Intermolecular Chirality Transfer from Silicon to Carbon: Interrogation of the Two-Silicon Cycle for Pd-Catalyzed Hydrosilylation by Stereoisotopochemical Cross-over

Sebastian Rendler[†], Martin Oestreich^{†*}, Craig P. Butts[‡], and Guy C. Lloyd-Jones^{‡*}

Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, D-48149 Münster, Germany; Organic & Biological Chemistry Section, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom

E-mail: martin.oestreich@uni-muenster.de, guy.lloyd-jones@bristol.ac.uk

Supporting Information

Contents

1		General Information	S2
2		Experimental Procedures and Characterization Data of New Compounds	S2
	2.1	General Procedures	S2
	2.2	Experimental Details and Characterization Data for Silane Reagents 2a, 2b, 8	S3
	2.3	Experimetal Details and Characterization Data for Hydrosilylation Products 4a, 4b, 9	S9
3		Cross-over Experiments involving [² H]-2a and [¹³ C]-2a	S14
	3.1	Experimental Details	S14
	3.2	²⁹ Si NMR Spectra	S16
	3.3	Product Distribution Analysis / Modeling	S25
4		Cross-over Experiments of 2b and 8	S27
	4.1	Experimental Details	S27
	4.2	Correlation Schemes	S29
	4.3	HPLC and MS data	S31
5		Cross-over Experiments of (SiS)-[² H]-2b and (SiR)-2b	S43
	5.1	Experimental Details	S43
	5.2	HPLC and MS data	S45
	5.3	Product Distribution Analysis / Modeling	S48
	5.4	Modeling of Asymmetric Amplification	S50
6		Estimation of the Primary Kinetic Isotope Effect	S53
7		References and Footnotes	S56

Reagents obtained from commercial suppliers were used without further purification unless otherwise noted. $\mathbf{1}^{[1]}$, $\mathbf{2a}^{[2]}$, (phen)PdMe₂^[3], [H(OEt_2)₂]⁺BAr₄⁻ [Ar = 3,5-bis(trifluoromethyl)phenyl]^[4] were prepared according to known procedures. All reactions were performed in flame-dried glassware under a static pressure of argon. Liquids and solutions were transferred with syringes or double-ended needles. Solvents were dried prior to use following standard procedures (THF, CH₂Cl₂, CD₂Cl₂, CCl₄, nheptane). Technical grade solvents for extraction or chromatography (cyclohexane, t-butyl methyl ether) were distilled before use. Analytical thin-layer chromatography was performed on silica gel SIL G-25 glass plates by MachereyNagel/Germany and flash chromatography on silica gel 60 (4063 µm, 230-400 mesh, ASTM) by Merck/Germany using the indicated solvents. High vacuum distillations (10⁻⁶ mbar) were performed using standard glassware and an Edwards turbo molecular pump. ¹H and ¹³C NMR spectra were recorded in CDCl₃ or CD₂Cl₂ on Bruker AM300, AM 400 and DRX500, Varian Unity plus 600 or Jeol Delta 400 instruments. ²⁹Si NMR spectra were recorded on a Jeol Alpha 500 instrument. Analytical HPLC analysis were performed with Merck-Hitachi L7100 or Agilent 1200 instruments on a chiral stationary phase using a Daicel Chiralcel OD-H column (n-heptane as solvent) or Daicel Chiralcel OD-RH, OJ-RH (MeCN:H₂O mixtures). Mass spectra were recorded with a Finnigan MAT TSQ7000 (EI/CI-MS) or a Waters Micromass GC-TOF (EI/HRMS).

