Intermolecular Chirality Transfer from Silicon to Carbon: Interrogation of the Two-Silicon Cycle for Pd-Catalyzed Hydrosilylation by Stereoisotopochemical Cross-over
Sebastian Rendler ${ }^{\dagger}$, Martin Oestreich ${ }^{\dagger \star}$, Craig P. Butts ‡, and Guy C. Lloyd-Jones ${ }^{\ddagger \star}$Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, D-48149 Münster, Germany; Organic \& Biological Chemistry Section, School of Chemistry, University ofBristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
E-mail: martin.oestreich@uni-muenster.de, guy.Iloyd-jones@bristol.ac.uk
Supporting Information
Contents2.1 General ProceduresS2
2.2 Experimental Details and Characterization Data for Silane Reagents 2a, 2b, 8 S3
2.3 Experimetal Details and Characterization Data for Hydrosilylation Products 4a, 4b, 9 S9
Cross-over Experiments involving $\left[{ }^{2} \mathrm{H}\right]-\mathbf{2 a}$ and $\left[{ }^{13} \mathrm{C}\right]-\mathbf{2 a}$ S143.1 Experimental DetailsS14
3.2 ${ }^{29}$ Si NMR Spectra S16
3.3 Product Distribution Analysis / Modeling S25
4 Cross-over Experiments of $\mathbf{2 b}$ and $\mathbf{8}$ S27
4.1 Experimental Details S27
4.2 Correlation Schemes S29
4.3 HPLC and MS data S31
5 Cross-over Experiments of $(\mathrm{Si} S)-\left[^{2} \mathrm{H}\right]-\mathbf{2 b}$ and $(\mathrm{Si} R)-\mathbf{2 b}$ S43
5.1 Experimental Details S43
5.2 HPLC and MS data S45
5.3 Product Distribution Analysis / Modeling S48
5.4 Modeling of Asymmetric Amplification S50
6 Estimation of the Primary Kinetic Isotope Effect S53
7 References and Footnotes S56

1 General Information

Reagents obtained from commercial suppliers were used without further purification unless otherwise noted. $\mathbf{1}^{[1]}, \mathbf{2 a}{ }^{[2]}$, (phen) $\mathrm{PdMe}_{2}{ }^{[3]},\left[\mathrm{H}\left(\mathrm{OEt}_{2}\right)_{2}\right]^{+} \mathrm{BAr}_{4}{ }^{-}\left[\mathrm{Ar}=3,5\right.$-bis(trifluoromethyl)phenyl] ${ }^{[4]}$ were prepared according to known procedures. All reactions were performed in flame-dried glassware under a static pressure of argon. Liquids and solutions were transferred with syringes or double-ended needles. Solvents were dried prior to use following standard procedures (THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{CCl}_{4}$, n heptane). Technical grade solvents for extraction or chromatography (cyclohexane, t-butyl methyl ether) were distilled before use. Analytical thin-layer chromatography was performed on silica gel SIL G-25 glass plates by MachereyNagel/Germany and flash chromatography on silica gel 60 ($4063 \mu \mathrm{~m}$, 230-400 mesh, ASTM) by Merck/Germany using the indicated solvents. High vacuum distillations (10 ${ }^{-6}$ mbar) were performed using standard glassware and an Edwards turbo molecular pump. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ on Bruker AM300, AM 400 and DRX500, Varian Unity plus 600 or Jeol Delta 400 instruments. ${ }^{29}$ Si NMR spectra were recorded on a Jeol Alpha 500 instrument. Analytical HPLC analysis were performed with Merck-Hitachi L7100 or Agilent 1200 instruments on a chiral stationary phase using a Daicel Chiralcel OD-H column (n-heptane as solvent) or Daicel Chiralcel OD-RH, OJ-RH (MeCN:H2O mixtures). Mass spectra were recorded with a Finnigan MAT TSQ7000 (EI/CI-MS) or a Waters Micromass GC-TOF (EI/HRMS).

2 Experimental Procedures and Characterization Data of New Compounds

2.1 General Procedures

2.1.1 General Procedure for the Preparation of $\left[{ }^{2} \mathrm{H}\right]$-Labeled Silanes (GP 1)

A saturated solution of Cl_{2} in $\mathrm{CCl}_{4}(2.5 \mathrm{~mL})$ was added to a solution of the silane $(\mathbf{2 a}, \mathbf{2 b}$ or $\mathbf{8})(2.00$ $\mathrm{mmol}, 1.00$ equiv.) in $\mathrm{CCl}_{4}(4.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ until a permanent pale yellow color appeared. After 4 min the reaction mixture was purged with argon. Evaporation of the solvent under reduced pressure provided the crude chlorosilane as a colorless oil, which then was dissolved in THF (5 mL) and added portionwise to a stirred suspension of $\mathrm{LiAID}_{4}(126 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.50$ equiv., $98 \% \mathrm{D}$) in THF (5 mL). After having refluxed this mixture for 2 h , the reaction was quenched at ambient temperature by careful addition of water (20 mL) followed by 2 M HCl until pH 7 was reached. The organic layer was separated and the aqueous phase extracted with t-butyl methyl ether ($4 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and volatiles were evaporated under reduced pressure. The crude product was purified by flash column chromatography on silica gel with cyclohexane as eluent, furnishing the analytically pure deuterated silanes $\left(\left[{ }^{2} \mathrm{H}\right]-\mathbf{2 a},\left[{ }^{2} \mathrm{H}\right]-\mathbf{2 b},\left[{ }^{2} \mathrm{H}\right]-\mathbf{8}\right.$ (78-90\%, >98\% D) as colorless liquids.

2.1.2 General Procedure for the Hydrosilylation of $\mathbf{1}$ with silanes $\mathbf{2 a}, \mathbf{2 b}$ and 8 (GP 2)

A Schlenk tube was charged with a mixture of (phen) $\mathrm{PdMe}_{2}(1.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 0.02$ equiv.) and $\left[\mathrm{H}\left(\mathrm{OEt}_{2}\right)_{2}\right]^{+} \mathrm{BAr}_{4}^{-}$[$\mathrm{Ar}=3,5$-bis(trifluoromethyl)phenyl] ($5.1 \mathrm{mg}, 0.0050 \mathrm{mmol}, 0.02$ equiv.) under argon atmosphere. The solids were dissolved in anhydrous degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ forming a pale yellow solution. At this temperature, a solution of bicyclic alkene $\mathbf{1}$ ($35.6 \mathrm{mg}, 0.250 \mathrm{mmol}, 1.00$ equiv.) and silane ($\mathbf{2 a}, \mathbf{2 b}$ or $\mathbf{8}$) ($0.300 \mathrm{mmol}, 1.20$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ was added in one portion via syringe. The resulting bright yellow solution was maintained at $0^{\circ} \mathrm{C}$ until complete consumption of the reactants (2 h) as monitored by ${ }^{1} \mathrm{H}$ NMR analysis. After addition of cyclohexane (10 mL) and small portion of silica gel the solvents were evaporated. Purification by flash column chromatography on silica gel (cyclohexane) afforded the analytical pure product ($\mathbf{4 a}, \mathbf{4 b}$ or 9) ($72-88 \%$) as a colorless, highly viscous oil ($\mathbf{4 a}, \mathbf{4 b}$) or as a white solid (9).

2.2 Experimental Details and Characterization Data for Silane Reagents 2a, 2b, 8

2.2.1 Preparation of $r a c-\left[{ }^{2} \mathrm{H}\right]-2 \mathbf{a}$ and $r a c-\left[{ }^{13} \mathrm{C}\right]-\mathbf{2 a}$

rac-[1- $\left.{ }^{2} \mathrm{H}\right]$-1-tert-Butyl-1-(1,2,3,4-tetrahydro)-1-silanaphthalene (rac- $\left.{ }^{2} \mathrm{H}\right]-2 \mathrm{a}$)

Prepared according to GP1 from rac-2a ($214 \mathrm{mg}, 1.13 \mathrm{mmol}, 1.00$ equiv.) furnishing the analytically pure silane rac-[$\left.{ }^{2} \mathrm{H}\right]-\mathbf{2 a}(179 \mathrm{mg}, 87 \%, 99 \% \mathrm{D}$) as a colorless liquid.
R_{f} (cyclohexane) = 0.74; IR (CHCl_{3}) $\tilde{v} 3055$ (w), 3000 (w), 2926 (s), 2856 (s), 2105 (vw), 1591 (w), 1532 (s), 1463 (s), 1436 (s), 1406 (w), 1361 (m), 1292 (m), 1269 (m), 1141 (m), 1074 (m), 1008 (m), $974(\mathrm{~m}), 938(\mathrm{~m}), 917(\mathrm{~m}), 862(\mathrm{~m}), 822$ (s), 782 (s), 742 (m), 699 (m), 674 (m), $622(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 0.92 (ddd, $\left.{ }^{2} J_{\text {2ax,2eq }}=14.8 \mathrm{~Hz},{ }^{3} J_{\text {2ax, } 3 a x}=11.5 \mathrm{~Hz},{ }^{3} J_{\text {2ax, } 3 \text { eq }}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 a \mathrm{ax}\right), 1.01(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13$, $\mathrm{H}-14), 1.14$ (dddd, $\left.{ }^{2} J_{\text {2eq,2ax }}=14.9 \mathrm{~Hz},{ }^{3} J_{\text {2eq,3äq }}=5.0 \mathrm{~Hz},{ }^{3} J_{\text {2eq,3ax }}=5.0 \mathrm{~Hz},{ }^{4} J_{\text {2eq, 4eq }}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 e q\right)$, 1.77 (ddddd, ${ }^{2} J_{3 a x, 3 e q}=13.4 \mathrm{~Hz},{ }^{3} J_{3 a x, 2 a x}=11.5 \mathrm{~Hz},{ }^{3} J_{3 a x, 4 a x}=10.5 \mathrm{~Hz},{ }^{3} J_{3 a x, 2 e q}=4.2 \mathrm{~Hz},{ }^{3} J_{3 a x, 4 e q}=2.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}$), 2.08 (ddddd, ${ }^{2} J_{3 \mathrm{eq}, 3 \mathrm{ax}}=13.3 \mathrm{~Hz},{ }^{3} J_{\text {3eq,2ăq }}=6.6 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{eeq}, 4 \mathrm{eq}}=6.6 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{eq}, 2 \mathrm{ax}}=5.2 \mathrm{~Hz}$, $\left.{ }^{3} J_{3 \mathrm{eq}, 4 \mathrm{ax}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}\right), 2.67\left(\mathrm{ddd},{ }^{2} J_{4 a x, 4 e q}=15.8 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{ax}, 3 \mathrm{ax}}=10.5 \mathrm{~Hz},{ }^{3} J_{4 a x, 3 e q}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 4 ax), 2.76 (dddd, $\left.{ }^{2} J_{4 \mathrm{eq}, 4 \mathrm{ax}}=15.5 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{eq}, 3 \mathrm{eq}}=6.7 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{eq}, 3 \mathrm{ax}}=2.7 \mathrm{~Hz},{ }^{4} J_{\text {eeq, } 2 e q}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}\right)$, 7.12 (dd, ${ }^{3} J_{5,6}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.19 (dd, ${ }^{3} J_{7,6}={ }^{3} J_{7,8}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.28 (ddd, ${ }^{3}{ }_{6,5}={ }^{3} J_{6,7}=7.5$ $\left.\mathrm{Hz},{ }^{4} J_{6,8}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.56\left(\mathrm{dd},{ }^{3} J_{8,7}=7.2 \mathrm{~Hz},{ }^{4} J_{8,6}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right)$ ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.5(\mathrm{C}-2), 17.2(\mathrm{C}-11), 23.2(\mathrm{C}-3), 27.2(\mathrm{C}-12, \mathrm{C}-13, \mathrm{C}-14), 35.5(\mathrm{C}-4), 125.2(\mathrm{C}-7), 128.8$ (C-5), 129.2 (C-6), 130.3 (C-9), 136.2 (C-8), 150.0 (C-10) ppm. ${ }^{29} \mathrm{Si}$ NMR ($\left.99.25 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ $13.74\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{S}, \mathrm{D}}=29.5 \mathrm{~Hz}\right)$ ppm. HR-MS for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{DSi}$: 205.1397 Found: 205.1392.
rac-[2- $\left.{ }^{13} \mathrm{C}\right]$-1-tert-Butyl-1-(1,2,3,4-tetrahydro)-1-silanaphthalene (rac- $\left[{ }^{13} \mathrm{C}\right]-2 \mathrm{a}$)

A $100-\mathrm{mL}$ three-necked flask equipped with a reflux condenser, a $25-\mathrm{mL}$ pressureequalizing dropping funnel, an argon-inlet and a magnetic stirring bar was charged with magnesium turnings ($811 \mathrm{mg}, 33.3 \mathrm{mmol}, 10.0$ equiv.). The flask was subsequently flame dried in vacuo (3 times) with vigorous stirring, backfilled with argon and stirring was continued for 12 h . Then, the magnesium turnings were suspended in THF (10 mL) and a solution of 1,2-dibromoethane $(0.29 \mathrm{~mL}, 0.63 \mathrm{~g}$, $3.3 \mathrm{mmol}, 1.00$ equiv.) was added dropwise. After complete addition, the mixture was heated to reflux and a solution of 2 -([3- $\left.{ }^{13} \mathrm{C}\right]-3$-bromopropyl)-1-bromobenzene ($930 \mathrm{mg}, 3.33$ mmol, 1.00 equiv.) - prepared analogously to the non-labeled dibromide ${ }^{[5]}{ }^{[6]}$ and tert-butyl trichlorosilane ${ }^{[7]}$ ($638 \mathrm{mg}, 3.33 \mathrm{mmol}, 1.00$ equiv.) in THF (20 mL) was added slowly over a period of 2 h . The reaction mixture was maintained for further 24 h at reflux. The resulting solution was transferred to another $100-\mathrm{mL}$ three-necked flask equipped with a reflux condenser, an argon-inlet and a magnetic stirring bar, containing a suspension of $\mathrm{LiAlH}_{4}(253 \mathrm{mg}, 6.66 \mathrm{mmol}, 1.80$ equiv.) in THF (20 mL). Heating at reflux for 12 h was followed by careful quenching of the resulting mixture by pouring it slowly on ice and, finally, adding conc. $\mathrm{HCl}(5 \mathrm{~mL})$ until $\mathrm{pH} 4-5$ was reached.. The organic layer was separated and the aqueous phase was extracted with t-butyl methyl ether ($4 \times 40 \mathrm{~mL}$). The combined organic layers were washed with brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and volatiles were evaporated under reduced pressure. The crude product was purified by flash column chromatography on silica gel with cyclohexane as eluent affording the silane rac-[$\left.{ }^{13} \mathrm{C}\right]-2 \mathrm{a}(266 \mathrm{mg}, 39 \%, 5.4 \%$ overall yield based on [$\left.2-{ }^{13} \mathrm{C}\right]$-acetic acid, ${ }^{[5,6]} 99 \%{ }^{13} \mathrm{C}$) as a colorless liquid.
$\mathrm{R}_{f}=0.74$ (cyclohexane). IR (CHCl_{3}) $\tilde{v} 3055$ (w), 3000 (w), 2926 (s), 2856 (s), 2103 (s), 1591 (w), 1466 (m), 1436 (s), 1389 (w), 1361 (w), 1290 (w), 1266 (w), 1138 (m), 1074 (m), 1009 (m), 976 (m), 939 (m), 917 (m), 886 (s), 885 (s), 821 (s) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90$ (ddddd, ${ }^{1} \mathrm{~J}_{2 \mathrm{ax}, 2 \mathrm{C}}=$ $\left.121 \mathrm{~Hz},{ }^{2} J_{2 \mathrm{ax}, 2 \mathrm{q}}=14.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2 \mathrm{ax}, 3 \mathrm{ax}}=11.7 \mathrm{~Hz},{ }^{3} J_{2 \mathrm{ax}, 3 \mathrm{eq}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax},{ }^{3} J_{2 \mathrm{ax}, 1}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}\right)$, $1.00(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13, \mathrm{H}-14), 1.14\left(\mathrm{dm}_{\mathrm{c}},{ }^{1} \mathrm{~J}_{2 \mathrm{eq}, 2 \mathrm{C}}=121 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}\right), 1.76$ (dddddd, ${ }^{2} \mathrm{~J}_{3 \mathrm{ax}, 3 \mathrm{eq}}=13.2$ $\mathrm{Hz},{ }^{3} J_{3 a \mathrm{ax}, 2 \mathrm{ax}}=11.5 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{ax}, 4 \mathrm{ax}}=10.4 \mathrm{~Hz},{ }^{2} J_{3 \mathrm{ax}, 2 \mathrm{c}}=5.7 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{ax}, 2 \mathrm{eq}}=4.1 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{ax}, 4 \mathrm{eq}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3ax), 2.08 (dddddd, ${ }^{2} J_{3 e q, 3 a x}=13.3 \mathrm{~Hz},{ }^{3} J_{3 e q, 2 e q}={ }^{3} J_{3 e q, 4 e q}=6.6 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{eq}, 2 \mathrm{ax}}=5.1 \mathrm{~Hz},{ }^{2} J_{3 \mathrm{eq}, 2 \mathrm{C}}=3.8 \mathrm{~Hz}$, $\left.{ }^{3} J_{3 \mathrm{eq}, 4 \mathrm{ax}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}\right), 2.66\left(\mathrm{dddd},{ }^{2} J_{4 \mathrm{ax}, 4 \mathrm{eq}}=15.4 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{ax}, 3 \mathrm{ax}}=10.4 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{ax}, 2 \mathrm{C}}=6.3 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{4 \mathrm{ax}, 3 \mathrm{eq}}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}\right), 2.75$ (dddd, ${ }^{2} J_{4 \mathrm{eq}, 4 \mathrm{ax}}=15.1 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{eq}, 3 \mathrm{eq}}={ }^{3} J_{4 \mathrm{eq}, 2 \mathrm{C}}=6.9 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{eq}, 3 \mathrm{ax}}=2.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}), 4.16\left(\mathrm{ddd},{ }^{2} J_{1,2 \mathrm{C}}=6.0 \mathrm{~Hz},{ }^{3} J_{1,2 \mathrm{ax}}={ }^{3} J_{1,2 \mathrm{eq}}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 7.11\left(\mathrm{~d},{ }^{3} J_{5,6}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-5), 7.19$ (dd, ${ }^{3} J_{7,6}={ }^{3} J_{7,8}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.27 ($\mathrm{ddd},{ }^{3} J_{6,5}={ }^{3} J_{6,7}=7.3 \mathrm{~Hz},{ }^{4} J_{6,8}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.54 (dd, $\left.{ }^{3} J_{8,7}=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{8,6}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.55\left({ }^{13} \mathrm{C}-2\right), 17.24$ (C-11), 23.14 ($\mathrm{d},{ }^{2} J_{3,2}=31.1 \mathrm{~Hz}, \mathrm{C}-3$), 27.19 (C-12, C-13, C-14), 35.54 (C-4), 125.19 (C-7), 128.81 (C5), $129.16(C-6), 130.36\left(\mathrm{~d},{ }^{2} J_{9,2}=2.1 \mathrm{~Hz}, \mathrm{C}-9\right), 136.22\left(\mathrm{~d},{ }^{2} J_{9,2}=2.1 \mathrm{~Hz}, \mathrm{C}-8\right), 150.00(\mathrm{C}-10) \mathrm{ppm}$. ${ }^{29} \mathrm{Si}$ NMR ($99.25 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-13.29\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{Si}, \mathrm{C}}=49.7 \mathrm{~Hz}\right) \mathrm{ppm} . \mathrm{HR}-\mathrm{MS}$ for $\mathrm{C}_{12}{ }^{13} \mathrm{CH}_{20} \mathrm{Si}: 205.1368$. Found: 205.1362.

