Supporting Information

First Total Synthesis of (\pm)-Strychnine via a [4+2]Cycloaddition/Rearrangement Cascade

Hongjun Zhang, Jutatip Boonsombat, and Albert Padwa*
Department of Chemistry, Emory University, Atlanta, Georgia 30322
chemap@emory.edu

Table of Contents

Table of Contents

Page 2 Preparation of 2-(1-Acetyl-1 H-indol-3-yl)- N-furan-2-yl- N-(2-methylbenzyl)acetamide (7).
Page 2 Preparation of 7-Acetyl-3-(2-methylbenzyl)-3,5,6a,7-tetrahydropyrrolo-[2,3-d]carbazole-2,6-dione (8).
Page 3 Preparation of 3-(2-Methylbenzyl)-2,3,3a,4,5,6,6a,7-octahydro-1 H-pyrrolo[2,3- d]carbazol-6-ol (13).
Page 4 Preparation of 2,3,3a,4,5,6,6a,7-Octahydro-1H-pyrrolo[2,3-d]carbazol-6ol (14).
Page 5 Preparation of 1-Bromo-2-iodo-4-(methoxymethoxy)-but-2-ene.
Page 6 Preparation of 7-(2,4-Dimethoxybenzyl)-3-(2-iodo-4-(methoxy-methoxy)-but-2-enyl)-2,3,3a,4,5,6,6a,7-octahydro-1 H-pyrrolo[2,3-d]carbazol-6-ol.
Page 7 Preparation of 7-(2,4-Dimethoxybenzyl)-3-(2-iodo-4-methoxymethoxy-but-2-enyl)-2,3,3a,4,5,6,6a,7-octahydro-pyrrolo[2,3-d]carbazol-6-one (9).
Page 8 Preparation of Pentacyclic Ketone 16.
Page 9 Preparation of Pentacyclic Enol Ether 10.
Page 10 Preparation of (\pm)-Strychnine (4).

Experimental Section

General Experimental Section. Melting points are uncorrected. Mass spectra were determined at an ionizing voltage of 70 eV . Unless otherwise noted, all reactions were performed in flame dried glassware under an atmosphere of dry nitrogen. Solutions were evaporated under reduced pressure with a rotary evaporator and the residue was chromatographed on a silica gel column using an ethyl acetate-hexane mixture as the eluent unless specified otherwise.