2 Experimental Procedures and Characterization Data of New Compounds

2.1 General Procedures

2.1.1 General Procedure for the Preparation of [²H]-Labeled Silanes (GP 1)

A saturated solution of Cl₂ in CCl₄ (2.5 mL) was added to a solution of the silane (**2a**, **2b** or **8**) (2.00 mmol, 1.00 equiv.) in CCl₄ (4.0 mL) at 0 °C until a permanent pale yellow color appeared. After 4 min the reaction mixture was purged with argon. Evaporation of the solvent under reduced pressure provided the crude chlorosilane as a colorless oil, which then was dissolved in THF (5 mL) and added portionwise to a stirred suspension of LiAlD₄ (126 mg, 3.00 mmol, 1.50 equiv., 98% D) in THF (5 mL). After having refluxed this mixture for 2 h, the reaction was quenched at ambient temperature by careful addition of water (20 mL) followed by 2M HCl until pH 7 was reached. The organic layer was separated and the aqueous phase extracted with *t*-butyl methyl ether (4 × 20 mL). The combined organic layers were washed with brine (30 mL), dried (Na₂SO₄), filtered and volatiles were evaporated under reduced pressure. The crude product was purified by flash column chromatography on silica gel with cyclohexane as eluent, furnishing the analytically pure deuterated silanes ([²H]-**2a**, [²H]-**2b**, [²H]-**8** (78–90%, >98% D) as colorless liquids.

2.1.2 General Procedure for the Hydrosilylation of 1 with silanes 2a, 2b and 8 (GP 2)

A Schlenk tube was charged with a mixture of (phen)PdMe₂ (1.6 mg, 0.0050 mmol, 0.02 equiv.) and $[H(OEt_2)_2]^+BAr_4^-$ [Ar = 3,5-bis(trifluoromethyl)phenyl] (5.1 mg, 0.0050 mmol, 0.02 equiv.) under argon atmosphere. The solids were dissolved in anhydrous degassed CH₂Cl₂ (0.8 mL) at 0 °C forming a pale yellow solution. At this temperature, a solution of bicyclic alkene **1** (35.6 mg, 0.250 mmol, 1.00 equiv.) and silane (**2a**, **2b** or **8**) (0.300 mmol, 1.20 equiv.) in CH₂Cl₂ (1.7 mL) was added in one portion via syringe. The resulting bright yellow solution was maintained at 0 °C until complete consumption of the reactants (2 h) as monitored by ¹H NMR analysis. After addition of cyclohexane (10 mL) and small portion of silica gel the solvents were evaporated. Purification by flash column chromatography on silica gel (cyclohexane) afforded the analytical pure product (**4a**, **4b** or **9**) (72–88%) as a colorless, highly viscous oil (**4a**, **4b**) or as a white solid (**9**).

2.2 Experimental Details and Characterization Data for Silane Reagents 2a, 2b, 8

2.2.1 Preparation of rac-[²H]-2a and rac-[¹³C]-2a

rac-[1-²H]-1-tert-Butyl-1-(1,2,3,4-tetrahydro)-1-silanaphthalene (rac-[²H]-2a)

Prepared according to GP1 from *rac*-**2a** (214 mg, 1.13 mmol, 1.00 equiv.) furnishing the analytically pure silane *rac*- $[^{2}H]$ -**2a** (179 mg, 87%, 99% D) as a colorless liquid.

R_f (cyclohexane) = 0.74; IR (CHCl₃) $\tilde{\nu}$ 3055 (w), 3000 (w), 2926 (s), 2856 (s), 2105 (vw), 1591 (w), 1532 (s), 1463 (s), 1436 (s), 1406 (w), 1361 (m), 1292 (m), 1269 (m), 1141 (m), 1074 (m), 1008 (m), 974 (m), 938 (m), 917 (m), 862 (m), 822 (s), 782 (s), 742 (m), 699 (m), 674 (m), 622 (s) cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ

0.92 (ddd, ${}^{2}J_{2ax,2eq} = 14.8$ Hz, ${}^{3}J_{2ax,3ax} = 11.5$ Hz, ${}^{3}J_{2ax,3eq} = 5.2$ Hz, 1H, H-2ax), 1.01 (s, 9H, H-12, H-13, H-14), 1.14 (dddd, ${}^{2}J_{2eq,2ax} = 14.9$ Hz, ${}^{3}J_{2eq,3aq} = 5.0$ Hz, ${}^{3}J_{2eq,3ax} = 5.0$ Hz, ${}^{4}J_{2eq,4eq} = 1.0$ Hz, 1H, H-2eq), 1.77 (ddddd, ${}^{2}J_{3ax,3eq} = 13.4$ Hz, ${}^{3}J_{3ax,2ax} = 11.5$ Hz, ${}^{3}J_{3ax,4ax} = 10.5$ Hz, ${}^{3}J_{3ax,2eq} = 4.2$ Hz, ${}^{3}J_{3ax,4eq} = 2.9$ Hz, 1H, H-3ax), 2.08 (ddddd, ${}^{2}J_{3eq,3ax} = 13.3$ Hz, ${}^{3}J_{3eq,2aq} = 6.6$ Hz, ${}^{3}J_{3eq,4eq} = 6.6$ Hz, ${}^{3}J_{3eq,2ax} = 5.2$ Hz, ${}^{3}J_{3eq,4eq} = 2.9$ Hz, 1H, H-3eq), 2.67 (ddd, ${}^{2}J_{4ax,4eq} = 15.8$ Hz, ${}^{3}J_{4ax,3ax} = 10.5$ Hz, ${}^{3}J_{4ax,3eq} = 2.9$ Hz, 1H, H-4ax), 2.76 (dddd, ${}^{2}J_{4eq,4ax} = 15.5$ Hz, ${}^{3}J_{4eq,3eq} = 6.7$ Hz, ${}^{3}J_{4eq,3ax} = 2.7$ Hz, ${}^{4}J_{4eq,2eq} = 1.0$ Hz, 1H, H-4eq), 7.12 (dd, ${}^{3}J_{5,6} = 7.7$ Hz, 1H, H-5), 7.19 (dd, ${}^{3}J_{7,6} = {}^{3}J_{7,8} = 7.2$ Hz, 1H, H-7), 7.28 (ddd, ${}^{3}J_{6,5} = {}^{3}J_{6,7} = 7.5$ Hz, ${}^{4}J_{6,8} = 1.5$ Hz, 1H, H-6), 7.56 (dd, ${}^{3}J_{8,7} = 7.2$ Hz, ${}^{4}J_{8,6} = 1.5$ Hz, 1H, H-8) ppm. 13 C NMR (125 MHz, CDCl₃) δ 6.5 (C-2), 17. 2 (C-11), 23.2 (C-3), 27.2 (C-12, C-13, C-14), 35.5 (C-4), 125.2 (C-7), 128.8 (C-5), 129.2 (C-6), 130.3 (C-9), 136.2 (C-8), 150.0 (C-10) ppm. 29 Si NMR (99.25 MHz, CDCl₃) δ - 13.74 (t, ${}^{2}J_{5,LD} = 29.5$ Hz) ppm. HR-MS for C₁₃H₁₉DSi: 205.1397 Found: 205.1392.

rac-[2-13C]-1-tert-Butyl-1-(1,2,3,4-tetrahydro)-1-silanaphthalene (rac-[13C]-2a)

A 100-mL three-necked flask equipped with a reflux condenser, a 25-mL pressureequalizing dropping funnel, an argon-inlet and a magnetic stirring bar was charged with magnesium turnings (811 mg, 33.3 mmol, 10.0 equiv.). The flask was subsequently flame dried *in vacuo* (3 times) with vigorous stirring, backfilled with argon and stirring was continued for 12 h. Then, the magnesium turnings were suspended in THF (10 mL) and a solution of 1,2-dibromoethane (0.29 mL, 0.63 g, 3.3 mmol, 1.00 equiv.) was added dropwise. After complete addition, the mixture

was heated to reflux and a solution of 2-([3^{-13} C]-3-bromopropyl)-1-bromobenzene (930 mg, 3.33 mmol, 1.00 equiv.) – prepared analogously to the non-labeled dibromide^[5] –^[6] and *tert*-butyl trichlorosilane^[7] (638 mg, 3.33 mmol, 1.00 equiv.) in THF (20 mL) was added slowly over a period of 2 h. The reaction mixture was maintained for further 24 h at reflux. The resulting solution was transferred to another 100-mL three-necked flask equipped with a reflux condenser, an argon-inlet and a magnetic stirring bar, containing a suspension of LiAlH₄ (253 mg, 6.66 mmol, 1.80 equiv.) in THF (20 mL). Heating at reflux for 12 h was followed by careful quenching of the resulting mixture by pouring it slowly on ice and, finally, adding conc. HCI (5 mL) until pH 4-5 was reached.. The organic layer was separated and the aqueous phase was extracted with *t*-butyl methyl ether (4 × 40 mL). The combined organic layers were washed with brine (30 mL), dried (Na₂SO₄), filtered and volatiles were evaporated under reduced pressure. The crude product was purified by flash column chromatography on silica gel with cyclohexane as eluent affording the silane *rac*[¹³C]-**2a** (266 mg, 39%, 5.4% overall yield based on [2-¹³C]-acetic acid,^[5,6] 99% ¹³C) as a colorless liquid.