2.2.2 Preparation of $(\mathrm{Si} R)-\mathbf{2 b}$ and $1-\left[{ }^{2} \mathrm{H}\right]-(\mathrm{SiS})-\mathbf{2 b}$

Enantiomerically enriched (SiR)-2b was prepared by analogy to a previously published procedure ${ }^{[2]}$ by resolution of diastereomeric (-)-menthyl silyl ethers and subsequent stereospecific reductive cleavage.

rac-1-Isopropyl-1-(1,2,3,4-tetrahydro)-1-silanaphthalene (rac-2b)

A 1-L three-necked flask equipped with a reflux condenser, a $500-\mathrm{mL}$ pressureequalizing dropping funnel, an argon-inlet and a magnetic stirring bar was charged with magnesium turnings ($24.3 \mathrm{~g}, 1.00 \mathrm{~mol}, 10.0$ equiv.). The flask was subsequently flame dried in vacuo (3 times) with vigorous stirring, backfilled with argon and stirring was continued for 12 h . Then, the magnesium turnings were suspended in THF (150 mL) and a solution of 1,2-dibromoethane ($8.80 \mathrm{~mL}, 18.8 \mathrm{~g}$, $100 \mathrm{mmol}, 1.00$ equiv.) in THF (50 mL) was added dropwise. After complete addition, the mixture was heated to reflux and a solution of 1-bromo-2-(3-bromopropyl)benzene ${ }^{[5]}$ (27.8 g, $100 \mathrm{mmol}, 1.00$ equiv.) and isopropyltrichlorosilane ${ }^{[8]}(17.8 \mathrm{~g}, 100 \mathrm{mmol}, 1.00$ equiv.) in THF (400 mL) was added slowly over a period of 5 h . The reaction mixture was maintained for further 14 h at reflux. The resulting solution was transferred to another $1-\mathrm{L}$ three-necked flask equipped with a reflux condenser, an argon-inlet and a magnetic stirring bar, containing a suspension of $\mathrm{LiAlH}_{4}(6.83 \mathrm{~g}, 180$ mmol, 1.80 equiv.) in THF (100 mL). Heating at reflux for 3 h was followed by careful quenching of the resulting mixture by pouring it slowly on ice and, finally, adding conc. $\mathrm{HCl}(100 \mathrm{~mL})$ until $\mathrm{pH} 4-5$ was reached. The organic layer was separated and the aqueous phase was extracted with t-butyl methyl ether $(4 \times 150 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and volatiles were evaporated under reduced pressure. The crude product was distilled in vacuo (bp $92-93^{\circ} \mathrm{C}$ at 3 mbar) affording the silane rac- $2 \mathrm{~b}(8.30 \mathrm{~g}, 43 \%$) as a colorless liquid.
$\mathrm{R}_{f}=0.75$ (cyclohexane). HPLC (Daicel Chiralcel OJ-RH column, column temperature $12^{\circ} \mathrm{C}$, $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}=50: 50$, flow rate $\left.\left.0.50 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}\right): 67.3 \mathrm{~min}[(\mathrm{SiR})-2 \mathrm{~b})\right]$, $\left.70.3 \mathrm{~min}[(\mathrm{SiS})-2 b)\right]$. IR (CHCl_{3}) 3055 (w), 2998 (w), 2923 (s), 2889 (m), 2860 (s), 2105 (s), 1591 (w), 1563 (w), 1463 (m), $1435(\mathrm{~m}), 1408(\mathrm{~m}), 1382(\mathrm{w}), 1364(\mathrm{w}), 1347(\mathrm{w}), 1292(\mathrm{~m}), 1267(\mathrm{~m}), 1141(\mathrm{~m}), 1127(\mathrm{~m}), 1074(\mathrm{~m})$, 1028 (m), 1003 (m), 978 (m), 917 (w), 879 (w), 861 (w), 819 (s), 802 (s), 772 (m), 744 (s$), 702(\mathrm{w}), 673$ (w), $645(\mathrm{w}) \mathrm{cm}^{-1}$, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87-0.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~A}), 1.00-1.20(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-2 \mathrm{~B}, \mathrm{H}-$ 11, H-12, H-13), $1.94\left(m_{c}, 2 H, H-3 A, H-3 B\right), 2.74\left(m_{c}, 2 H, H-4 A, H-4 B\right), 4.21\left(d d d,{ }^{3} J_{1,2 A}={ }^{3} J_{1,2 \mathrm{~b}}={ }^{3} J_{1,11}\right.$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $7.12\left(\mathrm{~d},{ }^{3} J_{5,6}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.19\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{7,6}={ }^{3} \mathrm{~J}_{7,8}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.27$ (ddd, $\left.{ }^{3} J_{6,5}={ }^{3} J_{6,7}=7.5 \mathrm{~Hz},{ }^{4} J_{6,8}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.49\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{8,7}=7.3 \mathrm{~Hz},{ }^{4} J_{8,6}=1.3 \mathrm{~Hz}, \mathrm{H}-8\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.28$ (C-2), 12.43 (C-11), 18.14 (C-12), 18.36 (C-13), 22.86 (C-3), 35.36 (C4), 125.30 (C-7), 128.83 (C-5), 129.14 (C-6), 130.60 (C-9), 135.60 (C-8), 149.58 (C-10), ppm. HR-MS for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Si}$: 190.1178 . Found: 190.1172. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Si}$: C 75.71, H 9.53. Found: C 75.42, H 9.71 .
(SiRS)-1-Isopropyl-1-[(1R,2S,5R)-1-menthyloxy]-1,2,3,4-tetrahydro-1-silanaphthalene

A saturated solution of Cl_{2} in $\mathrm{CCl}_{4}(20 \mathrm{~mL})$ was added to a solution of rac2b ($4.09 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.00$ equiv.) in $\mathrm{CCl}_{4}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ until a permanent pale yellow color appeared. After 4 min the reaction mixture was purged with argon. Evaporation of the solvent under reduced pressure provided crude rac-1-Chloro-1-isopropyl-1-(1,2,3,4-tetrahydro)-1-silanaphthalene as a colorless oil which was used in the subsequent etherification without further purification.

A solution of (-)-menthol ($4.69 \mathrm{~g}, 30.0 \mathrm{mmol}, 1.50$ equiv., $>99 \%$ ee) in THF (40 mL) was added to a suspension of oil-free potassium hydride ($1.40 \mathrm{~g}, 35.0 \mathrm{mmol}, 1.75$ equiv.) in THF (10 mL) at room temperature. To ensure complete deprotonation, the mixture was heated at reflux for for 1 h . Subsequently, the mixture was treated portionwise with a solution of freshly prepared chlorosilane in THF (50 mL) at ambient temperature. Heating at reflux for 4 h was followed by cooling to ambient temperature, quenching with water (100 mL) and then 2 M HCl until pH 7 was reached. The organic layer was separated and the aqueous phase was extracted with t-butyl methyl ether ($4 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine (50 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the volatiles were evaporated under reduced pressure. The crude product optionally was distilled under high vacuum (bp $130-140^{\circ} \mathrm{C}$ at $10^{-6} \mathrm{mbar}$) to remove excess (-)-menthol furnishing a diastereomeric mixture of $(-)$-menthyl silyl ethers $(5.71 \mathrm{~g}, 83 \%$, d.r. $=50: 50)$ as a yellowish, viscous oil. Separation of diastereomers by repeated flash column chromatography on silica gel with cyclohexane as eluent delivered highly diastereomerically enriched (Si)-1-isopropyl-1-[(1R,2S,5R)-1-menthyloxy]-1,2,3,4-tetrahydro-1-silanaphthalene ${ }^{[9]}(2.24 \mathrm{~g}, 33 \%$ based on rac-2b, d.r. $=98: 2)$ as a highly viscous oil. The opposite diastereomer was obtained by the same procedure ($1.98 \mathrm{~g}, 29 \%$, d.r. $=16: 84$).

IR (CHCl_{3}): $\tilde{v}=3054$ (w), 2998 (w), 2954 (s), 2922 (s), 2865 (s), 1590 (w), 1460 (m), 1435 (m), 1370 (m), 1344 (m), 1292 (s), 1269 (s), 1236 (s), 1179 (s), 1141 (m), 1107 (s), 1181 (s), 1081 (s), 1065 (m), 997 (w), 970 (w), 928 (w), 867 (m), 801 (m), 779 (w), 738 (s), 693 (w), 643 (w) cm ${ }^{-1}$.

Analytical data for $(\mathrm{SiS}): \mathrm{R}_{f}($ cyclohexane $)=0.21 ;[\alpha]_{D}^{20}=-58.4,[\alpha]_{578}^{20}=$ -60.9, $[\alpha]_{546}^{20}=-68.9,[\alpha]_{436}^{20}=-115,[\alpha]_{365}^{20}=-178\left(c 1.88, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.50\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{10^{\prime}, 8^{\prime}}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10^{\prime}\right), 0.76-1.32(\mathrm{~m}$, $8 \mathrm{H}, \mathrm{H}-2 \mathrm{~A}, \mathrm{H}-2 \mathrm{~B}, \mathrm{H}-3^{\prime} \mathrm{A}, \mathrm{H}-4$ 'A, $\mathrm{H}-6^{\prime} \mathrm{A}, \mathrm{H}-11, \mathrm{H}-2$ ', $\mathrm{H}-5{ }^{\prime}$), 0.84 ($\mathrm{d}^{3}{ }^{3} \mathrm{~J}^{7}, 5^{\prime}=6.5$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{H}-7^{\prime}\right), 0.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}^{\prime}, 8^{\prime}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9^{\prime}\right), 0.94\left(\mathrm{~d},{ }^{3} J_{12,11}=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{H}-12), 1.05\left(\mathrm{~d},{ }^{3} J_{13,11}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-13\right), 1.50-1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{B}, \mathrm{H}-\mathrm{H}^{\prime} \mathrm{B}\right)$, $1.81\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{B}\right), 1.86-2.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 2.23\left(\mathrm{ttd},{ }^{3} \mathrm{~J}_{8^{\prime}, 9^{\prime}}={ }^{3} \mathrm{~J}_{8^{\prime}, 10^{\prime}}=7.0\right.$ $\left.\mathrm{Hz},{ }^{3} J_{8^{\prime}, 2^{\prime}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 2.67\left(\mathrm{ddd},{ }^{2} J_{4 \mathrm{~A}, 4 \mathrm{~B}}=15.9 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{~A}, 3 \mathrm{~A}}=8.8 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{~A}, 3 \mathrm{~B}}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~A}\right)$, $2.80\left(\mathrm{ddd},{ }^{2} J_{4 \mathrm{~B}, 4 \mathrm{~A}}=16.0 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{~B}, 3 \mathrm{~B}}=7.5 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{~B}, 3 \mathrm{~A}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~B}\right), 3.39\left(\mathrm{ddd},{ }^{3} J_{1^{\prime}, 2^{\prime}}={ }^{3} J_{1^{\prime}, 6^{\prime} \mathrm{A}}=\right.$ $\left.10.3 \mathrm{~Hz},{ }^{3} J_{1^{\prime}, 6^{\prime} \mathrm{B}}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 7.10\left(\mathrm{~d},{ }^{3} J_{5,6}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.18\left(\mathrm{dd},{ }^{3} J_{7,6}={ }^{3} J_{7,8}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-7$), 7.26 (ddd, ${ }^{3} J_{6,5}={ }^{3} J_{6,7}=7.5 \mathrm{~Hz},{ }^{4} J_{6,8}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.54 ($\mathrm{dd},{ }^{3} J_{8,7}=7.5 \mathrm{~Hz},{ }^{4} J_{8,6}=1.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-8) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 10.78$ (C-2), 14.38 (C-11), 15.81 (C-10'), 17.12 (C-12),
17.33 (C-13), 21.43 (C-9'), 22.42 (C-7'), 22.84 (C-3'), 23.26 (C-3), 25.21 (C-8'), 31.69 (C-5'), 34.63 (C-4'), 35.67 (C-4), 45.61 (C-6'), 50.41 (C-2'), 72.29 (C-1'), 125.13 (C-7), 128.49 (C-5), 129.29 (C-6), 132.35 (C-9), 134.82 (C-8), 149.82 (C-10) ppm. LR-MS (EI): m/z $344\left[(\mathrm{M}+\mathrm{H})^{+}\right], 301\left[\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{OSi}$: C 76.68 , H 10.53 . Found: C 76.41, H 10.60.