2-(1-Acetyl-1 H-indol-3-yl)-N-furan-2-yl- \boldsymbol{N} (2-methyl-benzyl)acetamide (7). To a solution containing $5.7 \mathrm{~g}(20 \mathrm{mmol})$ of 2 -(1-acetyl- 1 H -indol-3-yl)- N -furan-2ylacetamide ${ }^{1}$ in 100 mL of DMF at $0^{\circ} \mathrm{C}$ was added $0.8 \mathrm{~g}(20 \mathrm{mmol})$ of NaH . The mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$, and then a solution of 5.6 g (24 mmol) of $1-$ iodomethyl-2-methylbenzene ${ }^{2}$ in 30 mL of DMF at $0^{\circ} \mathrm{C}$ was added. The mixture was stirred for 3 h , quenched with water and extracted with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude residue was purified by flash silica gel column chromatography to give $4.7 \mathrm{~g}(84 \%)$ of the titled compound 7 as a pale yellow solid: mp $96-97^{\circ} \mathrm{C}$; IR (neat) 1695, 1674, 1601, 1442, 1368, 1258 and $739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H})$, $4.90(\mathrm{~s}, 2 \mathrm{H}), 5.63(\mathrm{~d}, 1 \mathrm{H}, 2.4 \mathrm{~Hz}), 6.32(\mathrm{dd}, 1 \mathrm{H}, J=3.6$ and 2.4 Hz$), 7.14-7.44(\mathrm{~m}$, 10 H) and $8.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.9,23.9,30.6$, 49.4, 105.5, 111.2, 115.5, 116.5, 118.7, 123.4, 123.6, 125.3, 125.8, 127.6, 128.9, 130.0, 130.2, 134.3, 135.5, 136.5, 140.1, 147.6, 168.4 and 170.9; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 74.59; H, 5.74; $\mathrm{N}, 7.25$. Found: C, 74.35; H, 5.81, N, 7.11. 7-Acetyl-3-(2-methylbenzyl)-3,5,6a,7-tetrahydropyrrolo[2,3- d]carbazole-2,6dione (8). To a solution containing 300 mg (0.8 mmol) of indoyl furan 7 in 4 mL of toluene in a 10 mL microwave tube equipped with a magnetic stir bar was added $0.007 \mathrm{~g}(0.16 \mathrm{mmol})$ of Mgl_{2}. The mixture was charged with N_{2} and then
sealed with a microwave rubber cap. The sample was placed in the microwave reactor and irradiated at 200 W at $150^{\circ} \mathrm{C}$ for 3 h . After cooling to rt , the solution was concentrated under reduced pressure and the resulting residue was purified by flash silica gel chromatography to give $285 \mathrm{mg}(95 \%)$ of the titled compound 8 as a pale yellow solid: $184-186^{\circ} \mathrm{C}$; IR (thin film) 1716, 1657, 1594, 1467, 1384, 1353 and $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.34$ (s, 3H), 2.42 (s, 3H), 2.71 (d, 1H, $J=16.4 \mathrm{~Hz}$), 2.81 (dd, $1 \mathrm{H}, J=20.4$ and 2.4 Hz), 2.94 (dd, $1 \mathrm{H}, J=20.4$ and 5.6 Hz), $3.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.4 \mathrm{~Hz}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz})$, $4.89(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 4.98(\mathrm{dd}, 1 \mathrm{H}, J=5.6 \mathrm{and} 2.4 \mathrm{~Hz}), 6.92-7.05(\mathrm{~m}, 2 \mathrm{H})$, 7.12-7.28 (m, 5H) and $8.15(\mathrm{~d}, 1 \mathrm{H}, 8.4 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.3$, 23.8, 36.6, 42.1, 45.7, 49.9, 71.2, 94.7, 117.9, 120.8, 125.1, 126.2, 126.7, 127.7, 129.5, 130.8, 132.7, 134.2, 135.5, 140.7, 140.9, 169.6, 171.9 and 202.9; HRMS Calcd. for $\left[\left(\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\right)+\mathrm{H}^{+}\right]: 387.1703$. Found: 387.1715.

3-(2-Methylbenzyl)-2,3,3a,4,5,6,6a,7-octahydro-1 H-pyrrolo[2,3-d]carbazol-6-

 ol (13). To a solution containing 1.0 g (2.6 mmol) of the above enamide $\mathbf{8}$ in 24 mL of a $1: 1$-mixture of EtOH/THF at $0^{\circ} \mathrm{C}$ was added $0.098 \mathrm{~g}(2.6 \mathrm{mmol})$ of NaBH_{4} in one portion. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, quenched with an aqueous NaHCO_{3} solution and extracted with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude residue was taken up in 50 mL of THF and 5.2 mL (2.6 mmol) of 0.1 M NaOMe in MeOH solution was added. After stirring for 15 min , the solution was quenched with an aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude residue was taken up in 50 mL of THF and 7.8 mL of a 1 M LiAlH 44 in THF solution was added dropwise. The mixture was heated at reflux for 3 h , cooled to $0^{\circ} \mathrm{C}$, and 0.29 mL of water was slowly added followed by 0.29 mL of a 15% aqueous NaOH solution and 0.87 mLof water. The resulting mixture was filtered through Celite and was washed with EtOAc. The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude residue was taken up in 50 mL of 1,2- dichloroethane, cooled to $-20^{\circ} \mathrm{C}$ and $2.2 \mathrm{~g}(10.4 \mathrm{mmol})$ of $\mathrm{NaBH}(\mathrm{OAc})_{3}$ was gradually added over a period of 1 h . The reaction mixture was stirred for an additional 2 h , diluted with CHCl_{3}, quenched with an aqueous NaHCO_{3} solution, and extracted with CHCl_{3}. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude residue was purified by flash silica gel chromatography to give $0.56 \mathrm{~g}(65 \%)$ of the titled compound 13 as a pale yellow oil: IR (thin film) 3367, 3293, 1720, 1650, 1605, 1401 and $739 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.46-2.00(\mathrm{~m}, 6 \mathrm{H}), 2.21$ (ddd, $1 \mathrm{H}, J=13.6,9.4$ and $4.0 \mathrm{~Hz}), 2.42-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=9.4$ and 4.0 Hz$), 3.42(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $12.8 \mathrm{~Hz}), 3.78(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 3.82(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 4.16-4.23(\mathrm{~m}, 1 \mathrm{H})$, $6.67(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.78(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.07(\mathrm{td}, 1 \mathrm{H}, J=7.6$ and 1.2 Hz$)$, 7.12-7.18 (m, 4H), and 7.26-7.28 (m, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.1$, $19.6,25.9,35.9,50.9,54.4,54.7,67.8,68.6,69.1,109.5,119.0,123.3,125.5$, 126.8, 127.6, 129.2, 130.0, 137.1, 137.6, 137.7 and 149.4; HRMS Calcd. for $\left[\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}\right)+\mathrm{H}^{+}\right]: 335.2118$. Found: 335.2114.