R_f = 0.74 (cyclohexane). IR (CHCl₃) \tilde{v} 3055 (w), 3000 (w), 2926 (s), 2856 (s), 2103 (s), 1591 (w), 1466 (m), 1436 (s), 1389 (w), 1361 (w), 1290 (w), 1266 (w), 1138 (m), 1074 (m), 1009 (m), 976 (m), 939 (m), 917 (m), 886 (s), 885 (s), 821 (s) cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 0.90 (ddddd, ¹J_{2ax,2C} = 121 Hz, ${}^{2}J_{2ax,2eq} = 14.8$ Hz, ${}^{3}J_{2ax,3ax} = 11.7$ Hz, ${}^{3}J_{2ax,3eq} = 5.0$ Hz, 1H, H-2ax, ${}^{3}J_{2ax,1} = 3.8$ Hz, 1H, H-2ax), 1.00 (s, 9H, H-12, H-13, H-14), 1.14 (dm_c, ¹J_{2eq,2C} = 121 Hz, 1H, H-2eq), 1.76 (dddddd, ²J_{3ax,3eq} = 13.2 Hz, ${}^{3}J_{3ax,2ax} = 11.5$ Hz, ${}^{3}J_{3ax,4ax} = 10.4$ Hz, ${}^{2}J_{3ax,2C} = 5.7$ Hz, ${}^{3}J_{3ax,2eq} = 4.1$ Hz, ${}^{3}J_{3ax,4eq} = 3.0$ Hz, 1H, H-3ax), 2.08 (dddddd, ${}^{2}J_{3eq,3ax} = 13.3$ Hz, ${}^{3}J_{3eq,2eq} = {}^{3}J_{3eq,4eq} = 6.6$ Hz, ${}^{3}J_{3eq,2ax} = 5.1$ Hz, ${}^{2}J_{3eq,2C} = 3.8$ Hz, ${}^{3}J_{3eq,4ax} = 2.8$ Hz, 1H, H-3eq), 2.66 (dddd, ${}^{2}J_{4ax,4eq} = 15.4$ Hz, ${}^{3}J_{4ax,3ax} = 10.4$ Hz, ${}^{3}J_{4ax,2C} = 6.3$ Hz, ${}^{3}J_{4ax,3eq} = 2.5$ Hz, 1H, H-4ax), 2.75 (dddd, ${}^{2}J_{4eq,4ax} = 15.1$ Hz, ${}^{3}J_{4eq,3eq} = {}^{3}J_{4eq,2C} = 6.9$ Hz, ${}^{3}J_{4eq,3ax} = 2.5$ Hz, 1H, H-4eq), 4.16 (ddd, ${}^{2}J_{1,2C}$ = 6.0 Hz, ${}^{3}J_{1,2ax}$ = ${}^{3}J_{1,2eq}$ = 3.8 Hz, 1H, H-1), 7.11 (d, ${}^{3}J_{5,6}$ = 7.5 Hz, 1H, H-5), 7.19 (dd, ${}^{3}J_{7,6} = {}^{3}J_{7,8} = 7.3$ Hz, 1H, H-7), 7.27 (ddd, ${}^{3}J_{6,5} = {}^{3}J_{6,7} = 7.3$ Hz, ${}^{4}J_{6,8} = 1.6$ Hz, 1H, H-6), 7.54 (dd, ${}^{3}J_{8,7}$ = 7.5 Hz, ${}^{4}J_{8,6}$ = 1.5 Hz, 1H, H-8) ppm. 13 C NMR (125 MHz, CDCl₃) δ 6.55 (13 C-2), 17.24 (C-11), 23.14 (d, ²J_{3,2} = 31.1 Hz, C-3), 27.19 (C-12, C-13, C-14), 35.54 (C-4), 125.19 (C-7), 128.81 (C-5), 129.16 (C-6), 130.36 (d, ${}^{2}J_{9,2}$ = 2.1 Hz, C-9), 136.22 (d, ${}^{2}J_{9,2}$ = 2.1 Hz, C-8), 150.00 (C-10) ppm. ²⁹Si NMR (99.25 MHz, CDCl₃) δ –13.29 (d, ${}^{2}J_{Si,C}$ = 49.7 Hz) ppm. HR-MS for C₁₂ 13 CH₂₀Si: 205.1368. Found: 205.1362.