Analytical data for $(\mathrm{Si} R): \mathrm{R}_{f}($ cyclohexane $)=0.18 ;[\alpha]_{D}^{20}=-51.1,[\alpha]_{578}^{20}=$ -52.7, $[\alpha]_{546}^{20}=-60.3,[\alpha]_{436}^{20}=-102,[\alpha]_{365}^{20}=-160\left(c 1.32, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{bg}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{10^{\prime}, 8^{\prime}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10^{\prime}\right), 0.69-1.31(\mathrm{~m}$, 8H, H-2A, H-2B, H-3'A, H-4'A, H-6'A, H-11, H-2', H-5'), 0.80 ($\mathrm{d}^{3}{ }^{3} \mathrm{~J}^{\prime}, 5^{\prime}=6.4$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{H}-7^{\prime}\right), 0.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{9^{\prime}, 8^{\prime}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9^{\prime}\right), 0.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{12,11}=6.7 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{H}-12), 1.07\left(\mathrm{~d},{ }^{3} J_{13,11}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-13\right), 1.51-1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{B}, \mathrm{H}-4{ }^{\prime} \mathrm{B}\right)$, $1.75\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{B}\right), 1.94\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{~A}, \mathrm{H}-3 \mathrm{~B}\right), 2.23\left(\mathrm{ttd},{ }^{3} \mathrm{~J}_{8^{\prime}, 9^{\prime}}={ }^{3} \mathrm{~J}_{8^{\prime}, 10^{\prime}}=7.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8^{\prime}, 2^{\prime}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-8$) , 2.67 (ddd, ${ }^{2} \mathrm{~J}_{4 \mathrm{~A}, 4 \mathrm{~B}}=15.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{4 \mathrm{~A}, 3 \mathrm{~A}}=8.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{4 \mathrm{~A}, 3 \mathrm{~B}}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~A}$), 2.79 (ddd, ${ }^{2} \mathrm{~J}_{4 \mathrm{~B}, 4 \mathrm{~A}}=15.9$ $\left.\mathrm{Hz},{ }^{3} J_{4 \mathrm{~B}, 3 \mathrm{~B}}=6.9 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{~B}, 3 \mathrm{~A}}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~B}\right), 3.45$ (ddd, ${ }^{3} J_{1^{\prime}, 2^{\prime}}={ }^{3} J_{1^{\prime}, 6^{\prime} \mathrm{A}}=10.0 \mathrm{~Hz},{ }^{3} J_{1^{\prime}, 6^{\prime} \mathrm{B}}=4.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1$) , 7.10 ($\mathrm{d},{ }^{3} J_{5,6}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.19 ($\mathrm{dd},{ }^{3} \mathrm{~J}_{7,6}={ }^{3} J_{7,8}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.26 (ddd, ${ }^{3} J_{6,5}=$ $\left.{ }^{3} J_{6,7}=7.5 \mathrm{~Hz},{ }^{4} J_{6,8}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.56\left(\mathrm{dd},{ }^{3} J_{8,7}=7.1 \mathrm{~Hz},{ }^{4} J_{8,6}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 9.75$ (C-2), 14.41 (C-11), 15.75 (C-10'), 17.10 (C-12), 17.33 (C-13), 21.42 (C-9'), 22.36 (C-7'), 22.85 (C-3'), 23.42 (C-3), 25.22 (C-8'), 31.72 (C-5'), 34.63 (C-4'), 35.66 (C-4), 45.21 (C$\left.6^{\prime}\right), 50.41$ (C-2'), 72.99 (C-1'), 125.13 (C-7), 128.51 (C-5), 129.27 (C-6), 133.00 (C-9), 134.77 (C-8), 149.65 (C-10) ppm. LR-MS (EI): m/z $344\left[(\mathrm{M}+\mathrm{H})^{+}\right], 301\left[\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{OSi}$: C 76.68, H 10.53. Found: C 76.38, H 10.44.

(SiR)-1-Isopropyl-1-(1,2,3,4-tetrahydro)-1-silanaphthalene (SiR-2b) ${ }^{[10]}$

A 25-mL Schlenk flask equipped with a magnetic stirring bar and a reflux condenser was charged with DIBAL-H $(8.00 \mathrm{~mL}, 8.00 \mathrm{mmol}, 4.00$ equiv., 1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). After evaporation of dichloromethane under reduced pressure at ambient temperature, a solution of (SiS)-1-isopropyl-1-[(1R,2S,5R)-1-menthyloxy]-1,2,3,4-tetrahydro-1-silanaphthalene ($689 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv., d.r. $=98: 2$) in n heptane (15 mL) was added in one portion. The reaction mixture was subsequently heated to $100^{\circ} \mathrm{C}$ and maintained at this temperature for 20 h . The reaction was quenched at ambient temperature by careful addition of water (40 mL) followed by 2 M $\mathrm{HCl}(25 \mathrm{~mL})$ until pH 7 was reached. The organic layer was separated and the aqueous phase extracted with t-butyl methyl ether ($4 \times 40 \mathrm{~mL}$). The combined organic layers were washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and volatiles were evaporated under reduced pressure. The crude product was purified by flash column chromatography on silica gel with cyclohexane as eluent, furnishing the analytically pure, highly enantiomerically enriched silane (SiR)-2b (342 mg, 90\%, 97\% $e e)$ as a colorless liquid.
$\mathrm{R}_{f}($ cyclohexane $)=0.73 ;[\alpha]_{D}^{20}=+72.5,[\alpha]_{578}^{20}=+76.1,[\alpha]_{546}^{20}=+86.4,[\alpha]_{436}^{20}=+148,[\alpha]_{365}^{20}=$ $+237\left(c 1.67, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel Chiralcel $\mathrm{OJ}-\mathrm{RH}$ column, column temperature $12^{\circ} \mathrm{C}, \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}=$ 50:50, flow rate $0.50 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm})$: $67.3 \mathrm{~min}[(\mathrm{Si} R)-\mathbf{2 b})], 70.3 \mathrm{~min}[(\mathrm{SiS})-\mathbf{2 b})$]

(SiS)-[1- $\left.{ }^{2} \mathrm{H}\right]-1-I$ sopropyl-1-(1,2,3,4-tetrahydro)-1-silanaphthalene (SiS)-[$\left.{ }^{2} \mathrm{H}\right]-2 \mathrm{~b}$)

Prepared according to GP1 from ($\mathrm{Si} R)-\mathbf{2 b}(246 \mathrm{mg}, 1.29 \mathrm{mmol}, 1.00$ equiv.) furnishing the analytically pure silane (SiS)-[$\left.{ }^{2} \mathrm{H}\right]-2 b(205 \mathrm{mg}, 83 \%, 95 \%$ ee, 99% D) as a colorless liquid.
R_{f} (cyclohexane) $=0.73$; HPLC (Daicel Chiralcel OJ-RH column, column temperature $12^{\circ} \mathrm{C}, \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}=50: 50$, flow rate $\left.0.50 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}\right): 67.3$ $\min [(\mathrm{Si} R)-1-[2 \mathrm{H}]-2 b)], 70.3 \mathrm{~min}[(\mathrm{SiS})-1-[2 \mathrm{H}]-2 \mathrm{~b})] . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \tilde{v} 3055(\mathrm{w}), 2998$ (w), 2923 (s), 2860 (s), 1638 (m), 1532 (s), 1463 (m), 1435 (m), 1382 (m), 1292 (w), 1269 (w), 1141 (w), 1073 (w), 1031 (w), 973 (s), 880 (m), 782 (s), 742 (w), 724 (m), 701 (m) cm ${ }^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.92\left(\mathrm{ddd},{ }^{2} \mathrm{~J}_{2 \mathrm{~A}, 2 \mathrm{~B}}=14.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2 \mathrm{~A}, 3 \mathrm{~A}}=9.8 \mathrm{~Hz},{ }^{3} J_{2 \mathrm{~A}, 3 \mathrm{~B}}=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~A}\right)$, 1.00-1.20 (m, 8H, H-2B, H-11, H-12, H-13), 1.92 ($\left.m_{c}, 2 H, H-3 A, H-3 B\right), 2.75\left(m_{c}, 2 H, H-4 A, H-4 B\right)$, $7.12\left(\mathrm{~d},{ }^{3} J_{5,6}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.19\left(\mathrm{dd},{ }^{3} J_{7,6}={ }^{3} J_{7,8}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.27\left(\mathrm{ddd},{ }^{3} J_{6,5}={ }^{3} J_{6,7}=7.5\right.$ $\left.\mathrm{Hz},{ }^{4} \mathrm{~J}_{6,8}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.49\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{8,7}=7.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{8,6}=1.2 \mathrm{~Hz}, \mathrm{H}-8\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.19(\mathrm{C}-2), 12.35(\mathrm{C}-11), 18.13(\mathrm{C}-12), 18.35(\mathrm{C}-13), 22.86(\mathrm{C}-3), 35.37(\mathrm{C}-4), 125.29(\mathrm{C}-7)$, 128.83 (C-5), 129.14 (C-6), 130.57 (C-9), 135.60 (C-8), 149.61 (C-10), ppm. HR-MS for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Si}$: 191.1241. Found: 190.1235.

2.2.3 Preparation of $\left[{ }^{2} \mathrm{H}\right]-8$

$\left[1-{ }^{2} \mathrm{H}\right]$-MethyIdiphenyIsilane $\left(\left[^{2} \mathrm{H}\right]-8\right)$

Prepared according to GP1 from commercially available $8(2.06 \mathrm{mg}, 10.4 \mathrm{mmol}, 1.00$ equiv.) furnishing the analytically pure silane $\left[{ }^{2} \mathrm{H}\right]-8\left(1.61 \mathrm{~g}, 78 \%,>98 \%\right.$ D by ${ }^{1} \mathrm{H}$ NMR) as a colorless liquid.
R_{f} (cyclohexane) $=0.63$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \tilde{v} 3134$ (w), 3068 (s), 3049 (s), 3016 (s), 2960 (m), 2902 (w), 1955 (w), 1882 (w), 1818 (w), 1765 (vw), 1588 (w), 1544 (s), 1485 (w), 1427 (s), 1328 (w), 1301 (w), 1251 (m), 1188 (w), 1115 (s), 1067 (w), 1028 (w), 997 (s), 797 (s), 725 (s), 697 (s), 670 (s), 646 (w), 584 (w) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.65(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-1$ '), $7.35-7.43(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4, \mathrm{H}-6), 7.57-7.63(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3$, $\mathrm{H}-5) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.10$ (C-1'), 127.95 (C-Ar), 129.50 (C-Ar), 134.82 (C-Ar), 135.32 (C-Ar $r_{i p s o}$) ppm. HR-MS for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{DSi}$: 199.0928. Found: 199.0922.

2.3 Experimental Details and Characterization Data for Hydrosilylation Products

(1S,2S,4R,SiR)-1-tert-Butyl-1-(1,2,3,4-tetrahydro-1,4-methano-naphthalen-2-yl)-1-sila-1,2,3,4tetrahydronaphthalene [(SiR)-4a]

Prepared according to GP2 from 1 ($35.6 \mathrm{mg}, 0.250 \mathrm{mmol}, 1.00$ equiv.), (SiS)-2a ($61.3 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.20$ equiv., 98% ee) furnishing analytically pure ($\mathrm{Si} R$) $\mathbf{- 4 a}(68 \mathrm{mg}, 78 \%, 99 \% e e$) as a colorless, highly viscous oil.
$\mathrm{R}_{f}=0.49$ (cyclohexane). $[\alpha]_{D}^{20}=-41.5,[\alpha]_{578}^{20}=-43.3,[\alpha]_{546}^{20}=-50.5$, $[\alpha]_{436}^{20}=-99.0,[\alpha]_{365}^{20}=-191 \quad\left(c=1.09\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. HPLC (Daicel Chiralcel OD-RH column, column temperature $20^{\circ} \mathrm{C}, \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}=$ 75:25, flow rate $0.50 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}): 29.0 \mathrm{~min}[(\mathrm{Si} R)-4 a)]$, $31.8 \mathrm{~min}[(\mathrm{SiS})-4 a)] . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \tilde{v}$ 3050 (s), 2922 (s), 2401 (m), 2361 (m), 2329 (w), 1943 (w), 1923 (w), 1802 (w), 1684 (w), 1654 (w), 1588 (m), 1559 (m), 1521 (m), 1471 (s), 1435 (s), 1390 (m), 1362 (m), 1294 (m), 1262 (s), 1220 (s), 1198 (s$), 1114$ (m), 1069 (m), 1107 (m), 981 (m), 889 (m), 821 (s), 799 (s), 674 (s), 627 (s), 627 (s), 607 (s), 519 (s) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.95-1.06$ (m, 2H, H-2'endo, H-2ax), 1.00 (s, 9H, $\mathrm{H}-12, \mathrm{H}-13, \mathrm{H}-14), 1.15$ (dddd, ${ }^{2} J_{2 e q, 2 a x}=14.9 \mathrm{~Hz},{ }^{3} J_{2 e q, 3 a ̈ q}=6.8 \mathrm{~Hz},{ }^{3} J_{2 e q, 3 a x}=4.0 \mathrm{~Hz},{ }^{4} J_{2 e q, 4 e q}=1.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 1.32$ (dddd, ${ }^{2} J_{3^{\prime} \text { 'endo, } 3^{\prime} \text { 'exo }}=11.8 \mathrm{~Hz},{ }^{3} J_{3^{\prime} \text { 'endo, } 2^{\prime} \text { 'endo }}=9.7 \mathrm{~Hz},{ }^{3} J_{3^{\prime} \text { 'endo, } 4^{\prime}}=2.3 \mathrm{~Hz},{ }^{3} J_{3^{\prime} \text { 'endo, } 11^{\prime} \mathrm{B}}=0.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3$ 'endo), 1.43 (ddd, ${ }^{2} J_{11^{\prime} \mathrm{A}, 11^{\prime} \mathrm{B}}=8.9 \mathrm{~Hz},{ }^{3} J_{11^{\prime} \mathrm{A}, 4^{\prime}}={ }^{3} J_{11^{\prime} \mathrm{A}, 1^{\prime}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime} \mathrm{A}$), 1.60 (ddddd, $\left.{ }^{2} J_{11^{\prime} \mathrm{B}, 11^{\prime} \mathrm{A}}=8.9 \mathrm{~Hz},{ }^{3} J_{11^{\prime} \mathrm{B}, 4^{\prime}}={ }^{3} J_{11^{\prime} \mathrm{B}, 1^{\prime}}={ }^{4} J_{11^{\prime} \mathrm{B}, 3^{\prime} \text { endo }}={ }^{3} J_{11^{\prime} \mathrm{B}, 2^{\prime} \text { endo }}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime} \mathrm{B}\right), 1.78-1.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 3ax), 1.84 (ddd, ${ }^{2} J_{3^{\prime} \text { exo, } 3^{\prime} \text { endo }}=11.8 \mathrm{~Hz},{ }^{3} J_{3^{\prime} \text { exo, } 2^{\prime} \text { 'endo }}=6.9 \mathrm{~Hz},{ }^{3} J_{3^{\prime} \text { exo, } 4^{\prime}}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ 'exo), 2.13 (ddddd, $\left.{ }^{2} J_{3 \text { eq,3ax }}=13.4 \mathrm{~Hz},{ }^{3} J_{3 \text { eq,2äq }}={ }^{3} J_{3 \text { eq,4eq }}=6.8 \mathrm{~Hz},{ }^{3} J_{3 \text { eq,2ax }}=4.9 \mathrm{~Hz},{ }^{3} J_{3 \text { eq, } 4 \mathrm{ax}}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}\right), 2.72$ (ddd, $\left.{ }^{2} J_{4 \mathrm{ax}, 4 \mathrm{eq}}=15.7 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{ax}, 3 \mathrm{ax}}=10.3 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{ax}, 3 \mathrm{eq}}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}\right), 2.79\left(\mathrm{br} \mathrm{ddd},{ }^{2} J_{4 \mathrm{eq}, 4 \mathrm{ax}}=15.8\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}_{4 \mathrm{eq}, 3 \mathrm{eq}}=6.6 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{eq}, 3 \mathrm{ex}}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}\right), 3.32\left(\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}^{\prime}, 3^{\prime} \mathrm{exo}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.42(\mathrm{br} \mathrm{s}$, 1H, H-1'), 7.05-7.14 (m, 4H, H-5, H-7, H-6', H-7'), 7.16-7.19 (m, 2H, H-5', H-8'), 7.23 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}-6$), $7.41\left(\mathrm{~m}_{\mathrm{c}}, \mathrm{H}-8\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{C}-2), 18.57(\mathrm{C}-11)$, $23.92(\mathrm{C}-3, \mathrm{C}-2$) , 27.67 (C-12, C-13, C-14), 31.54 (C-3'), 36.03 (C-4), 44.17 (C-4'), 45.70 (C-1'), 48.39 (C-11'), 118.84 (C-8'), 121.10 (C-5'), 124.96 (C-7), 125.23 (C-6'), 125.61 (C-7'), 128.64 (C-5), 128.71 (C-6), 132.61 (C-9), 135.72 (C-8), 147.20 ($\mathrm{C}-10$ '), 149.93 ($\mathrm{C}-10$), 151.14 ($\mathrm{C}-9$ ') ppm. ${ }^{29} \mathrm{Si}$ NMR ($99.25 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.01$ (s) ppm. LRMS (CI: $\left.\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 347\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, (EI) $\mathrm{m} / \mathrm{z} 289\left[\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{Si}$: C, 83.17; H, 8.72. Found: C, 83.16; H, 8.94.
rac-($1 R^{*}, 2 R^{*}, 4 S^{*}, \mathrm{SiS}^{*}$)-[3'- $\left.{ }^{2} \mathrm{H}\right]-1-$ tert-Butyl-1-(1,2,3,4-tetrahydro-1,4-methano-naphthalen-2-yl)-1-sila-1,2,3,4-tetrahydronaphthalene (rac- $\left.\left[{ }^{2} \mathrm{H}\right]-4 \mathrm{a}\right]$)