2,3,3a,4,5,6,6a,7-Octahydro-1 H-pyrrolo[2,3-d]carbazol-6-ol (14). To a sample of $0.06 \mathrm{~g}(0.09 \mathrm{mmol})$ of $20 \% \mathrm{Pd}$ on $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ (Pearlman's catalyst) in a sealed tube was added a solution of $0.1 \mathrm{~g}(0.3 \mathrm{mmol})$ of the above amine 13 in 1 mL of MeOH . The mixture was repeatedly flushed with hydrogen gas and was then stirred at rt under 60 psi of hydrogen for 2 days. At the end of this time, the mixture was filtered through Celite and washed with 30 mL of $\mathrm{MeOH}, 30 \mathrm{~mL}$ of a 1:1-mixture of $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{CH}_{2}$ and 30 mL of $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:25:70), respectively. The organic solvent was removed under reduced pressure and the crude residue was purified by flash silica gel chromatography to give $0.56 \mathrm{~g}(70 \%)$
of the titled compound 14 as a pale yellow oil: IR (thin film) 3321, 3045, 1602, 1487, 1467, 1057 and $726 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.38-1.51$ (m, $1 \mathrm{H})$, 1.65-1.74 (m, 1H), 1.79-1.90 (m, 2H), 2.14-2.32 (m, 2H), 3.04-3.12 (m, 1H), 3.36-3.46 (m, 1H), $3.55(\mathrm{ddd}, 1 \mathrm{H}, J=12.0,9.2$ and 8.0 Hz$), 3.80(\mathrm{~d}, 1 \mathrm{H}, J=4.4$ $\mathrm{Hz}), 3.88(\mathrm{dt}, 1 \mathrm{H}, J=10.8$ and 4.4 Hz$), 6.64(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.66(\mathrm{t}, 1 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 6.99(\mathrm{td}, 1 \mathrm{H}, J=8.0$ and 1.2 Hz$)$, and $7.03(\mathrm{~d}, 1 \mathrm{H} J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz, CDCl_{3}) $\delta 26.2,27.1,32.5,44.2,56.4,64.6,68.5,69.0,111.3,120.1$, 122.6, 129.7, 136.7 and 151.1.

1-Bromo-2-iodo-4-methoxymethoxy-but-2-ene. To a solution of $1.0 \mathrm{~g} \mathrm{(3.4}$ mmol) of (Z)-3-iodo-4-(tetrahydro-2H-pyran-2-yloxy)but-2-en-1-ol ${ }^{3}$ in 13 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was added $0.13 \mathrm{~mL}(0.8 \mathrm{mmol})$ of di-isopropylethylamine followed with $0.06 \mathrm{~mL}(0.8 \mathrm{mmol})$ of chloromethyl methyl ether. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with an aqueous NaHCO_{3} solution. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude residue was purified by flash silica gel chromatography to give 0.95 g (82\%) of 2-(2-iodo-4-methoxymethoxy-but-2-enyloxy)tetrahydropyran as a colorless oil; IR (thin film) 1654, 1450, 1447, 1201 and $1021 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.45-1.90(\mathrm{~m}, 5 \mathrm{H}), 3.71$ (s, $3 \mathrm{H}), 3.48-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{ddd}, 1 \mathrm{H}, J=12.4,9.2$ and 3.2 Hz$), 4.16-4.21(\mathrm{~m}$, $3 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{t}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz})$ and $6.22(\mathrm{tt}, 1 \mathrm{H}, J=5.6$ and 1.6 Hz$)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.7,25.3,30.3,55.4,62.0,71.1,74.2,96.1,97.1$, 104.6 and 133.3.