2.2.2 Preparation of (SiR)-**2b** and $1-[^{2}H]-(SiS)$ -**2b**

Enantiomerically enriched (Si*R*)-**2b** was prepared by analogy to a previously published procedure^[2] by resolution of diastereomeric (–)-menthyl silyl ethers and subsequent stereospecific reductive cleavage.

rac-1-lsopropyl-1-(1,2,3,4-tetrahydro)-1-silanaphthalene (rac-2b)

A 1-L three-necked flask equipped with a reflux condenser, a 500-mL pressureequalizing dropping funnel, an argon-inlet and a magnetic stirring bar was charged with magnesium turnings (24.3 g, 1.00 mol, 10.0 equiv.). The flask was subsequently flame dried *in vacuo* (3 times) with vigorous stirring, backfilled with argon and stirring was continued for 12 h. Then, the magnesium turnings were suspended in THF (150 mL) and a solution of 1,2-dibromoethane (8.80 mL, 18.8 g, 100 mmol, 1.00 equiv.) in THF (50 mL) was added dropwise. After complete

addition, the mixture was heated to reflux and a solution of 1-bromo-2-(3-bromopropyl)benzene^[5] (27.8 g, 100 mmol, 1.00 equiv.) and isopropyltrichlorosilane^[8] (17.8 g, 100 mmol, 1.00 equiv.) in THF (400 mL) was added slowly over a period of 5 h. The reaction mixture was maintained for further 14 h at reflux. The resulting solution was transferred to another 1-L three-necked flask equipped with a reflux condenser, an argon-inlet and a magnetic stirring bar, containing a suspension of LiAlH₄ (6.83 g, 180 mmol, 1.80 equiv.) in THF (100 mL). Heating at reflux for 3 h was followed by careful quenching of the resulting mixture by pouring it slowly on ice and, finally, adding conc. HCl (100 mL) until pH 4-5 was reached. The organic layer was separated and the aqueous phase was extracted with *t*-butyl methyl ether (4 × 150 mL). The combined organic layers were washed with brine (100 mL), dried (Na₂SO₄), filtered and volatiles were evaporated under reduced pressure. The crude product was distilled *in vacuo* (bp 92-93 °C at 3 mbar) affording the silane *rac*-**2b** (8.30 g, 43%) as a colorless liquid.

R_f = 0.75 (cyclohexane). HPLC (Daicel Chiralcel OJ-RH column, column temperature 12°C, MeCN:H₂O = 50:50, flow rate 0.50 mL/min, λ = 230 nm): 67.3 min [(Si*R*)-**2b**)], 70.3 min [(Si*S*)-**2b**)]. IR (CHCl₃) 3055 (w), 2998 (w), 2923 (s), 2889 (m), 2860 (s), 2105 (s), 1591 (w), 1563 (w), 1463 (m), 1435 (m), 1408 (m), 1382 (w), 1364 (w), 1347 (w), 1292 (m), 1267 (m), 1141 (m), 1127 (m), 1074 (m), 1028 (m), 1003 (m), 978 (m), 917 (w), 879 (w), 861 (w), 819 (s), 802 (s), 772 (m), 744 (s), 702 (w), 673 (w), 645 (w) cm⁻¹, ¹H NMR (500 MHz, CDCl₃) δ 0.87–0.98 (m, 1H, H-2A), 1.00–1.20 (m, 8H, H-2B, H-11, H-12, H-13), 1.94 (m_c, 2H, H-3A, H-3B), 2.74 (m_c, 2H, H-4A, H-4B), 4.21 (ddd, ³*J*_{1,2A} = ³*J*_{1,2b} = ³*J*_{1,11} = 3.0 Hz, 1H, H-1), 7.12 (d, ³*J*_{5,6} = 7.5 Hz, 1H, H-5), 7.19 (dd, ³*J*_{5,7} = 7.3 Hz, ⁴*J*_{8,6} = 1.3 Hz, H-8) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 6.28 (C-2), 12.43 (C-11), 18.14 (C-12), 18.36 (C-13), 22.86 (C-3), 35.36 (C-4), 125.30 (C-7), 128.83 (C-5), 129.14 (C-6), 130.60 (C-9), 135.60 (C-8), 149.58 (C-10), ppm. HR-MS for C₁₂H₁₈Si: 190.1178. Found: 190.1172. Anal. Calcd for C₁₂H₁₈Si: C 75.71, H 9.53. Found: C 75.42, H 9.71.