Prepared according to GP2 from $1(42.7 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.00$ equiv.), rac- $\left[^{2} \mathrm{H}\right]-2 a \quad(74.0 \mathrm{mg}, ~ 0.360 \mathrm{mmol}, 1.20$ equiv., $99 \% \mathrm{D})$ furnishing analytically pure rac- $\left[{ }^{2} \mathrm{H}\right]-4 \mathrm{a}(83 \mathrm{mg}, 80 \%, 97 \% \mathrm{D})$ as a colorless, highly viscous oil.
$\mathrm{R}_{f}=0.49$ (cyclohexane). IR $\left(\mathrm{CHCl}_{3}\right) \quad \tilde{v} 3050(\mathrm{~m}), 3017(\mathrm{~m}), 2998(\mathrm{~m})$, 2958 (s), 2927 (s), 2880 (s), 2854 (s), 1588 (w), 1466 (s), 1434 (m), 1407 (w), 1389 (w), 1360 (m), 1293 (m), 1266 (m), 1239 (m), 1217 (m), 1194 (m), 1155 (m), 1141 (m), 1128 (m), 1110 (m), 1072 (m), 1009 (m), 994 (m), 975 (m), 929 (m), 876 (m), 848 (m), 821 (m), 782 (s), 753 (s), 741 (s), 726 (s), 690 (m), 671 $(\mathrm{m}), 620(\mathrm{~m}), 603(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.94-1.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$ 'endo, H-2ax), $1.00(\mathrm{~s}$, $9 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13, \mathrm{H}-14), 1.15$ (dddd, ${ }^{2} J_{2 e q, 2 a x}=14.9 \mathrm{~Hz},{ }^{3} J_{2 e q, 3 e q}=6.8 \mathrm{~Hz},{ }^{3} J_{2 e q, 3 a x}=4.0 \mathrm{~Hz},{ }^{4} J_{2 e q, 4 e q}=1.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 1.31$ (ddd, ${ }^{3} J_{3^{\prime} \text { endo, } 2^{\prime} \text { endo }}=9.7 \mathrm{~Hz},{ }^{3} J_{3^{\prime} \text { 'endo, } 4^{\prime}}=1.7 \mathrm{~Hz},{ }^{3} J_{3^{\prime} \text { endo, } 11^{\prime} \mathrm{B}}=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$ endo), 1.43 (ddd, ${ }^{2} J_{11^{\prime} \mathrm{A}, 11^{\prime} \mathrm{B}}=8.9 \mathrm{~Hz},{ }^{3} J_{11^{\prime} \mathrm{A}, 4^{\prime}}={ }^{3} J_{11^{\prime} \mathrm{A}, 1^{\prime}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime} \mathrm{A}$), 1.60 (ddddd, ${ }^{2} J_{11^{\prime} \mathrm{B}, 11^{\prime} \mathrm{A}}=8.9 \mathrm{~Hz}$, $\left.{ }^{3} J_{11^{\prime} \mathrm{B}, 4^{\prime}}={ }^{3} J_{11^{\prime} \mathrm{B}, 1^{\prime}}={ }^{4} J_{11^{\prime} \mathrm{B}, 3^{\prime} \text { endo }}={ }^{3} J_{11^{\prime} \mathrm{B}, 2^{\prime} \text { endo }}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime} \mathrm{B}\right), 1.82$ (ddddd, ${ }^{2} J_{3 \mathrm{ax}, 3 \mathrm{eq}}=13.2 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{ax}, 2 \mathrm{ax}}$ $\left.=11.5 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{ax}, 4 \mathrm{ax}}=10.3 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{ax}, 2 \mathrm{eq}}=4.0 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{ax}, 4 \mathrm{eq}}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}\right), 2.13$ (ddddd, ${ }^{2} J_{3 \mathrm{eq}, 3 \mathrm{ax}}=$ $\left.13.4 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{eq}, 2 \mathrm{azq}}={ }^{3} J_{3 \mathrm{eq}, 4 \mathrm{eq}}=6.8 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{eq}, 2 \mathrm{ax}}=4.9 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{eq}, 4 \mathrm{ax}}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}\right), 2.73\left(\mathrm{ddd},{ }^{2} J_{4 \mathrm{ax}, 4 \mathrm{eq}}\right.$ $\left.=15.7 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{ax}, 3 \mathrm{ax}}=10.3 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{ax}, 3 \mathrm{eq}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}\right), 2.79\left(\mathrm{br} \mathrm{ddd},{ }^{2} J_{4 \mathrm{eq}, 4 \mathrm{ax}}=15.8 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{eq}, 3 \mathrm{eq}}=\right.$ $\left.6.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{4 \mathrm{eq}, 3 \mathrm{ax}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}\right), 3.32\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.42\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 7.05-7.14(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-$ 5, H-7, H-6', H-7'), 7.16-7.19 (m, 2H, H-5', H-8'), $7.23\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.38-7.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{C}-2), 18.57(\mathrm{C}-11), 23.92(\mathrm{C}-3, \mathrm{C}-2$), 27.64 (C-12, C-13, C-14), 31.22 ($\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{D}}=20 \mathrm{~Hz}, \mathrm{C}-3^{\prime}$), $36.03(\mathrm{C}-4), 44.14\left(\mathrm{C}-4^{\prime}\right), 45.71\left(\mathrm{C}-1{ }^{\prime}\right), 48.39\left(\mathrm{C}-11^{\prime}\right), 118.84$ (C-8'), 121.10 (C$\left.5^{\prime}\right), 124.96$ (C-7), 125.23 (C-6'), 125.61 (C-7'), 128.65 (C-5), 128.71 (C-6), 132.61 (C-9), 135.72 (C-8), 147.20 (C-10'), 149.93 (C-10), 151.14 (C-9') ppm. ${ }^{29} \mathrm{Si}$ NMR ($99.25 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.00(\mathrm{br} \mathrm{s}) \mathrm{ppm}$. LRMS (EI) m/z $289\left[\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}\right]$. HR-MS for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{DSi}$ 347.2180. Found: 347.2174.

rac-($\left.1 R^{*}, 2 R^{*}, 4 S^{*}, \mathrm{SiS}^{\star}\right)-\left[2-{ }^{13} \mathrm{C}\right]$-1-tert-Butyl-1-(1,2,3,4-tetrahydro-1,4-methano-naphthalen-2-yl)-1-sila-1,2,3,4-tetrahydronaphthalene [rac-[$\left.{ }^{13} \mathrm{C}\right]-4 \mathrm{a}$]

Prepared according to GP2 from 1 ($35.6 \mathrm{mg}, 0.250 \mathrm{mmol}, 1.00$ equiv.), rac- $\left[{ }^{13} \mathrm{C}\right]-2 \mathrm{a}$ ($61.6 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.20$ equiv., $99 \%{ }^{13} \mathrm{C}$) furnishing analytically pure rac- $\left[{ }^{13} \mathrm{C}\right]-4 \mathrm{a}\left(62 \mathrm{mg}, 72 \%, 98 \%{ }^{13} \mathrm{C}\right.$) as a colorless, highly viscous oil.
$\mathrm{R}_{f}=0.49$ (cyclohexane). IR (CHCl_{3}) $\tilde{v} 3050$ (m), 2956 (s), 2926 (s), 2855 (s), 1588 (w), 1468 (s), 1434 (m), 1389 (w), 1360 (m), 1291 (m), $1262(\mathrm{~m}), 1195(\mathrm{~m}), 1156(\mathrm{~m}), 1136(\mathrm{~m}), 1072(\mathrm{~m}), 1011(\mathrm{~m}), 978(\mathrm{~m})$, 943 (m), 916 (m), 888 (m), 820 (m), 753 (s), 737 (s), 725 (s), 688 (m), $672(\mathrm{~m}), 644(\mathrm{~m}), 588(\mathrm{~s}) \mathrm{cm}^{-1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.81-1.22$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2$ 'endo, H-2ax, H2eq), $1.00(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13, \mathrm{H}-14), 1.32$ (ddd, ${ }^{2} J_{3^{\prime} \text { 'endo, } 3^{\prime} \text { exo }}=11.5 \mathrm{~Hz},{ }^{3} J_{3^{\prime} \text { 'endo, } 2^{\prime} \text { endo }}=9.6 \mathrm{~Hz},{ }^{3} J_{3^{\prime} \text { endo, } 4^{\prime}}=$
$2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ 'endo), 1.42 (ddd, ${ }^{2} J_{11^{\prime} \mathrm{A}, 11^{\prime} \mathrm{B}}=8.9 \mathrm{~Hz},{ }^{3} J_{11^{\prime} \mathrm{A}, 4^{\prime}}={ }^{3} J_{11^{\prime} \mathrm{A}, 1^{\prime}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime} \mathrm{A}$), 1.60 (ddddd, ${ }^{2} J_{11^{\prime} \mathrm{B}, 11^{\prime} \mathrm{A}}=8.8 \mathrm{~Hz},{ }^{3} J_{11^{\prime} \mathrm{B}, 4^{\prime}}={ }^{3} J_{11^{\prime} \mathrm{B}, 1^{\prime}}={ }^{4} J_{11^{\prime} \mathrm{B}, 3^{\prime} \text { endo }}={ }^{3} J_{11^{\prime} \mathrm{B}, 2^{\prime} \text { endo }}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime} \mathrm{B}$), $1.75-1.89$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}$), $1.80-1.86$ (ddd, ${ }^{2} J_{3^{\prime} \text { exo, } 3^{\prime} \text { 'endo }}=11.7 \mathrm{~Hz},{ }^{3} J_{3^{\prime} \text { 'exo, } 2^{\prime} \text { 'endo }}=6.9 \mathrm{~Hz},{ }^{3} J_{3^{\prime} \text { exo, } 4^{\prime}}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3'exo), 2.12 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}$), 2.76 ($\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}, \mathrm{H}-4 \mathrm{eq}$), 3.31 (br d, $\left.{ }^{3} \mathrm{~J}_{4^{\prime}, 3^{\prime} \mathrm{exo}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.41$ (br s, 1H, H-1'), 7.03-7.14 (m, 4H, H-6', H-7', H-5, H-7), 7.15-7.20 (m, 2H, H-8', H-5'), 7.23 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}$, $\mathrm{H}-6), 7.38-7.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78\left({ }^{13} \mathrm{C}-2\right), 18.57\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{11,2}=2.5 \mathrm{~Hz}\right.$, C-11), 23.92 ($\mathrm{d},{ }^{1} J_{3,2}=25 \mathrm{~Hz}, \mathrm{C}-3$), 23.98 ($\left.\mathrm{d},{ }^{2} \mathrm{~J}_{2,2}=2.4 \mathrm{~Hz}, \mathrm{C}-\mathrm{Q}^{\prime}\right) 27.67$ (C-12, C-13, C-14), 31.55 (C3^{\prime}), 36.03 ($\mathrm{d}^{2}{ }^{2} \mathrm{~J}_{4,2}=1.0 \mathrm{~Hz}, \mathrm{C}-4$), 44.17 (C-4'), $45.70\left(\mathrm{C}-1^{\prime}\right), 48.39$ (C-11'), 118.84 (C-8'), 121.10 (C-5'), 124.96 (C-7), 125.23 (C-6'), 125.61 (C-7'), 128.65 (C-5), 128.71 (C-6), 132.61 ($\mathrm{d}^{2}{ }^{2} \mathrm{~J}_{9,2}=2.5 \mathrm{~Hz}, \mathrm{C}-9$), $135.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{8,2}=1.4 \mathrm{~Hz}, \mathrm{C}-8\right), 147.20\left(\mathrm{C}-10\right.$ '), $149.93(\mathrm{C}-10), 151.14\left(\mathrm{C}-9\right.$) ppm. ${ }^{29} \mathrm{Si}$ NMR (99.25 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $-5.02\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{si}, \mathrm{C}}=49.5 \mathrm{~Hz}\right.$) ppm. Anal. Calcd for $\mathrm{C}_{23}{ }^{13} \mathrm{CH}_{30} \mathrm{Si}$: 347.2150. Found: 347.2145.
(1R,2R,4S,SiR)-1-Isopropyl-1-(1,2,3,4-tetrahydro-1,4-methano-naphthalen-2-yl)-1-sila-1,2,3,4tetrahydronaphthalene [(SiR)-4b] ${ }^{[11]}$

Prepared according to GP2 from $1(42.7 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.00$ equiv.), $(\mathrm{Si} R)-\mathbf{2 b} \quad(62.8 \mathrm{mg}, 0.330 \mathrm{mmol}, 1.10$ equiv., 96% ee) furnishing analytically pure ($\mathrm{Si} R$)-4b ($85 \mathrm{mg}, 85 \%$, 95% ee) as a colorless, highly viscous oil.
$\mathrm{R}_{f}=0.52$ (cyclohexane). $[\alpha]_{D}^{20}=-3.5,[\alpha]_{578}^{20}=-3.7,[\alpha]_{546}^{20}=-3.9$, $[\alpha]_{436}^{20}=-0.8, \quad[\alpha]_{365}^{20}=+18.5\left(c=0.94\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. HPLC (Daicel Chiralcel OD-RH column, column temperature $12^{\circ} \mathrm{C}, \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}=$ 75:25, flow rate $0.50 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}): 29.9 \mathrm{~min}[(2 S, \mathrm{Si} R)-4 b)]$, $32.3 \mathrm{~min}[(2 S, \mathrm{SiS})-4 \mathrm{~b})$], 34.6 min [(2R,SiR)-4b)], $40.9 \mathrm{~min}[(2 R, \mathrm{SiS})-4 b)] . \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \tilde{v} 3050(\mathrm{~m}), 3017$ (m), 2956 (s), 2923 (s), 2861 (s), 1589 (w), 1466 (s), 1405 (m), 1382 (w), 1292 (w), 1263 (w), 1195 (w), 1140 (m), 1073 (m), 997 (m), 978 (m), 943 (m), 916 (m), 882 (m), 820 (m), 781 (w), 753 (s), 740 (s), 726 (s), $679(\mathrm{~m}), 636(\mathrm{~m})$, $610(\mathrm{w}), 587(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.93$ (ddd, ${ }^{3} \mathrm{~J}_{2}$ 'endo,3'endo $=9.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2}$ 'endo, ${ }^{\prime}$ 'exo $=6.8$ $\mathrm{Hz},{ }^{3} J_{2}$ 'endo,11'B $=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ ''endo $^{\prime}$), $1.01\left(\mathrm{~d},{ }^{3} J_{12,11}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12\right), 1.04\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{~A}, \mathrm{H}-2 \mathrm{~B}\right)$, $1.05\left(\mathrm{~d},{ }^{3} J_{13,12}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-13\right), 1.20\left(\mathrm{tt},{ }^{3} J_{11,12}={ }^{3} J_{11,13}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11\right), 1.32\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}-\right.$ 3'endo), 1.33 (ddd, ${ }^{2} J_{11^{\prime} \mathrm{A}, 11^{\prime} \mathrm{B}}=8.9 \mathrm{~Hz},{ }^{3} J_{11^{\prime} \mathrm{A}, 1^{\prime}}={ }^{3} J_{11^{\prime} \mathrm{A}, 4^{\prime}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime} \mathrm{A}$), 1.52 (ddddd, ${ }^{2} J_{11^{\prime} \mathrm{B}, 11^{\prime} \mathrm{A}}=$ $8.9 \mathrm{~Hz},{ }^{3} J_{11^{\prime} \mathrm{B}, 1^{\prime}}={ }^{3} J_{11^{\prime} \mathrm{B}, 4^{\prime}}={ }^{4} J_{11^{\prime} \mathrm{B}, 2^{\prime} \text { endo }}={ }^{4} J_{11^{\prime} \mathrm{B}, 3^{\prime} \text { endo }}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime} \mathrm{B}$), 1.87 (ddd, ${ }^{2} J_{3^{\prime} \text { exo, } 3^{\prime} \text { endo }}=11.5 \mathrm{~Hz}$, ${ }^{3} J_{3^{\prime} \text { exo, } 2^{\prime} \text { endo }}=6.8 \mathrm{~Hz},{ }^{3} J_{3^{\prime} \text { 'exo, } 4^{\prime}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ 'exo $), 1.92\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~A}\right), 2.03\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~B}\right), 2.77$ ($\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{H}-4 \mathrm{~A}, \mathrm{H}-4 \mathrm{~B}$), 3.34 (br s, $2 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{H}-4^{\prime}$), 7.06 (ddd, ${ }^{3} \mathrm{~J}_{6^{\prime}, 5^{\prime}}={ }^{3} \mathrm{~J}_{6^{\prime}, 7^{\prime}}=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{6^{\prime}, 8^{\prime}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6^{\prime}$), 7.08 ($\mathrm{ddd},{ }^{3} J_{7^{\prime}, 6^{\prime}}={ }^{3} J_{7^{\prime}, 8^{\prime}}=7.5 \mathrm{~Hz},{ }^{4} J_{7^{\prime}, 5^{\prime}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\prime}$), 7.12 (br d, ${ }^{3} J_{5,6}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $7.14\left(\mathrm{br} \mathrm{dd},{ }^{3} J_{7,6}={ }^{3} J_{7,8}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 7.16\left(\mathrm{dd},{ }^{3} J_{8^{\prime}, 7}=6.8 \mathrm{~Hz},{ }^{4} J_{8^{\prime}, 6^{\prime}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 7.17$ (dd, $\left.{ }^{3} J_{5^{\prime}, 6^{\prime}}=6.8 \mathrm{~Hz},{ }^{4} J_{5^{\prime}, 7}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.24\left(\mathrm{ddd},{ }^{3} J_{6,5}={ }^{3} J_{6,7}=7.5 \mathrm{~Hz},{ }^{4} J_{6,8}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 7.41$ (dd, ${ }^{3} J_{8,7}=7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{8,6}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$) ppm. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61$ (C-2), 13.29 (C11), 18.02 (C-13), 18.35 (C-12), 23.66 (C-3), 25.07 (C-2'), 30.20 (C-3'), 35.90 (C-4), 44.26 (C-4'), 45.18 (C-1'), 48.08 (C-11'), 118.84 (C-8'), 121.06 (C-5'), 125.16 (C-7, C-6'), 125.56 (C-7'), 128.67 (C-
5), 128.72 (C-6), 132.56 (C-9), 135.16 (C-8), 147.23 (C-10'), 149.82 (C-10), 151.19 (C-9') ppm. GCMS (EI) m/z $332\left[\mathrm{M}^{+}\right], 289\left[\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{Si}$: 332.1960. Found: 332.1955. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{Si}: \mathrm{C}, 83.07$; H, 8.49. Found: C, 82.63; H, 8.67.
rac-(1 $\left.R^{\star}, 2 R^{\star}, 4 S^{\star}, \mathrm{Si}^{\star}\right)^{\star}-3^{\prime}-[2 \mathrm{H}]-1-I s o p r o p y l-1-(1,2,3,4-t e t r a h y d r o-1,4-m e t h a n o-n a p h t h a l e n-2-y l)-1-$ sila-1,2,3,4-tetrahydronaphthalene (rac-3'-[$\left.{ }^{2} \mathrm{H}\right]-4 \mathrm{~b}$)