To a solution of 1.7 g (4.9 mmol) of the above iodo-alkene in 50 mL of MeOH at $0^{\circ} \mathrm{C}$ was added $0.09 \mathrm{~g}(0.49 \mathrm{mmol})$ of p-toluenesulfoic acid. The mixture was stirred for $0^{\circ} \mathrm{C}$ for 1 h , and was then quenched with an aqueous NaHCO_{3} solution. The mixture was extracted with EtOAc and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced
pressure and the crude residue was purified by flash silica gel chromatography to give 0.76 g (60\%) of 2-iodo-4-methoxymethoxy-but-2-en-1-ol as a colorless oil; IR (thin film) 3403, 2934, 1655, 1446 and $1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 2.91(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{dt}, 2 \mathrm{H}, J=5.6$ and 1.2 Hz$), 4.23(\mathrm{dd}$, $2 \mathrm{H}, J=6.8$ and 1.2 Hz$), 4.62(\mathrm{~s}, 2 \mathrm{H}), 6.21(\mathrm{tt}, 1 \mathrm{H}, J=5.6$ and 1.2 Hz$) ;{ }^{3} \mathrm{C}-\mathrm{NMR}$ (100 MHz, CDCl_{3}) $\delta 55.4,70.9,71.0,96.0,108.9$ and 131.5.

To a solution of $0.48 \mathrm{~g}(1.9 \mathrm{mmol})$ of the above compound in 28 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-30^{\circ} \mathrm{C}$ was added $0.6 \mathrm{~g}(2.2 \mathrm{mmol})$ of triphenyl phosphine followed with $0.46 \mathrm{~g}(2.6 \mathrm{mmol})$ of N -bromosuccinimide. The reaction mixture was maintained at $-30^{\circ} \mathrm{C}$ for 1 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$ and extracted with an aqueous NaHCO_{3} solution. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude residue was purified by flash silica gel column chromatography to give $0.47 \mathrm{~g}(79 \%)$ of the titled comound as a colorless oil; IR (thin film) 2929, 1633, 1448, 1211, $1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR (400 MHz, CDCl_{3}) $\delta 3.38(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.2 \mathrm{~Hz}), 4.33(\mathrm{~s}, 1 \mathrm{H})$, $4.64(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 42.1,55.5$, 71.4, 96.2, 101.6 and 137.1.

7-(2,4-Dimethoxybenzyl)-3-(2-iodo-4-methoxymethoxy-but-2-enyl)-2,3,3a,4, 5,6,6a,7-octahydro-1 H-pyrrolo[2,3-d]carbazol-6-ol. To a solution of 0.12 g (0.54 mmol) of tetracyclic amine 14 in 5 mL of DMF at room temperature was added 1.2 mL of $\mathrm{H}_{2} \mathrm{O}$ and $0.37 \mathrm{~g}(2.7 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The mixture was cooled to $0^{\circ} \mathrm{C}$ and and a solution of $0.21 \mathrm{~g}(0.65 \mathrm{mmol})$ of 1-bromo-2-iodo-4-methoxymethoxy-but-2-ene in 1.0 mL of DMF was added. The solution was stirred at $0^{\circ} \mathrm{C}$ for 12 h and was then quenched with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and dried over MgSO_{4}. After concentration under reduced pressure, the residue was subjected to flash silica
gel chromatography to provide $0.2 \mathrm{~g}(80 \%)$ of the expected N-alkylated product as a pale yellow oil which was immediately used in the next step.

