \mathrm{Bu}_{3}\right] \gg k_{1}$ because the equilibrium for dissociation of $\mathrm{P} t \mathrm{Bu}_{3}$ from $\operatorname{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}$ is known to be very small ${ }^{51}$ and $k_{-2} \gg k_{2}[\mathrm{NaOR}]$ because no evidence for the accumulation of $\mathbf{6}^{\prime}$ was gained by ${ }^{31} \mathrm{P}$ NMR spectroscopy when $\mathbf{3}$ was treated with various bases. Fourth, $k_{3} k_{4} k_{5} k_{-1}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1} k_{3} k_{4} k_{5}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]$ because $\left.k_{-1}[\mathrm{P} t \mathrm{Bu}]_{3}\right] \gg k_{1}$, as for the discussion of mechanims in Schemes 2-7 and $k_{3} k_{4} k_{5}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right][\mathrm{ArCl}]$ is commo to both sides of the comparison. Fifth, $k_{4} k_{5} k_{-1} k_{-2}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]\left[\mathrm{P}_{\mathrm{B}} \mathrm{Bu}_{3}\right] \gg k_{1} k_{4} k_{5} k_{-2}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]$ because k. ${ }_{1}\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1}$, as explained earlier and $k_{4} k_{5} k_{-2}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]$ is common to both sides of the comparison. Sixth, $k_{4} k_{5} k_{-1} k_{-2}[\mathrm{NaOR}]\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \gg k_{1} k_{2} k_{4} k_{5}[\mathrm{ArCl}][\mathrm{NaOR}]$ because $k_{-1}\left[\mathrm{P} t \mathrm{Bu}_{3}\right] \sim$ $k_{2}[\mathrm{ArCl}]^{50}, k_{-2} \gg k_{1}$ and $k_{4} k_{5}[\mathrm{NaOR}]$ is common to both sides of the comparison. The rate constant for dissociaton of anion from 6' must be greater than the dissociation of ligand from 3. Seventh, $k_{4} k_{5} k_{-1} k_{-2}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]\left[\mathrm{P} t \mathrm{Bu} u_{3}\right] \gg k_{3} k_{4} k_{5} k_{-1}[\mathrm{ArCl}]\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]\left[\mathrm{P} t \mathrm{Bu} u_{3}\right]$ because $k_{-2} \gg k_{3}[\mathrm{ArCl}]$ and $k_{4} k_{5} k_{-}\left[\mathrm{NHR}_{1} \mathrm{R}_{2}\right]\left[\mathrm{P}^{2} \mathrm{Bu}_{3}\right]$ is common to both sides of the comparison. The rate constant for dissociation of anion from $\mathbf{6}^{\prime}$ must be greater than the oxidative addition of chloroarenes to $\mathbf{6}^{\prime}$. If this were not the case ,then 6' would accumulate during the catalytic reactions. Eight, $\left[\mathrm{Pd}_{\mathrm{tot}}\right]=$ $\left[\mathrm{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}\right]$ because $\operatorname{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}$ is the only palladium complex observed during the catalytic reaction by NMR spectroscopy.
(1) Wong, J. T. Kinetics of Enzyme Mechanisms; Academic Press: New York, 1975.
(2) The ratio of $\mathrm{k}_{2}[\mathrm{ArCl}] / \mathrm{k}_{-1}[\mathrm{~L}]$ was determined from the studies done on the stoichiometric oxidative additions of PhCl to $\mathrm{PdL}_{2}\left(\mathrm{~L}=(1-\mathrm{Ad}) t \mathrm{Bu}_{2} \mathrm{P}\right)$ by Fabiola Barrios-Landeros and John F . Hartwig. We have used the rate constants from the oxidative additions of PhCl to PdL_{2} ($\mathrm{L}=(1-$ $\mathrm{Ad}) t \mathrm{Bu}_{2} \mathrm{P}$) instead of oxidative addition of PhCl to $\mathrm{Pd}\left[\mathrm{P} t \mathrm{Bu}_{3}\right]_{2}$ beacuse the rate constants obtained from the oxidative addition to $\operatorname{Pd}\left[\mathrm{P}_{\mathrm{t}} \mathrm{Bu}_{3}\right]_{2}$ were not reproducible. These data show that $\mathrm{k}_{2}[\mathrm{ArCl}] \sim 5 * \mathrm{k}_{-1}[\mathrm{~L}]$ for the reported set of setcatalytic reactions. If $\mathrm{k}_{2}[\mathrm{ArCl}]>\mathrm{k}_{-1}[\mathrm{~L}]$ then the catalytic reactions cannot be first-order in $[\mathrm{ArCl}]$, thus we estimate that $\mathrm{k}_{2}[\mathrm{ArCl}] \sim \mathrm{k}_{-1}[\mathrm{~L}]$ for our catalytic reactions
(3) Fabiola Barrios-Landeros and John F. Hartwig, unpublished data.
(4) Roy, A. H.; Hartwig, J. F. Organometallics 2004, 23, 1533.