Prepared according to GP2 from $1(42.7 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.00$ equiv.), rac- $\left[{ }^{2} \mathrm{H}\right]-2 \mathrm{~b}$ ($63.1 \mathrm{mg}, 0.330 \mathrm{mmol}, 1.10$ equiv., 99% D) furnishing analytically pure rac-[$\left.{ }^{2} \mathrm{H}\right]-4 \mathrm{~b}$ ($88 \mathrm{mg}, 88 \%, 99 \% \mathrm{D}$) as a colorless, highly viscous oil.
$\mathrm{R}_{f}=0.52$ (cyclohexane). IR $\left(\mathrm{CHCl}_{3}\right) \tilde{v} 3050$ (m), 3017 (m), 2957 (s), 2926 (s), 2861 (s), 1589 (w), 1463 (s), 1434 (m), 1405 (m), 1382 (w), 1363 (m), 1292 (w), 1266 (w), 1193 (w), 1155 (m), 1140 (m), 1127 (w), $1072(\mathrm{~m}), 995(\mathrm{~m}), 973(\mathrm{~m}), 948(\mathrm{~m}), 929(\mathrm{~m}), 879(\mathrm{~m}), 847(\mathrm{~m}), 782(\mathrm{w})$, 752 (s), 740 (s), 694 (w), 677 (m), 630 (m), 607 (w), 587 (w) cm ${ }^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.93$ (dd, ${ }^{3} J_{2^{\prime} \text { 'endo, } 3^{\prime} \text { 'endo }}=9.6 \mathrm{~Hz},{ }^{3} J_{2^{\prime} \text { endo, } 11^{\prime} \mathrm{B}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ 'endo), $1.02\left(\mathrm{~d},{ }^{3} J_{12,11}=7.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12\right.$), 1.05 $\left(\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{~A}, \mathrm{H}-2 \mathrm{~B}\right), 1.06\left(\mathrm{~d},{ }^{3} J_{13,12}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-13\right), 1.21\left(\mathrm{tt},{ }^{3} J_{11,12}={ }^{3} J_{11,13}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11\right)$, $1.32\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}-3\right.$ 'endo), 1.34 (ddd, ${ }^{2} J_{11^{\prime} \mathrm{A}, 11^{\prime} \mathrm{B}}=8.9 \mathrm{~Hz},{ }^{3} J_{11^{\prime} \mathrm{A}, 1^{\prime}}={ }^{3} J_{11^{\prime} \mathrm{A}, 4^{\prime}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime} \mathrm{A}$), 1.53 (ddddd, $\left.{ }^{2} J_{11^{\prime} \mathrm{B}, 11^{\prime} \mathrm{A}}=8.9 \mathrm{~Hz},{ }^{3} J_{11^{\prime} \mathrm{B}, 1^{\prime}}={ }^{3} J_{11^{\prime} \mathrm{B}, 4^{\prime}}={ }^{4} J_{11^{\prime} \mathrm{B}, 2^{\prime} \text { endo }}={ }^{4} J_{11^{\prime} \mathrm{B}, 3^{\prime} \text { 'endo }}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime} \mathrm{B}\right), 1.93\left(\mathrm{~m}_{\mathrm{c}}\right.$, $1 \mathrm{H}, \mathrm{H}-3 \mathrm{~A}), 2.03\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~B}\right), 2.78\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{H}-4 \mathrm{~A}, \mathrm{H}-4 \mathrm{~B}\right), 3.34$ (br s, $2 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{H}-4$), 7.07 (ddd, ${ }^{3} \mathrm{~J}_{6^{\prime}, 5^{\prime}}$ $\left.={ }^{3} J_{6^{\prime}, 7^{\prime}}=7.5 \mathrm{~Hz},{ }^{4} J_{6^{\prime}, 8^{\prime}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.09\left(\mathrm{ddd},{ }^{3} J_{7^{\prime}, 6^{\prime}}={ }^{3} J_{7^{\prime}, 8^{\prime}}=7.5 \mathrm{~Hz},{ }^{4} J_{7^{\prime}, 5^{\prime}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\prime}\right)$, 7.13 (br d, $\left.{ }^{3} J_{5,6}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.13\left(\mathrm{br} \mathrm{dd},{ }^{3} J_{7,6}={ }^{3} J_{7,8}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right.$), $7.17\left(\mathrm{br} \mathrm{d},{ }^{3} J_{8^{\prime}, 7}=7.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}$), 7.18 (br d, ${ }^{3} J_{5^{\prime}, 6^{\prime}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 7.25 (ddd, ${ }^{3} J_{6,5}={ }^{3} J_{6,7}=7.5 \mathrm{~Hz},{ }^{4} J_{6,8}=1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6$), 7.42 (dd, $\left.{ }^{3} \mathrm{~J}_{8,7}=7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{8,6}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61$ (C-2), 13.30 (C-11), 18.02 (C-13), 18.35 (C-12), 23.65 (C-3), 24.97 (C-2'), $29.98\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{D}}=20 \mathrm{~Hz}, \mathrm{C}-3\right.$) , 35.90 (C-4), 44.14 (C-4'), 45.17 (C-1'), 48.06 (C-11'), 118.83 (C-8'), 121.07 (C-5'), 125.16 (C-7, C-6'), 125.55 (C-7'), 128.67 (C-5), 128.72 (C-6), 132.56 (C-9), 135.15 (C-8), 147.23 (C-10'), 149.81 (C-10), 151.20 (C-9') ppm. GC-MS (EI) m/z $333\left[\mathrm{M}^{+}\right], 290\left[\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}\right]$. HR-MS $\mathrm{C}_{23} \mathrm{H}_{27}$ DSi: 333.2023. Found: 332.2018.

rac-($1 S^{\star}, 2 R^{\star}, 4 S^{\star}$)-1-Methyl-1,1-diphenyl-1-(1,2,3,4-tetrahydro-1,4-methano-naphthalen-2yl)silane (rac-9) ${ }^{[12]}$

Prepared according to GP2 from $1(42.7 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.00$ equiv.), 8 ($65.5 \mathrm{mg}, 0.330 \mathrm{mmol}, 1.10$ equiv.) furnishing analytically pure rac-9 (80 $\mathrm{mg}, 78 \%)$ as a white solid.
$\mathrm{R}_{f}=0.32$ (cyclohexane). $[\alpha]_{D}^{20}=-14.9,[\alpha]_{578}^{20}=-15.4,[\alpha]_{546}^{20}=-17.6$, $[\alpha]_{436}^{20}=-31.0,[\alpha]_{365}^{20}=-51.8\left(c=0.94\right.$ in $\mathrm{CHCl}_{3}, 34 \%$ ee sample of a isotopic mixture with H/D 48:52). HPLC (Daicel Chiralcel OD-H column,
column temperature $20^{\circ} \mathrm{C}$, n-heptane, flow rate $\left.\left.0.80 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}\right): 16.8 \mathrm{~min}[(1 R, 2 S, 4 R)-9)\right]$, 19.6 min [(1S,2R,4S)-9)]. IR (CHCl_{3}) $\tilde{v} 3068(\mathrm{~m}), 3047(\mathrm{~m}), 3017(\mathrm{~m}), 2962(\mathrm{~s}), 2907(\mathrm{~m}), 2865(\mathrm{~m})$, 1955 (w), 1897 (w), 1819 (w), 1588 (w), 1486 (w), 1469 (m), 1427 (s), 1306 (w), 1253 (s), 1217 (w), 1194 (m), 1156 (w), 1137 (s), 1109 (s), 1064 (w), 1013 (w), 998 (m), 976 (w), 944 (m), 915 (w), 889 (s), 846 (s), 822 (s), 784 (s), 756 (s), 737 (s), 699 (s), 673 (w), 628 (w), 587 (w) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.56(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-1$ '"), 1.13-1.23 (m, 2H, H-2"endo, H-11"A), 1.36-1.45 (m, 2H, H-3"endo, H$11 " B), 1.88\left(\mathrm{ddd},{ }^{2} J_{3^{\prime \prime} \text { exo, } 3^{\prime \prime} \text { endo }}=11.6 \mathrm{~Hz},{ }^{3} J_{3^{\prime \prime}}\right.$ exo, $4^{\prime \prime}=6.7 \mathrm{~Hz},{ }^{3} J_{3^{\prime \prime}}$ exo, $2^{\prime \prime}$ endo $=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ "exo), $3.30(\mathrm{br}$ s, 2H, H-1", H-4"), 6.96-7.04 (m, 2H, H-Ar), 7.05-7.14 (m, 2H, H-Ar), 7.21-7.35 (m, 6H, H-Ar), 7.437.55 (m, 4H, H-Ar) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.73$ (C-1"'), 25.67 (C-2"), 30.00 (C-3"), 44.43 (C-4"), 45.10 (C-1"), 47.89 (C-11"), 118.91 (C-Ar), 121.19 (C-Ar), 125.28 (C-Ar), 125.68 (C-Ar), 127.89 (C-Ar), 127.96 (C-Ar), 129.26 (C-Ar), 129.33 (C-Ar), 134.88 (C-Ar), 134.95 (C-Ar), 136.98 (ipso-C-Ar), 137.16 (ipso-C-Ar), 147.13 (ipso-C-Ar), 151.20 (ipso-C-Ar) ppm. GC-MS (EI) m/z 340 [M ${ }^{+}$]. HR-MS for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{Si}: 340.1647$. Found: 340.1642. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{Si}$: C 84.65, H 7.10. Found: C 84.52, H 7.23.
rac-($\left.1 S^{\star}, 2 R^{\star}, 4 S^{\star}\right)-\left[3^{\prime}-{ }^{2} \mathrm{H}\right]$-1-Methyl-1,1-diphenyl-1-(1,2,3,4-tetrahydro-1,4-methano-naphthalen-2yl)silane (rac-[$\left.\left.{ }^{2} \mathrm{H}\right]-9\right)^{[12]}$

Prepared according to GP2 from $1(42.7 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.00$ equiv.), $\left.{ }^{2} \mathrm{H}\right]-8$ ($65.8 \mathrm{mg}, 0.330 \mathrm{mmol}, 1.10$ equiv.) furnishing analytically pure rac- $\left[{ }^{2} \mathrm{H}\right]-9(82 \mathrm{mg}, 81 \%, 98 \% \mathrm{D})$ as a white solid.
$\mathrm{R}_{f}=0.32$ (cyclohexane). IR $\left(\mathrm{CHCl}_{3}\right) \tilde{v} 3068(\mathrm{~m}), 3047(\mathrm{~m}), 3017(\mathrm{~m})$, 2962 (s), 2875 (m), 1955 (w), 1897 (w), 1588 (w), 1486 (w), 1463 (m), 1427 (s), 1304 (w), 1251 (s), 1218 (w), 1192 (m), 1156 (w), 1110 (s), 1068 (w), 1013 (w), 995 (m), 950 (w), 929 (m), 879 (s), 850 (s), 827 (s), 791 (s), 755 (s), 736 (s), 699 (s), 672 (w), 618 (w), 586 (w) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 0.54$ (s, 3H, H-1"'), 1.12-1.20 (m, 2H, H-2"endo, H-11"A), 1.35-1.45 (m, 2H, $\mathrm{H}-3$ "endo, $\mathrm{H}-11$ "B), $3.26-3.30$ (m, 2H, H-1", H-4"), 6.95-7.03 (m, 2H, H-Ar), 7.04-7.08 (m, 1H, H-Ar), 7.09-7.13 (m, 1H, H-Ar), 7.21-7.35 (m, 6H, H-Ar), 7.42-7.47 (m, 2H, H-Ar), 7.47-7.54 (m, 2H, H-Ar) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.72(\mathrm{C}-1 ")$, $25.58(\mathrm{C}-2 "), 29.65\left(\mathrm{C}-3^{\prime \prime},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{D}}=20 \mathrm{~Hz}\right), 44.35(\mathrm{C}-$ 4 "), 45.09 (C-1"), 47.88 (C-11"), 118.90 (C-Ar), 121.89 (C-Ar), 125.28 (C-Ar), 125.68 (C-Ar), 127.89 (C-Ar), 127.96 (C-Ar), 129.26 (C-Ar), 129.33 (C-Ar), 134.88 (C-Ar), 134.95 (C-Ar), 136.99 (ipso-C-Ar), 137.06 (ipso-C-Ar), 147.13 (ipso-C-Ar), 151.22 (ipso-C-Ar) ppm. GC-MS (EI) m/z 341 [M ${ }^{+}$]. HR-MS for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{DSi}$: 341.1710 . Found: 341.1705.

3 Cross-over Experiments involving $\left[{ }^{2} \mathrm{H}\right]-2 \mathrm{a}$ and $\left[{ }^{13} \mathrm{C}\right]-2 \mathrm{a}$

3.1 Experimental Details

Representative Procedure for the Hydrosilylation of $\mathbf{1}$ with mixtures of rac- $\left.{ }^{2} \mathrm{H}\right]-2 \mathrm{a}$ and rac$\left[{ }^{13} \mathrm{C}\right]-2 \mathbf{a}$

A Schlenk tube was charged with a solution of rac- $\left[^{2} \mathrm{H}\right]-2 \mathrm{a}(30.8 \mathrm{mg}, 0.150 \mathrm{mmol}, 0.500$ equiv.), rac- $\left.{ }^{13} \mathrm{C}\right]-2 \mathrm{a}$ ($30.8 \mathrm{mg}, 0.150 \mathrm{mmol}, 0.500$ equiv.), and bicyclic alkene $\mathbf{1}$ ($427 \mathrm{mg}, 10.0$ equiv.) in anhydrous degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ under argon atmosphere. An aliquot (0.50 mL) was taken via syringe to determine the exact composition of the unreacted mixture by ${ }^{1} \mathrm{H}$ NMR. After cooling to $0^{\circ} \mathrm{C}$, a solution of (phen) $\mathrm{PdMe}\left(\mathrm{OEt}_{2}\right)^{+} \mathrm{BAr}_{4}^{-}$(3) $[\mathrm{Ar}=3,5$-bis(trifluoromethyl)phenyl] ($100 \mu \mathrm{~L}, 0.00075 \mathrm{mmol}$, 0.003 equiv., 0.0075 m in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) - prepared in situ from (phen) $\mathrm{PdMe}_{2}(2.4 \mathrm{mg}, 0.0075 \mathrm{mmol}, 0.03$ equiv.) and $\left[\mathrm{H}\left(\mathrm{OEt}_{2}\right)_{2}\right]^{+} \mathrm{BAr}_{4}^{-}$($7.6 \mathrm{mg}, 0.0075 \mathrm{mmol}, 0.03$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}-$ was added via a microliter syringe. The resulting solution was maintained at $0^{\circ} \mathrm{C}$ for the 20 h and monitored by ${ }^{1} \mathrm{H}$ NMR. After removal of the catalyst by filtration through a plug of silica gel, the solvent was evaporated. The remaining mixture was dissolved in CDCl_{3} together with a drop of TMS for subsequent NMR analysis (see Table S1 for results).
${ }^{29}$ Si NMR Spectra were measured on a JEOL Alpha500 spectrometer with a tuneable multinuclear TH5 probe. The data were obtained using a ${ }^{29} \mathrm{Si}^{-1} \mathrm{H}$ DEPT sequence with a ${ }^{29} \mathrm{Si}^{1}{ }^{1} \mathrm{H}$ coupling constant of 21 Hz . Spectral width was $4 \mathrm{kHz}(\sim 40 \mathrm{ppm})$ and the FID contained 32 k points which were zero-filled to 128 k for processing. Standard processing employed a single exponential window function (typically 2 Hz) prior to Fourier transform, although where elucidation of isotope shifts was required, sequential Gaussian (0.15 Hz) and single exponential (-0.32 Hz) window functions were applied, prior to Fourier transform.