To a flask containing $54 \mathrm{mg}(0.11 \mathrm{mmol})$ of the above oil was added 3 mL of 1,2 -dichloroethane. To this solution at $0^{\circ} \mathrm{C}$ was added $23 \mathrm{mg}(0.14 \mathrm{mmol})$ of $2,4-$ methoxybenzaldehyde and $61 \mathrm{mg}(0.29 \mathrm{mmol})$ of $\mathrm{NaBH}(\mathrm{OAc})_{3}$, followed by the addition of $20 \mu \mathrm{~L}(0.34 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{COOH}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and then at rt for 12 h . The solution was quenched with a saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and dried over MgSO_{4}. After concentration under reduced pressure, the residue was subjected to flash silica gel chromatography to give 61 mg (86%) of the titled compound as a colorless oil; IR (neat) 3456, 1673, 1606, and $1485 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.54-1.62(\mathrm{~m}, 2 \mathrm{H})$, $1.68(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.74-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.06(\mathrm{~m}, 3 \mathrm{H}), 2.38(\mathrm{td}, 1 \mathrm{H}, J=$ 9.0 and 6.6 Hz), $2.80(\mathrm{t}, 1 \mathrm{H}, J=0.6 \mathrm{~Hz}), 3.06(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.11(\mathrm{td}, 1 \mathrm{H}, J$ $=9.0$ and 5.1 Hz$), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 3.62(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 4.24-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~d}, 1 \mathrm{H}$, $J=16.2 \mathrm{~Hz}), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz})$, 6.43-6.46 (m, 2H), $6.49(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 6.68(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.02-7.05(\mathrm{~m}$, $2 \mathrm{H})$, and $7.24(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 18.8,24.7,39.8$, $48.0,51.3,53.5,55.5,55.6,55.7,65.4,65.6,68.1,71.7,73.6,96.3,98.7,104.1$, $107.1,109.9,118.0,119.7,121.7,128.2,129.1,132.7,135.2,152.8,158.2$, and 160.2; HRMS Calcd for $\left[\left(\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{I}\right)+\mathrm{H}\right]^{+}$: 621.1820. Found: 621.1797.

7-(2,4-Dimethoxybenzyl)-3-(2-iodo-4-methoxymethoxy-but-2-enyl)-2,3,3a,4, 5,6,6a,7-octahydro-pyrrolo[2,3-d]carbazol-6-one (9). To a flask containing 0.9 $\mathrm{g}(1.4 \mathrm{mmol})$ of the above alcohol and 0.7 g of $4 \AA$ of molecular sieves in 50 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $0^{\circ} \mathrm{C}$ was added $0.26 \mathrm{~g}(2.2 \mathrm{mmol})$ of NMO (N-methyl morpholine- N oxide) followed by the addition of $0.15 \mathrm{~g}(0.43 \mathrm{mmol})$ of TPAP (tetra- n-propyl-
ammonium perruthenate) in several portions. After stirring at $0^{\circ} \mathrm{C}$ for 20 min , the cooling bath was removed and the reaction mixture was stirred at room temperature for an additional 2 h . The mixture was filtered through celite and the filtrate was concentrated under reduced pressure. The residue was subjected to flash silica gel chromatography to give $0.72 \mathrm{~g}(80 \%)$ of ketone 9 as a yellow oil; IR (neat) 1707, 1601, 1479, 1209, and $1037 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta}$ 1.83-1.98 (m, 2H), 2.13-2.23 (m, 2H), 2.30-2.53 (m, 3H), 2.54 (d, $1 \mathrm{H}, J=2.8 \mathrm{~Hz})$, $2.99(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 3.15-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dd}, 1 \mathrm{H}, J=14.0$ and 1.6 Hz), $3.60(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz})$, 4.15-4.18 (m, 1H), 4.25 (d, 1H, J=16.4 Hz), $4.65(\mathrm{~s}, 2 \mathrm{H}), 6.10(\mathrm{t}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz})$, $6.40(\mathrm{dd}, 1 \mathrm{H}, J=8.2$ and 2.4 Hz$), 6.43(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 6.55(\mathrm{~d}, 1 \mathrm{H}, J=8.2$ $\mathrm{Hz}), 6.77(\mathrm{td}, 1 \mathrm{H}, J=7.6$ and 0.8 Hz$)$, and $7.03-7.13(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 20.4,32.5,37.8,47.8,51.8,55.4,55.5,55.7,59.0,64.5,67.9,71.6$, 81.7, $96.4,98.6,103.9,107.2,108.8,118.4,118.7,122.8,128.8,129.5,132.7$, 133.3, 152.7, 158.4, 160.3, and 210.3.