Table S1. Cross-over experiments of $r a c-\left[{ }^{2} \mathrm{H}\right]-\mathbf{2 a}$ and $r a c-\left[{ }^{13} \mathrm{C}\right]-2 \mathbf{a}$
Run

	1	2	3	4	5
	Initial Composition ${ }^{\text {a }}$				
1 [equiv.]	400	113	400	1000	1000
rac- $\left.{ }^{2} \mathrm{H}\right]-2 \mathrm{a}$ [equiv.]	0.48	0.51	0.48	0.48	0.48
rac-[$\left.{ }^{13} \mathrm{C}\right]-2 \mathrm{a}$ [equiv.]	0.52	0.49	0.52	0.52	0.52
3 [equiv.]	0.003	0.003	0.003	0.003	0.003
Conversion [\%] ${ }^{\text {b }}$	18	26	38	11	38
Reaction time [h]	30	20	78	20	40
Temperature [${ }^{\circ} \mathrm{C}$]	0	0	0	0	0
Final Composition ${ }^{\text {b,c }}$					
rac- $\left.{ }^{2} \mathrm{H}\right]-2 \mathrm{a}$ [\%]	43.05	32.78	32.84	44.37	33.25
rac- $\left[{ }^{13} \mathrm{C}\right]-2 \mathrm{a}$ [\%]	3.28	6.14	3.78	0.00	1.80
rac-2a [\%]	2.46	6.81	2.53	1.15	1.52
rac- $\left[{ }^{2} \mathrm{H},{ }^{13} \mathrm{C}\right]$-2a [\%]	33.21	28.34	22.84	43.48	25.42
Total silanes [\%] ${ }^{\text {b }}$	82.00	74.07	61.99	89.00	61.99
rac-[$\left.{ }^{2} \mathrm{H}\right]-4 \mathrm{a}$ [\%]	1.94	5.43	5.97	0.92	3.80
rac- $\left.{ }^{13} \mathrm{C}\right]-4 \mathrm{a}$ [\%.]	7.67	8.11	13.98	4.66	17.18
rac-4a [\%]	5.26	8.84	9.54	3.63	9.83
$r a c-\left[{ }^{13} \mathrm{C},{ }^{2} \mathrm{H}\right]-4 \mathrm{a}[\%]$	3.13	3.61	8.47	1.79	7.19
Total Products [\%] ${ }^{\text {b }}$	18.00	25.99	37.96	11.00	38.00
Total [\%]	100.00	100.06	99.95	100.00	99.99

${ }^{a}$ The composition of the mixture of alkene and silanes was determined by integration of the ${ }^{1} \mathrm{H}$ NMR signals at 3.82 ppm (alkene 1, 2 H), 2.56-2.79 ppm (silanes rac- $\left[{ }^{2} \mathrm{H}\right]-2 \mathbf{a}$ and rac- $\left[{ }^{13} \mathrm{C}\right]-2 \mathbf{a}, 2 \mathrm{H}$), and 4.17 ppm (silane rac- $\left[{ }^{13} \mathrm{C}\right]-2 \mathbf{a}, 1 \mathrm{H}$). ${ }^{b}$ The conversion was calculated by comparison of the ${ }^{1} \mathrm{H}$ NMR integrals at $2.56-2.79 \mathrm{ppm}$ (silanes rac- $\left[{ }^{2} \mathrm{H}\right]-2 \mathbf{a}$ and rac- $\left[{ }^{13} \mathrm{C}\right]-2 \mathbf{a}$, $2 \mathrm{H}_{\text {silanes }}$, and all isotopomers of $\mathbf{4 a}, 2 \mathrm{H}_{\text {products }}$) versus 3.38 ppm (all isotopomers of $\mathbf{4 a}, 1 \mathrm{H}_{\text {products }}$) by the equation: conversion (\%) $=100$ \{integral (3.38 ppm)/[(integral (2.56-2.79 ppm)/2]\}. ${ }^{c}$ According to ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$; only integrals of the same moieties were compared (isotopomers of $\mathbf{2 a}$ or isotopomers of $\mathbf{4 a}$); for partially overlapping integrals of rac- $\left.{ }^{2} \mathrm{H}\right]-\mathbf{4 a}$ and rac-4a and, analogously rac- $\left[{ }^{2} \mathrm{H},{ }^{13} \mathrm{C}\right]-4 \mathrm{a}$ and rac- $\left[{ }^{13} \mathrm{C}\right]-4 \mathrm{a}$, results were obtained by integration from baseline to maximum for downfield shifted rac- $\left[{ }^{2} \mathrm{H}\right]-4 \mathbf{a} /$ rac- $\left[{ }^{2} \mathrm{H},{ }^{13} \mathrm{C}\right]-4 \mathbf{a}$ and by integration from maximum to baseline for upfield shifted signals rac-4a/rac- $\left.{ }^{13} \mathrm{C}\right]-4 \mathbf{a}$, being consistent with preliminary integration results of samples with known H/D ratios.

3.2 Copies of $\left.{ }^{29} \mathrm{Si}^{1}{ }^{1} \mathrm{H}\right\}$ NMR Spectra

- Reference Sample ($0.6 \mathrm{~mol} \% \mathbf{3}, 2.5 \mathrm{~h}, 0^{\circ} \mathrm{C}, \mathbf{6 0 \%}$ conversion) SR756 29Si ${ }_{\text {i }}^{1 \mathrm{H}}$, NMR DEPT 99.25 MHz Rendler CDCI3/TMS

Product Region
SR756 29Si $\underset{\{ }{1 H}\}$ NMR DEPT 99.25 MHz Rendler CDCI3/TMS

	$\begin{aligned} & 8 \stackrel{7}{8} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	-
	$1 \mid$	

E $\left.\quad{ }^{2} \mathrm{H}\right]-4 \mathbf{a} \quad \delta=-5.00\left[\mathrm{br} \mathrm{s}, \Delta \delta\left(\gamma^{2} \mathrm{H}\right)=+1.0 \mathrm{~Hz}\right] \mathrm{ppm}$.
F $\quad\left[{ }^{13} \mathrm{C}\right]-4 \mathbf{a} \quad \delta=-5.02\left[\mathrm{~d},{ }^{1} J_{\mathrm{si}, \mathrm{C}}=49.5 \mathrm{~Hz}, \Delta \delta\left(\alpha-{ }^{13} \mathrm{C}\right)=-1.0 \mathrm{~Hz}\right] \mathrm{ppm}$.
$\begin{array}{lrl}\mathbf{G} & \mathbf{4 a} & \delta=-5.01[\mathrm{~s}] \mathrm{ppm} . \\ \mathbf{H} & {\left[{ }^{13} \mathrm{C},{ }^{2} \mathrm{H}\right]-\mathbf{4 a}} & \delta=-5.01\left[\mathrm{br} \mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{Si}, \mathrm{C}}=49.5 \mathrm{~Hz}, \Delta \delta\left(\gamma-{ }^{2} \mathrm{H}\right)=+1.0 \mathrm{~Hz}, \Delta \delta\left(\alpha-{ }^{13} \mathrm{C}\right)=-1.0 \mathrm{~Hz}\right] \mathrm{ppm} .\end{array}$

Silane Region

A $\quad\left[{ }^{13} \mathrm{C}\right]-2 \mathbf{a} \quad \delta=-13.30\left[\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{si}, \mathrm{C}}=50.0 \mathrm{~Hz}, \Delta \delta\left(\alpha^{-13} \mathrm{C}\right)=-1.0 \mathrm{~Hz}\right] \mathrm{ppm}$.
B $\quad\left[{ }^{2} \mathrm{H}\right]-2 \mathbf{a} \quad \delta=-13.75\left[\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{si}, \mathrm{D}}=29.0 \mathrm{~Hz}, \Delta \delta\left(\alpha^{-}{ }^{2} \mathrm{H}\right)=-548 \mathrm{~Hz}\right] \mathrm{ppm}$.
C $\quad \mathbf{2 a} \quad \delta=-13.29[\mathrm{~s}] \mathrm{ppm}$.
D $\left[{ }^{13} \mathrm{C},{ }^{2} \mathrm{H}\right]-2 \mathrm{a} \quad \delta=-13.75\left[\mathrm{dt},{ }^{1} \mathrm{~J}_{\mathrm{S}, \mathrm{C}}=50.0 \mathrm{~Hz},{ }^{1} J_{\mathrm{Si}, \mathrm{D}}=29.0 \mathrm{~Hz}, \Delta \delta\left(\alpha-{ }^{2} \mathrm{H}\right)=-548 \mathrm{~Hz}, \Delta \delta\left(\alpha-{ }^{13} \mathrm{C}\right)=-1.0 \mathrm{~Hz}\right] \mathrm{ppm}$.

Run 1

- Run 2

S S M T M TMS

ppm (11)

Run 3

ppm (11)

S \quad S \quad M \quad T \quad TMS

- Run 4

ppm (f1)

ppm (f1)

Run 5

ppm (17)
s

3.3 Product Distribution Analysis / Modeling

The product distributions from all five runs were modelled by computer-based application of the Gear integration method. ${ }^{[13]}$ Models were simplified such that steps (i), (ii) and (iii) shown in Scheme 2 were telescoped into one step: $\mathbf{7 a}+\mathbf{2 a} \rightarrow \mathbf{4 a}+\mathbf{7 a}+\mathbf{X}$, with an associated rate constant k_{1}, where ' \mathbf{X} ' was used as a marker of total number of turnovers, where intermediates 7 a were denoted as '12C' or '13C' as appropriate, and where silane $\mathbf{2 a}$ was denoted as ' $[2 \mathrm{H}]$ ', ‘ $\left.{ }^{13} \mathrm{C}\right]$ ', ' $\left[{ }^{2} \mathrm{H},{ }^{13} \mathrm{C}\right.$ ' or unlabeled as appropriate. When reactions involved $\mathbf{2 a}$ or $\left[{ }^{13} \mathrm{C}\right]-\mathbf{2 a}$, the value of k_{1} was multiplied by $k_{\text {KIE }}$ (to reflect the net PKIE which was found to give the best fit). Absolute rate constants have no meaning outside of the framework of the model. The units of concentration of all species were arbitrarily based on \% mol fractions. The starting concentrations were such that 7 a and $\left[{ }^{13} \mathrm{C}\right]-7 a$ were equal ($0.15 \mathrm{~mol} \%$) and the concentrations of $\left[{ }^{2} \mathrm{H}\right]-2 \mathbf{a}$ and $\left[{ }^{13} \mathrm{C}\right]$-2a reflected the isotopic purities $\left(98 \%{ }^{2} \mathrm{H}, 99 \%{ }^{13} \mathrm{C}\right)$ of the reagent as well as their initial ratios (e.g. for runs 1, 3, 4 and $\left.5,\left[{ }^{13} \mathrm{C}\right]-2 \mathbf{a}\right]_{0}=51.48 ;\left[\left[{ }^{2} \mathrm{H}\right]-2 \mathbf{a}\right]_{0}=47.04 ;[\mathbf{2 a}]_{0}=$ 1.48). The models included a scrambling mechanism to generate $\left[{ }^{2} \mathrm{H},{ }^{13} \mathrm{C}\right]-\mathbf{2 a}$ and $\mathbf{2 a}$ from the initial state. As the catalyst loading was invariant between all five runs, there was no need for this to occur via a chemically meaningful model involving 5 (($\mathbf{7 a}$) and a simple bimolecular exchange proces between species 2a was employed with a rate constant k_{2}. To account for the effect of [1] on K_{1} in Scheme 2, and an associated redcution in silane exchange via $\mathbf{5 a}$, the magnitude of k_{2} was inversely linked to the alkene concentration such that $k_{2}[\mathbf{1 a}]_{0}=k_{\text {ex }}$ (where $[\mathbf{1 a}]$ is in mol\%) and all of the four non-degenerate interactions were given the same relative rate (no KIE). Relative rates were varied, and best fits obtained through manual iteration. A satisfactory fit for all five runs was found when $k_{\text {KIE }}=$
$2.5 \times k_{1}$ and $k_{\text {ex }}=325 \times k_{1}$. A comparison of observed (grey) with model (pink) data is given in Figure S1.

Figure S1. Comparison of observed (grey shaded bars, data from Table 1) versus predicted (pink shaded bars, using model outlined in section 3.3) product $\mathbf{4 a}$ and silane $\mathbf{2 a}$ distributions for cross-over experiments involving $\left[{ }^{2} \mathrm{H}\right]-\mathbf{2 a}$ and $\left[{ }^{13} \mathrm{C}\right]-\mathbf{2 a}$.

4 Cross-over Experiments of 2 b and 8

4.1 Experimental Details

Representative Procedure for the Hydrosilylation of $\mathbf{1}$ with mixtures of $(\mathrm{Si} R / \mathrm{SiS})-\left[{ }^{1} \mathrm{H} /{ }^{2} \mathrm{H}\right]-\mathbf{2 b}$ and $\left[{ }^{1} \mathrm{H} \mathrm{H}^{2} \mathrm{H}\right]-8$

A Schlenk tube was charged with a solution of $(\mathrm{Si} R)-\mathbf{2 b}(28.7 \mathrm{mg}, 0.150 \mathrm{mmol}, 0.500$ equiv., 97% ee), $\left[{ }^{2} \mathrm{H}\right]-8(29.9 \mathrm{mg}, 0.150 \mathrm{mmol}, 0.500$ equiv., $>98 \% \mathrm{D})$, and bicyclic alkene $1(427 \mathrm{mg}, 3.00 \mathrm{mmol}, 10.0$ equiv.) in anhydrous degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ under argon atmosphere. An aliquot (0.50 mL) was taken via syringe to determine the exact composition of the mixture by ${ }^{1} \mathrm{H}$ NMR. Subsequently, a freshly prepared solution of (phen)PdMe(OEt $\left.{ }_{2}\right)^{+} \mathrm{BAr}_{4}{ }^{-}(3)$ [$\mathrm{Ar}=3,5$-bis(trifluoromethyl)phenyl] (0.50 $\mathrm{mL}, 0.00125 \mathrm{mmol}, 0.005$ equiv., 0.0025 m in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) - prepared in situ from (phen) $\mathrm{PdMe}_{2}(0.8 \mathrm{mg}$, $0.0025 \mathrm{mmol}, 0.010$ equiv.) and $\left[\mathrm{H}\left(\mathrm{OEt}_{2}\right)_{2}\right]^{+} \mathrm{BAr}_{4}{ }^{-}\left(2.5 \mathrm{mg}, 0.0025 \mathrm{mmol}, 0.010\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.0 mL) at $0^{\circ} \mathrm{C}$ - was added via a microliter syringe. The resulting solution was stirred at room temperature for $48 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR analysis indicated complete conversion of silanes. After removal of the catalyst by filtration through a plug of silica gel using cyclohexane as eluent, the solvents were evaporated. The excess alkene was removed by Kugelrohr distillation in vacuo. Subsequent flash column chromatography on silica gel with cylcohexane as eluent delivered $\left.(\mathrm{Si} R)-\left[{ }^{1} \mathrm{H}\right)^{2} \mathrm{H}\right]-\mathbf{4 b}(36 \mathrm{mg}$, $87 \%, 97 \% e e)$ and $(2 R)-\left[{ }^{1} \mathrm{H} /{ }^{2} \mathrm{H}\right]-9(28 \mathrm{mg}, 66 \%, 34 \% e e)$ as separated products. Mass spectrometric analysis revealed a golbal ${ }^{1} \mathrm{H} /{ }^{2} \mathrm{H}$ ratio of 52:48 for $(\mathrm{Si} R)-\mathbf{4 b}$ and 48:52 for (2R)-9.

Both products were subjected to analytical HPLC analysis using chiral stationary phases. Identical stereoisomeric fractions of several runs were collected, concentrated and analyzed by mass spectrometry (see Table S2 for results).

Analogously, mixtures of (SiS) $-\left[{ }^{2} \mathrm{H}\right]-4 \mathbf{b}(95 \%$ ee, $99 \% \mathrm{D})$ and $\mathbf{8}$, or (SiS) $-\left[{ }^{2} \mathrm{H}\right]-4 \mathbf{b}(95 \% e e, 99 \% \mathrm{D})$ and 8, or $(\mathrm{Si} R)-\mathbf{4 b}(97 \% e e)$ and $\left[{ }^{2} \mathrm{H}\right]-8(>98 \% \mathrm{D})$ were co-reacted and analyzed (see Table S2 for results).

Table S2. Co-reactions of $\mathbf{2 b}$ and 8 .

		Run ${ }^{\text {a }}$			
		1	2	3	4
Silane 2b	equiv. ${ }^{\text {b }}$	0.52	0.48	0.47	0.46
	$e e\left[\%{ }^{\text {c }}\right.$	97 (SiR)	95 (SiS)	$97(\mathrm{Si} R)$	95 (SiS)
	$\mathrm{H} / \mathrm{D}^{\text {d }}$	100:0	1:99	100:0	1:99
Silane 8	equiv. ${ }^{\text {b }}$	0.48	0.52	0.53	0.54
	$\mathrm{H} / \mathrm{D}^{e}$	<2:98	100:0	100:0	<2:98
Product 4b	yield [\%] ${ }^{\prime}$	87	72	77	70
	d.r. $\left[(\mathrm{SiR})-\left[^{1} \mathrm{H}^{2} \mathrm{H}\right]-\mathbf{4 b}\right]^{g}$	99:1	--	99:1	--
	d.r. $\left[(\mathrm{SiS})-\left[{ }^{1} \mathrm{H} /{ }^{2} \mathrm{H}\right]-4 \mathrm{~b}\right]^{g}$	--	99:1	--	99:1
	$e e$ (major) [\%] ${ }^{h}$	97 (SiR)	94 (SiS)	$91(\mathrm{Si} R)$	93 (SiS)
	$\mathrm{H} / \mathrm{D}(\mathrm{global})^{\text {d }}$	52:48	38:62	100:0	2:98
	H/D (major) ${ }^{i}$	56:44	39:61		
	H/D (minor) ${ }^{i}$	65:35	22:78		
	d.r. [(SiR)-4b] ${ }^{j}$	99:1	--		
	d.r. $\left[(\mathrm{Si} R)-\left[^{2} \mathrm{H}\right]-\mathbf{4 b}\right]^{j}$	99:1	--		
	d.r. [(SiS)-4b] ${ }^{j}$	--	99:1		
	d.r. $\left[(\mathrm{SiS})-\left[{ }^{2} \mathrm{H}\right]-4 \mathbf{b}\right]^{j}$	--	99:1		
Product 9	yield [\%] ${ }^{\text { }}$	66	87	70	66
	$e e(\mathrm{global})\left[\%{ }^{k}\right.$	34 (2R)	10 (2S)	19 (2R)	11(2S)
	$\mathrm{H} / \mathrm{D}(\mathrm{global})^{d}$	48:52	69:31	100:0	1:99
	H/D [(2R)-9] ${ }^{\prime}$	56:44	80:20		
	$\mathrm{H} / \mathrm{D}[(2 S)-9]^{\prime}$	28:72	58:42		
	ee (9) [\%] ${ }^{m}$	62 (2R)	6 (2R)		
	$e e\left(\left[^{2} \mathrm{H}\right]-9\right)[\%]^{m}$	10 (2R)	44 (2S)		

${ }^{a}$ See representative procedure for experimental details. ${ }^{b}$ Determined by integration of ${ }^{1} \mathrm{H}$ NMR signals at 0.65 (d, 3H for 8 or s , 3 H , for $\left[^{2} \mathrm{H}\right]-8$) and $0.87-1.20 \mathrm{ppm}\left(\mathrm{m}, 9 \mathrm{H},\left[{ }^{1} \mathrm{H} /{ }^{2} \mathrm{H}\right]-2 \mathrm{~b} .{ }^{c} \mathrm{HPLC}\right.$ analysis using a Daicel Chiralcel OJ-RH column $\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}\right.$ $50: 50$ at $12^{\circ} \mathrm{C}$) provided sufficient separation of enantiomers. ${ }^{d}$ Determined by El-MS. ${ }^{e}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{f}$ Yields of isolated product based on employed amount of corresponding silane. ${ }^{g}$ HPLC analysis using a Daicel Chiralcel OD-RH column ($\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 75: 25$ at $12^{\circ} \mathrm{C}$) provided baseline separation of all four stereoisomers; only major enantiomer included. ${ }^{h} \mathrm{HPLC}$ analysis using a Daicel Chiralcel OD-RH column ($\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 75: 25$ at $12^{\circ} \mathrm{C}$) provided baseline separation of all four stereoisomers; only major diastereomer included. ${ }^{\text {i Determined by EI-MS of concentrated samples of stereoisomerically pure }}$ fractions obtained from three analytical HPLC runs; major = major diastereomer, major enantiomer; minor = minor diastereomer, major enantiomer. ${ }^{j}$ Values calculated by comparison of H/D ratios of each stereoisomer (see correlation scheme for details). ${ }^{k}$ HPLC analysis using a Daicel Chiralcel OD-H column (n-heptane at $20^{\circ} \mathrm{C}$) provided baseline separation of enantiomers. ' Determined by EI-MS of concentrated samples of enantiopure fractions obtained from three analytical HPLC runs. ${ }^{m}$ Calculated from H/D ratio and ee global; e.g. run 1 with e.r.global $=67: 33$: e.r. $(9)=(67 \cdot 0.56):(33 \cdot 0.28)=37.5: 9.2(62 \%$ ee) [cf. Correlation Schemes].

4.2 Correlation Schemes

Scheme S1. Results for co-reaction of $(\mathrm{SiR})-\mathbf{2 b}$ and $\left[{ }^{2} \mathrm{H}\right]-8$ (Run 1).

Scheme S2. Results for co-reaction of (Si S)-[$\left.{ }^{2} \mathrm{H}\right]-\mathbf{2 b}$ and $\mathbf{8}$ (Run 2).

4.3 Copies of HPLC and MS analyses

- Complete Characterization Data for Pure Compounds can be found in a separate file. This is consisting of NMR files, copies of HPLC data for racemic $\mathbf{2 b}$ and $\mathbf{4 b}, \mathbf{9}$ as well as MS analyses of deuterated and non-deuterated compounds thereof and of 8. In addition, data for enantioenriched $\mathbf{2 b}$ and $\mathbf{4 b}$ are included.
- Run 1: Products

4b (HPLC, run 1)

- Run 2: Products
rac-4b (HPLC)

$\mathrm{H} / \mathrm{D}_{\text {global }}$ (before separation) $\mathbf{4 b}$ (EI-MS)

4b (HPLC, run 2)

$\mathrm{H} / \mathrm{D}_{\text {global }}($ before separation) $\mathbf{4 b}$ (EI-MS) [enlargement]

$\mathrm{H} / \mathrm{D}(\mathrm{SiS}, 2 R) \mathbf{4 b}(\mathrm{El}-\mathrm{MS})\left(\mathrm{t}_{\mathrm{R}}=41.1 \mathrm{~min}\right)$

H/D (SiS,2S) 4b (EI-MS) [enlargement]

9 (run 2)

- Run 3: Products
rac-4b (HPLC, run 3)

$\mathrm{H} / \mathrm{D}_{\text {global }}$ (H only) $\mathbf{4 b}$ (EI-MS)

$\mathbf{4 b}$ (HPLC, run 3)

H/Dglobal $4 \mathbf{4 b}$ (EI-MS) [enlarged]

9 (run 3, HPLC)

- Run 4: Products
rac-4b (HPLC, run 4)

H/D global (H only) 4b (EI-MS)

4b (HPLC, run 4)

H/D global $\mathbf{4 b}$ (EI-MS) [enlarged]

5 Cross-over Experiments of (SiS)-[2H]-2b and (SiR)-2b

5.1 Experimental Details

Hydrosilylation of $\mathbf{1}$ with a mixture of $(\mathrm{SiR})-\mathbf{2 b}$ and $(\mathrm{SiS})-\left[{ }^{2} \mathrm{H}\right]-\mathbf{2 b}$

$(\mathrm{Si} R)-\mathbf{2 b}$

(SiS) $-\left[^{2} \mathrm{H}\right]-\mathbf{2 b}$

1 (10 equiv.)
$\xrightarrow[\substack{\mathrm{CH}_{2} \mathrm{Cl}_{2} \\ \text { r.t. }}]{\mathbf{3 (0 . 5 \mathrm { mol } \%)}}$ 100\% conv. 86\% yield

(SiS) $)-\left[^{2} \mathrm{H}\right]-\mathbf{4 b}$

+ diastereomer

$(\mathrm{Si} R)-\left[^{2} \mathrm{H}\right]-4 \mathbf{b}$ + diastereomer

(SiS)-4b
+ diastereomer

A Schlenk tube was charged with a solution of (SiR)-2b ($19.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.333$ equiv., 97% ee), (SiS)- ${ }^{2} \mathrm{HJ}-2 \mathrm{bb}$ ($38.3 \mathrm{mg}, 0.200 \mathrm{mmol}, 0.667$ equiv., 95% ee), and bicyclic alkene $\mathbf{1}(427 \mathrm{mg}, 3.00 \mathrm{mmol}$, 10.0 equiv.) in anhydrous degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ under argon atmosphere. An aliquot (0.50 mL) was taken via syringe to determine the exact composition of the mixture by ${ }^{1} \mathrm{H}$ NMR. Subsequently, a freshly prepared solution of (phen)PdMe($\left.\mathrm{OEt}_{2}\right)^{+} \mathrm{BAr}_{4}^{-}$(3) [$\mathrm{Ar}=3,5$-bis(trifluoromethyl)phenyl] (0.50 $\mathrm{mL}, 0.00125 \mathrm{mmol}, 0.005$ equiv., 0.0025 m in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) - prepared in situ from (phen) $\mathrm{PdMe}_{2}(0.8 \mathrm{mg}$, $0.0025 \mathrm{mmol}, 0.010$ equiv.) and $\left[\mathrm{H}\left(\mathrm{OEt}_{2}\right)_{2}\right]^{+} \mathrm{BAr}_{4}^{-}\left(2.5 \mathrm{mg}, 0.0025 \mathrm{mmol}, 0.010\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.0 mL) at $0^{\circ} \mathrm{C}$ - was added via a microliter syringe. The resulting solution was stirred at room temperature for 48 h . ${ }^{1} \mathrm{H}$ NMR analysis indicated complete conversion of silanes. After removal of the catalyst by filtration through a plug of silica gel using cyclohexane as eluent, the solvents were evaporated. The excess alkene was removed by Kugelrohr distillation in vacuo. Subsequent flash column chromatography on silica gel with cylcohexane as eluent delivered a mixture of enantio- and isotopomers of $\mathbf{4 b}(72 \mathrm{mg}, 86 \%)$. Mass spectrometric analysis revealed a H/D ratio of 35:65.

Analytical HPLC using chiral stationary phases. provided sufficient separation of all four stereoisomers. Identical fractions of several runs were collected, concentrated and analyzed by mass spectrometry (see Scheme S3 for results).

Scheme S3. Results for co-reaction of $(\mathrm{Si} R)-\mathbf{2 b}$ and $(\mathrm{SiS})-\left[{ }^{2} \mathrm{H}\right]-\mathbf{2 b}$

5.2 Copies of HPLC and MS data

H / D for $(\mathrm{SiS}, 2 R)-\left[{ }^{1} \mathrm{H}^{2} \mathrm{H}\right]-\mathbf{4 b}(\mathrm{El}-\mathrm{MS})$

5.3 Product Distribution Analysis / Modeling

The relative proportions (mol fraction \%) of ($\mathrm{Si} R$) $-\mathbf{4 b},(\mathrm{SiR})-\left[{ }^{2} \mathrm{H}\right]-\mathbf{4 b},(\mathrm{SiS})-\mathbf{4 b}$ and $(\mathrm{Si} S)-\left[{ }^{2} \mathrm{H}\right]-\mathbf{4 b}$ as a function of conversion of total $\mathbf{2 b}$ were modeled by computer-based application of the Gear integration method. ${ }^{[13]}$ The model was simplified such that steps (i), (ii) and (iii) shown in Scheme 2 were telescoped into one step: $\mathbf{7 b}+\mathbf{2 b} \rightarrow \mathbf{4 b}+\mathbf{7 b}+\mathbf{X}$, with an associated rate constant k_{1}. Stereochemical / labeling descriptors were applied such that intermediate 7 has two forms: $(\mathrm{SiR})-\mathbf{7 b}$ and $(\mathrm{SiS})-7 \mathbf{b}$ and silane $\mathbf{2 b}$ has four forms $(\mathrm{Si} R)-\mathbf{2 b},(\mathrm{Si} R)-\left[{ }^{2} \mathrm{H}\right]-\mathbf{2 b},(\mathrm{Si} S)-\mathbf{2 b},(\mathrm{Si} S)-\left[{ }^{2} \mathrm{H}\right]-\mathbf{2 b}$. Eight possible combinations of $\mathbf{2 b}$ and $\mathbf{7 b}$ emerge. For those combinations involving $\left[{ }^{2} H\right]-\mathbf{2 b}$, the rate constant k_{1} was reduced to reflect the PKIE. For those combinations involving opposite stereoisomers of $\mathbf{2 b}$ and $\mathbf{7 b}$ the rate constant was reduced by a mismatching factor $\left(k^{m} / k^{m m}\right)$. For combinations involving both $\left[{ }^{2} H\right]-2 b$ and opposite stereoisomers of $\mathbf{2 b}$ and $\mathbf{7 b}$ the rate constant was reduced by both factor (PKIE $\times k^{m} / k^{m m}$). The absolute rate constants have no meaning outside of the framework of the model. The concentration of all species were based on mol fraction \% as defined by the initial charging of the reagents to the reaction vessel (see above for details) and also take into account the enantiomeric and isotopic purities of the reagents $\left([(\mathrm{Si} R)-\mathbf{2 b}]_{0}=33.49 \mathrm{~mol} \% ;\left[(\mathrm{Si} R)-\left[{ }^{2} \mathrm{H}\right]-2 \mathbf{b}\right]_{0}=1.6 \mathrm{~mol} \% ;[(\mathrm{SiS})-2 \mathbf{2 b}]_{0}=\right.$ $\left.1.81 \mathrm{~mol} \% ;\left[(\mathrm{SiS})-\left[{ }^{2} \mathrm{H}\right]-\mathbf{2 b}\right]_{0}=63.10 \mathrm{~mol} \%\right)$. The output for $(\mathrm{Si} R)-\mathbf{4 b},(\mathrm{Si} R)-\left[{ }^{2} \mathrm{H}\right]-\mathbf{4 b},(\mathrm{SiS})-\mathbf{4 b}$ and $(\mathrm{SiS})-$ $\left[{ }^{2} \mathrm{H}\right]-\mathbf{4 b}$ at $\mathbf{X}=86 \%$ [total-2b] $]_{0}$ was compared with the observed data (see Figure S2) and a best-fit of PKIE $=2.5$ and $k^{m} / k^{m m}=2.5$ obtained through manual iteration and comparing the sum square errors for all four components. The distributions and sum square error (\%) values obtained, together with a comparison of observed versus best fit is given in Figure S2.

Figure S2. Upper section: predicted and observed distributions of $(\mathrm{SiS})-\mathbf{4 b},(\mathrm{SiR})-\mathbf{4 b},(\mathrm{SiS})-\left[{ }^{2} \mathrm{H}\right]-\mathbf{4 b}$ and (SiR) $\left[{ }^{2} \mathrm{H}\right]-\mathbf{4 b}$ at $\mathbf{X}=84.5 \%$ [total-2] $]_{0}$ using model outlined in section 5.3 at various values of KIE and k^{m} / k^{mm}. Lower section: graphical comparison of observed (grey shaded bars, data from Scheme 5) versus predicted (pink shaded bars) for best fit when PKIE $=k^{\mathrm{m}} / k^{\mathrm{mm}}=2.5$.