Pentacyclic Ketone 16. To a solution of $0.35 \mathrm{~g} \mathrm{(} 0.57 \mathrm{mmol}$) of the above ketone 9 in 6 mL of THF at room temperature was added $0.13 \mathrm{~g}(0.11 \mathrm{mmol})$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ followed by a solution of PhOK in THF (prepared from the addition of 0.74 mL of $1 \mathrm{M} t$-BuOK in t-BuOH into a solution containing $80 \mathrm{mg}(0.85 \mathrm{mmol})$ of phenol in 8 mL of THF). The reaction mixture was heated at reflux under argon for 2 h , cooled to room temperature, diluted with a 1 N NaOH solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with 1 N $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, brine, and dried over MgSO_{4}. After concentration under reduced pressure, the residue was subjected to silica gel chromatography to give 0.15 g (56\%) of the enolate coupling product 16 as a yellow oil; IR (neat) 1711, 1607,
 $5.0 \mathrm{~Hz})$; 2.14-2.34 (m, 3H), 2.66-2.74 (m, 1H), $3.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz}), 3.20(\mathrm{t}$,
$1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{brs}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.79(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 4.10(\mathrm{dd}, 1 \mathrm{H}, J=13.2$ and 4.4 Hz$), 4.22-4.37(\mathrm{~m}$, $3 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 5.57(\mathrm{dd}, 1 \mathrm{H}, J=8.4$ and 4.4 Hz$), 6.40(\mathrm{dd}, 1 \mathrm{H}, J=7.8$ and 2.2 $\mathrm{Hz}), 6.44(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.49(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.74(\mathrm{td}, 1 \mathrm{H}, J=7.4$ and 0.6 Hz), and 7.03-7.11 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.3,38.7,43.8$, $46.9,51.8,52.6,55.4,55.5,55.6,58.3,62.3,63.6,76.8,96.1,98.6,103.8,108.5$, $118.6,118.7,122.3,125.8,128.9,129.3,130.9,137.5,151.9,158.4,160.2$, and 209.5; HRMS Calcd for $\left[\left(\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}\right)+\mathrm{H}\right]^{+}$: 491.2540. Found: 491.2534.

Pentacyclic Enol Ether 10. To a flask containing $0.2 \mathrm{~mL}(1.5 \mathrm{mmol})$ of diisopropyl amine in 2.0 mL of THF at $0^{\circ} \mathrm{C}$ was slowly added $0.6 \mathrm{~mL}(1.4 \mathrm{mmol})$ of n-BuLi (2.5 M in hexane). The resulting LDA solution was added dropwise into a suspension of $0.39 \mathrm{~g}(1.6 \mathrm{mmol})$ of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OMe}$ in 1.2 mL of THF at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 20 min and then the resulting red solution was added to a solution containing $0.11 \mathrm{~g}(0.2 \mathrm{mmol})$ of pentacyclic ketone 16 in 2.0 mL of THF at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 20 min , the cooling bath was removed and the reaction mixture was stirred at room temperature for 24 h . The mixture was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was subjected to flash silica gel chromatography to give 76 mg (72 $\%$) of enol ether 10 as a yellow oil; IR (neat) 1607, 1485, 1121, and $1038 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.79-1.84(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.53(\mathrm{~m}$, 2 H), 3.00-3.08 (m, 1H), 3.17-3.28 (m, 2H), $3.35(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.47-$ $3.53(\mathrm{~m}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.0$ and 6.0 Hz$), 4.11$ (d, $1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 4.18-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz})$, $4.65(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.38(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 6.14(\mathrm{~s}, 1 \mathrm{H}) 6.23(\mathrm{~d}, 1 \mathrm{H}, J=8.1$ $\mathrm{Hz}), 6.41(\mathrm{dd}, 1 \mathrm{H}, J=8.1$ and 2.4 Hz$), 6.47(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 6.71(\mathrm{t}, 1 \mathrm{H}, J=$
$7.5 \mathrm{~Hz}), 6.99(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz})$, and $7.07(\mathrm{~d}, 1 \mathrm{H}, J=7.5$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 25.2,29.9,39.2,45.6,52.1,54.0,55.1,55.4$, $55.5,55.6,59.9,62.7,66.9,67.5,95.7,98.4,103.8,108.0,112.4,118.3,120.3$, 122.1, 128.0, 128.4, 128.6, 132.0, 151.4, 151.9, 157.7, and 159.6; HRMS Calcd for $\left[\left(\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}\right)+\mathrm{H}\right]^{+}: 591.2853$. Found: 591.2847.

Strychnine (4). To a solution containing 8 mg (0.015 mmol) of the pentacyclic enol ether 10 in 1.5 ml of THF was added 1.5 ml of 4 N HCl . The reaction mixture was heated at $55^{\circ} \mathrm{C}$ for 10 h , cooled to $0^{\circ} \mathrm{C}$, neutralized with a saturated $\mathrm{NH}_{4} \mathrm{OH}$ solution, and extracted with EtOAc. The organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was heated at $60^{\circ} \mathrm{C}$ under vacuum overnight to remove the 1,4 -diol derived from the acidic hydrolysis of THF under the reaction conditions. The resulting crude residue consisted primarily of the Wieland-Gumlich aldehyde4; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.4 \mathrm{~Hz}), 1.57-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.82$ $(\mathrm{d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 2.06(\mathrm{dd}, 1 \mathrm{H}, J=12.6$ and 6.6 Hz$), 2.26-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.66$ $(\mathrm{s}, 1 \mathrm{H}), 2.67(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 2.80-2.84(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dd}, 1 \mathrm{H}, J=8.0$ and 8.0 Hz), $3.75(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 3.82(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 3.92-2.99(\mathrm{~m}, 2 \mathrm{H})$, 4.23 (dd, 1H, J= 14.4 and 7.2 Hz), $5.00(\mathrm{~s}, 1 \mathrm{H}), 5.81$ (brs, 1H), $6.80(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 6.88(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz})$.

To the crude residue was added 0.5 ml of $\mathrm{CH}_{3} \mathrm{COOH}, 48 \mathrm{mg}$ of malonic acid, 48 mg of NaOAc , and $10 \mu \mathrm{~L}$ acetic anhydride, and the resulting mixture was heated at $120^{\circ} \mathrm{C}$ for $2 \mathrm{~h} .5^{5}$ The reaction mixture was cooled to rt, diluted with $\mathrm{H}_{2} \mathrm{O}$, basified with a $50 \% \mathrm{NaOH}$ solution, and extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was subjected to preparative TLC to give 2.3 mg (43\%) of strychnine as a white solid; mp 278-283 ${ }^{\circ} \mathrm{C}$ (lit $6 \mathrm{mp} 275-285{ }^{\circ} \mathrm{C}$) for the two step sequence; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.28(\mathrm{dt}, 1 \mathrm{H}, J=10.4$ and 3.2
$\mathrm{Hz}), 1.48(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 1.89-1.93(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{dt}, 1 \mathrm{H}, J=14.0$ and 4.4 $\mathrm{Hz}), 2.67(\mathrm{dd}, 1 \mathrm{H}, J=17.2$ and 3.2 Hz), $2.76(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 2.89(\mathrm{dd}, 1 \mathrm{H}, J$ $=18.4$, and 10.0 Hz), $3.14(\mathrm{dd}, 1 \mathrm{H}, J=17.2$ and 8.4 Hz$), 3.15-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.22-$ $3.28(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dd}, 1 \mathrm{H}, J=15.2$ and 1.2 Hz$), 3.86(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 3.99$ (brs, 1 H), $4.06(\mathrm{dd}, 1 \mathrm{H}, J=13.6$ and 5.6 Hz$), 4.16(\mathrm{dd}, 1 \mathrm{H}, J=13.6$ and 7.4 Hz$)$, $4.29(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=8.4$ and 3.2 Hz$), 5.94(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 7.10(\mathrm{td}, 1 \mathrm{H}, J=7.6$ and 1.2 Hz$), 7.17(\mathrm{dd}, 1 \mathrm{H}, J=7.6$ and 1.2 Hz$), 7.26(\mathrm{td}, 1 \mathrm{H}, J=7.6$ and 1.2 Hz$)$, $8.09(\mathrm{dd}, 1 \mathrm{H}, J=7.6$ and 1.2 Hz$)$.

References:

(1) Padwa, A.; Brodney, M. A.; Lynch, S. M.; Rashatasakhon, P.; Wang, Q.; Zhang, H. J. Org. Chem. 2004, 69, 3735.
(2) Rezende, D. B.; Alcantara, M. R.; de Arruda Campos, I. P.; Toscano, V. G.; Ebeling, G.; Lopes, J. C. D. Tetrahedron 1997, 53, 10113.
(3) Solé, D.; Bonjoch, J.; García-Rubio, S.; Peidró, E.; Bosch, J. Chem. Eur. J. 2000, 6, 655.
(4) Kuehne, M. E.; Xu, F. J. Org. Chem. 1998, 63, 942.7
(5) Anet, F. A. L.; Robinson, R. Chem. Ind. 1953, 245.
(6) Woodward, R. B.; Cava, M. P.; Ollis, W. D.; Hunger, A.; Daeniker, H. U.; Schenker, K. J. Am. Chem. Soc. 1954, 76, 4749.