			(SiS)-4b	$(\mathrm{Si} R) \mathbf{- 4 b}$	$(\mathrm{SiS})-\left[{ }^{2} \mathrm{H}\right]-4 \mathrm{~b}$	$(\mathrm{Si} R)-\left[{ }^{2} \mathrm{H}\right]-4 \mathbf{b}$	SSE (\%)
OBSERVED (mol fraction \%)			13.1	26.2	46.0	14.7	0.0
MODELS	PKIE	$k^{m} / k^{m m}$					
	2.5	2.4	14.4	25.0	46.4	13.7	155.4
	2.5	2.5	14.1	25.3	47.0	13.5	126.9
	2.5	2.6	13.8	25.7	47.6	13.1	148.6
	2.4	2.5	14.2	25.1	47.3	13.6	138.2
	2.6	2.5	14.1	25.6	47.1	13.4	136.4
	2.4	2.4	14.5	24.9	46.7	13.8	169.8
	2.6	2.6	13.7	25.8	47.7	13.1	140.3

5.4 Modeling of Asymmetric Amplification

The relative proportions of $(\mathrm{SiR})-\mathbf{2},(\mathrm{SiS})-\mathbf{2},(\mathrm{SiR})-\mathbf{4},(\mathrm{SiS})-\mathbf{4},(\mathrm{Si} R)-\mathbf{5},(\mathrm{SiS})-5$ and $(\mathrm{Si} R)-\mathbf{7},(\mathrm{SiS})-\mathbf{7}$ as a function of conversion of $\mathbf{1}$ (\%), according to Scheme 2 (two-silicon cycle) were modeled by computerbased application of the Gear integration method. ${ }^{[13]}$ The model was simplified such that steps (i) and (ii) shown in Scheme 2 were telescoped into one step, giving a two-step cycle: step one is alkene coordination / insertion via $\mathbf{1}+5 \rightarrow \mathbf{7}, k_{1}$ (and an associated equilibrium constant K_{1}, to allow reversibility) and step 2 is σ-bond metathesis via $\mathbf{2 + 7 \rightarrow 4 + 5}$, k_{3} (irreversible). The value of k_{3} was set as 4 for matched combinations and as 1 for mismatched combinations of stereoisomers of 2 and 7 (thus $k_{3}{ }^{m} / k_{3}{ }^{m m}=4$). The absolute rate constants have no meaning outside of the framework of the model. The concentration of all species were based on mol fraction \%. The initial ee of $2=60 \%$ (thus $(\mathrm{Si} R)-\mathbf{2}:(\mathrm{Si} \mathrm{S})-\mathbf{2}=\mathbf{8 0}: 20)$ and the stoichiometry of $\mathbf{2}$ was set at 20% excess over $\mathbf{1}$. The catalyst loading was set at 0.1 mol\% 7 (starting with 5 , and/or with different enantiomer ratios of 7 or 5 was found to have little or no effect after 5 or less \% reaction). A schematic of the model is outlined at the top of Figure S3. Various values of k_{1}, and K_{1} were explored such that the 'resting state' (= bulk catalyst concentration) was 5 or $\mathbf{7}$ or both. As shown graphically in Figure S3, it is found that the asymmetric amplification is independent of relative values of k_{1} and K_{1} and depends only on the enantiomer ratio of $\mathbf{2}$ which sets the enantiomer ratio of $\mathbf{7}$. At any point, the nascent enantiomer ratio of $\mathbf{4}$ is given by:
er $\mathbf{4}_{\text {nascent }}=$
$\left\{k_{3}{ }^{\mathrm{m}}[(\mathrm{Si} R)-2][(\mathrm{Si} R)-7]+{k_{3}}^{\mathrm{mm}}[(\mathrm{Si} S)-2][(\mathrm{SiS})-7]\right\} /\left\{k_{3}{ }^{\mathrm{m}}[(\mathrm{Si} S)-2][(\mathrm{SiS})-7]+{k_{3}}^{\mathrm{mm}}[(\mathrm{Si} R)-2][(\mathrm{Si} R)-7]\right\}$

A key point for the discussion of the attenuation (masking) of asymmetric amplification below is that when K_{1} is small, the er of 5 becomes predominantly determined by the er of 7 (and thus 2). As K_{1} increases, the er becomes predominantly determined by er $\mathbf{4}_{\text {nascent }}$ (and thus er $\mathbf{5}_{\text {nascent }}$).

Figure S3. A selection of graphical analyses of asymmetric amplification according to the simplified model shown at the top of the figure. In the lower section, plots of relative \% 5 and $\mathbf{7}$ and of enantiomer ratios of 2, 4, 5 and $\mathbf{7}$ as functions of conversion (\%) of $\mathbf{1}$ are given. See text above for full discussion.

Starting conditions: 0.1 mol \% 7, 1.2 equiv. 2 (60% ee R)

$$
k_{3}^{m}=4 \quad k_{3}^{m m}=1
$$

A second model was explored in which exchange of silane 2 with 5 was faciliated via the process $[(\mathrm{Si} S)-2]+[(\mathrm{Si} R)-5] \rightarrow[(\mathrm{Si} R)-2]+[(\mathrm{Si} S)-5]$, with associated rate constant $k_{\text {exch }}$ as well as the reverse process $\left(K_{\text {exch }}=1\right)$. A schematic of the model is outlined at the top of Figure S4. Various values of k_{1}, and K_{1} were again explored such that the 'resting state' was 5 or 7 or both. It was found that under the conditions that would normally generate 5 in higher er than that of 2 (see Figure S3) relatively low values of $k_{\text {exch }}$ faciliate the equilibration of the er of 5 with that of 2 . Due to the requirement for equal flux around all stages of the cycle at 'steady state', the reduction in the er of 5 causes a reduction in the er of $\mathbf{7}$ and thus attenuates the er of nascent $\mathbf{4}$. With high values of $k_{\text {exch }}$ the er of $\mathbf{4}$ becomes equal
to that of 2 (not net amplification) eventhough the value of $k_{3}{ }^{m} / k_{3}{ }^{m m}=4$ and the match/mismatch is just as efficient as in Figure S3. Increasing the reactivity of $1\left(k_{1}\right)$ or its concentration ([1]) supresses the attenuation (i.e. restores amplification). Analogously, it was also found that under the conditions that would normally generate 5 in equal er to that of 2 and 7 (see Figure S3) extrememely high values of $k_{\text {exch }}$ were required to have any effect on the er of 4 . Thus as the er of 5 approaches that of 7 the system becomes increasingly immune to supression of amplification (as is logical since equilibration of 5 with 2 will have no effect on the er of 5 or $\mathbf{7}$).

Figure S4. A selection of graphical analyses of attenuation of asymmetric amplification according to the simplified model shown at the top of the figure which has in addition to that shown in Figure S3, a mechanism for silane exchange with 5. In the lower section, plots of relative \% 5 and 7 and of enantiomer ratios of $\mathbf{2 , 4}, \mathbf{5}$ and $\mathbf{7}$ as functions of conversion (\%) of $\mathbf{1}$ are given (See text above for full discussion).

Starting conditions: 0.1 mol \% 7, 1.2 equiv. $2(60 \%$ ee R)

$$
k_{3}^{m}=4 \quad k_{3}^{m m}=1
$$

6 Estimation of the Kinetic Isotope Effect (PKIE)

Hydrosilylation of $\mathbf{1}$ with a mixture of rac-2a and rac- $\left[{ }^{2} \mathrm{H}\right]-\mathbf{2 a}$

rac-2a

A NMR tube was charged with a solution of rac-2a ($20.4 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv.), rac- $\left[^{2} \mathrm{H}\right]-2 \mathbf{a}$ ($20.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv.), and bicyclic alkene $1(14.2 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv.) in anhydrous degassed $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.80 \mathrm{~mL})$ under argon atmosphere. After the exact composition had been determined by ${ }^{1} \mathrm{H}$ NMR, a freshly prepared solution of (phen) $\mathrm{PdMe}\left(\mathrm{OEt}_{2}\right)^{+} \mathrm{BAr}_{4}{ }^{-}(\mathbf{3})[\mathrm{Ar}=3,5-$ bis(trifluoromethyl)phenyl] ($200 \mu \mathrm{~L}, 0.00100 \mathrm{mmol}, 0.001$ equiv., 0.0005 m in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) - prepared in situ from (phen) $\mathrm{PdMe}_{2}\left(1.0 \mathrm{mg}, 0.0030 \mathrm{mmol}, 0.030\right.$ equiv.) and $\left[\mathrm{H}\left(\mathrm{OEt}_{2}\right)_{2}\right]^{+} \mathrm{BAr}_{4}{ }^{-}(3.0 \mathrm{mg}, 0.0010 \mathrm{mmol}$, 0.010 equiv.) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(600 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ - was added via a microliter syringe. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR analysis at $25^{\circ} \mathrm{C}$ over a period of 48 h . The results are obtained by integration are shown in Table S3 (see Figure S6 for exemplified NMR spectra).

Table S3. Concentrations as determined by ${ }^{1} \mathrm{H}$ NMR

Concentration [$\mathrm{mmol} / \mathrm{mL}]^{\text {a }}$							
Entry	time [h]	conversion [\%] ${ }^{\text {b }}$	1	rac-2a	rac- $\left[{ }^{2} \mathrm{H}\right]$-2a	rac-4a	rac-[$\left.{ }^{2} \mathrm{H}\right]-\mathbf{4 a}$
1	0.00	0.00	0.1000	0.0898	0.1352	0.0000	0.0000
2	0.17	13.73	0.1179	0.0650	0.1291	0.0145	0.0164
3	0.22	15.46	0.1047	0.0658	0.1244	0.0141	0.0207
4	0.28	15.19	0.1048	0.0653	0.1255	0.0151	0.0190
5	0.35	16.65	0.0956	0.0659	0.1217	0.0137	0.0238
6	0.43	15.79	0.0918	0.0603	0.1292	0.0045	0.0311
7	0.48	16.70	0.0935	0.0650	0.1225	0.0253	0.0123
8	0.53	16.58	0.0938	0.0655	0.1222	0.0235	0.0138
9	0.58	17.33	0.0887	0.0649	0.1211	0.0337	0.0052
10	0.62	16.42	0.0902	0.0630	0.1251	0.0074	0.0296
11	0.67	17.69	0.0835	0.0630	0.1222	0.0146	0.0252
12	1.07	17.65	0.0854	0.0643	0.1210	0.0259	0.0139
13	1.33	19.16	0.0787	0.0652	0.1167	0.0282	0.0150
14	1.38	19.02	0.0788	0.0652	0.1170	0.0201	0.0227

15	1.42	19.55	0.0764	0.0644	0.1166	0.0346	0.0093
16	1.47	23.32	0.0571	0.0577	0.1148	0.0332	0.0193
17	4.10	22.97	0.0528	0.0570	0.1164	0.0279	0.0237
18	4.18	23.42	0.0526	0.0579	0.1144	0.0394	0.0133
19	4.23	22.20	0.0544	0.0572	0.1179	0.0292	0.0208
20	7.43	26.07	0.0384	0.0531	0.1132	0.0384	0.0203
21	7.47	26.79	0.0374	0.0533	0.1114	0.0399	0.0204
22	24.23	38.80	0.0082	0.0347	0.1031	0.0506	0.0367
23	26.23	39.53	0.0078	0.0382	0.0979	0.0493	0.0397
24	26.30	38.83	0.0070	0.0337	0.1039	0.0521	0.0353
25	26.35	41.03	0.0068	0.0348	0.0979	0.0705	0.0218
26	43.17	44.80	0.0003	0.0310	0.0931	0.0705	0.0303
27	43.22	44.54	0.0003	0.0322	0.0926	0.0623	0.0379
28	43.25	44.09	0.0003	0.0313	0.0945	0.0584	0.0408

${ }^{a}$ Reaction performed in 0.1 M solution in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Initial concentrations calculated by weight of used $\mathbf{1}$ (giving a 0.1 M solution) and comparison of ${ }^{1} \mathrm{H}$ NMR signals at 4.12 (rac-2a, 1 H), $3.78(\mathbf{1}, 2 \mathrm{H}), 2.70\left(\mathrm{rac}-2 \mathrm{a}, 2 \mathrm{H}\right.$; rac- $\left.{ }^{2} \mathrm{H}\right]-2 \mathrm{a}$, 2 H ; rac-4a, 2 H ; rac-[$\left.{ }^{2} \mathrm{H}\right]-2 \mathbf{a}, 2 \mathrm{H}$), 2.08 (rac-2a, 1 H ; rac- $\left.{ }^{2} \mathrm{H}\right]-2 \mathbf{a}, 1 \mathrm{H}$; rac-4a, 1 H); and 1.30 (rac-4a, 1 H ; rac- $\left[{ }^{2} \mathrm{H}\right]-4 \mathbf{a}$, $1 \mathrm{H}) .{ }^{b}$ based on consumed silane rac-2a and rac- $\left[{ }^{2} \mathrm{H}\right]-\mathbf{2 a}$.

The concentrations of $\mathbf{2 a}$ and $\left[{ }^{2} \mathrm{H}\right]-2 \mathbf{a}$ as a function of conversion were modeled by computer-based application of the Gear integration method. ${ }^{[13]}$ The model was simplified to a pair of bimolecular noncatalysed competitions: $\mathbf{1}+\mathbf{2 a} \rightarrow \mathbf{X}$, with an associated rate constant k_{1} and $\mathbf{1}+\left[{ }^{2} \mathrm{H}\right]-\mathbf{2 a} \rightarrow \mathbf{X}$ with an associated rate constant k_{2}. In both processes, ' \mathbf{X} ' was used as a marker for conversion of $\mathbf{1}$. The absolute rate constants have no meaning outside of the framework of the model. The concentration of all species were based on molarity as defined by the initial charging of the reagents to the NMR tube (see above for details). The relative rate k_{1} / k_{2} (= PKIE) was varied manually and compared with the observed data as a function of concentration of $\mathbf{2 a}$ and $\left[{ }^{2} \mathrm{H}\right]-\mathbf{2 a}$ with conversion of $\mathbf{1}$, see Figure S 5 . A best-fit of $k_{1} / k_{2}=3.0$ (green line) ± 0.5 (black and red lines) was obtained.

Figure S5. Graphical analysis of predicted and observed concentrations of silane $\mathbf{2 a}$ and deuterated silane $\left[{ }^{2} \mathrm{H}\right]$ 2a as determined by ${ }^{1} \mathrm{H}$ NMR analysis. Circles: NMR derived data; solid lines passing through data: predictions based on simple first-order bimolecular competition model: red PKIE $=2.5$, green $\operatorname{PKIE}=3.0$; black $\operatorname{PKIE}=3.5$. .

Figure S6. Characteristic ${ }^{1} \mathrm{H}$ NMR signals for analysis of a PKIE.

7 References and Footnotes

\dagger Westfälische Wilhelms-Universität Münster
\ddagger University of Bristol
[1] Wittig, G.; Knauss, E. Chem. Ber. 1958, 91, 895-907.
[2] Rendler, S.; Auer, G.; Keller, M.; Oestreich, M. Adv. Synth. Catal. 2006, 348, 1171-1182.
[3] a) De Graaf, W.; Boersma, J.; Smeets, W. J. J.; Spek, A. L.; Van Koten, G. Organometallics 1989, 8, 2907-2917. b) Rix, F. C.; Brookhart, M.; White, P. S. J. Am. Chem. Soc. 1996, 118, 2436-2448.
[4] a) Brookhart, M.; Grant, B.; Volpe Jr., A. F. Organometallics 1992, 11, 3920-3922; b) improved procedure for the prepration of NaBAr_{4} used: Yakelis, N. A.; Bergman, R. G. Organometallics 2005, 24, 3579-3581.
[5] Oestreich, M.; Schmid, U. K.; Auer, G.; Keller, M. Synthesis 2003, 2725-2739.
[6] a) Required $\left[2-{ }^{13} \mathrm{C}\right]-2,4,4$-Trimethyloxazoline was prepared by analogy to ref. ${ }^{[6 \mathrm{~b}]}$ starting with commercially available [2- ${ }^{13}$ C]-acetic acid; b) Myers, A. I.; Temple, D. L.; Nolen, R. L.; Mihelich, E. D. J. Org. Chem. 1974, 39, 2778-2783.
[7] Tyler, L. J.; Sommer, L. H.; Whitmore, F. C. J. Am. Chem. Soc. 1948, 78, 2876-2878.
[8] Cook, M. A..; Eaborn, C.; Walton, D. R. M. J. Organomet. Chem. 1971, 29, 389-396.
[9] Absolute configuration deducted in from polarity in comparison to the known properties and absolute configuration of the $\mathbf{2 a}$ derived (-)-menthyl ether. ${ }^{[2]}$ The assignment is in agreemnent with comparable chiral HPLC properties of silanes $\mathbf{2 b}$ versus $\mathbf{2 a}$ after stereospecific reductive cleavage.
[10] Absolute configuration deducted from similar HPLC properties as ($\mathrm{Si} R$)-2a using the same chiral stationary phase.
[11] Relative stereochemistry assigend by analogy to $\mathbf{4 a}$; absolute stereochemistry assigned by a stereoretentive process being operative.
[12] Stereochemistry assigned by comparison of the stereoinduction being operative in the formation of $\mathbf{4 b}$.
[13] a) Weigert, F. J. Computers and Chemistry 1987, II, 273; b) Stabler, R. N.; Cheswick, J. Int. J. Kinet. 1978, 10, 461; c) McKinney, R. J.; Weigert, F. J. Quantum Chemistry, Program Exchange, program No. QCMP022. Commercially available software (MacKinetics, Leipold Associates, USA) was employed for the simulations described herein.