(SiRS)-1-Isopropyl-1-[(1R,2S,5R)-1-menthyloxy]-1,2,3,4-tetrahydro-1-silanaphthalene

A saturated solution of Cl_2 in CCl_4 (20 mL) was added to a solution of *rac*-**2b** (4.09 g, 20.0 mmol, 1.00 equiv.) in CCl_4 (20 mL) at 0 °C until a permanent pale yellow color appeared. After 4 min the reaction mixture was purged with argon. Evaporation of the solvent under reduced pressure provided crude *rac*-1-Chloro-1-isopropyl-1-(1,2,3,4-tetrahydro)-1-silanaph-thalene as a colorless oil which was used in the subsequent etherification without further purification.

A solution of (–)-menthol (4.69 g, 30.0 mmol, 1.50 equiv., >99% *ee*) in THF (40 mL) was added to a suspension of oil-free potassium hydride (1.40 g, 35.0 mmol, 1.75 equiv.) in THF (10 mL) at room temperature. To ensure complete deprotonation, the mixture was heated at reflux for for 1 h. Subsequently, the mixture was treated portionwise with a solution of freshly prepared chlorosilane in THF (50 mL) at ambient temperature. Heating at reflux for 4 h was followed by cooling to ambient temperature, quenching with water (100 mL) and then 2M HCl until pH 7 was reached. The organic layer was separated and the aqueous phase was extracted with *t*-butyl methyl ether (4 × 100 mL). The combined organic layers were washed with brine (50 mL), dried (Na₂SO₄), filtered and the volatiles were evaporated under reduced pressure. The crude product optionally was distilled under high vacuum (bp 130–140 °C at 10^{-6} mbar) to remove excess (–)-menthol furnishing a diastereomeric mixture of (–)-menthyl silyl ethers (5.71 g, 83%, d.r. = 50:50) as a yellowish, viscous oil. Separation of diastereomerics by repeated flash column chromatography on silica gel with cyclohexane as eluent delivered highly diastereomerically enriched (Si*S*)-1-isopropyl-1-[(1*R*,2*S*,5*R*)-1-menthyloxy]-1,2,3,4-tetrahydro-1-silanaphthalene^[9] (2.24 g, 33% based on *rac*-**2b**, d.r. = 98:2) as a highly viscous oil. The opposite diastereomer was obtained by the same procedure (1.98 g, 29%, d.r. = 16:84).

IR (CHCl₃): $\tilde{\nu} = 3054$ (w), 2998 (w), 2954 (s), 2922 (s), 2865 (s), 1590 (w), 1460 (m), 1435 (m), 1370 (m), 1344 (m), 1292 (s), 1269 (s), 1236 (s), 1179 (s), 1141 (m), 1107 (s), 1181 (s), 1081 (s), 1065 (m), 997 (w), 970 (w), 928 (w), 867 (m), 801 (m), 779 (w), 738 (s), 693 (w), 643 (w) cm⁻¹.

Analytical data for (Si*S*): R_f (cyclohexane) = 0.21; $[\alpha]_D^{20} = -58.4$, $[\alpha]_{578}^{20} = -60.9$, $[\alpha]_{546}^{20} = -68.9$, $[\alpha]_{436}^{20} = -115$, $[\alpha]_{365}^{20} = -178$ (*c* 1.88, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 0.50 (d, ³*J*_{10',8'} = 6.9 Hz, 3H, H-10'), 0.76–1.32 (m, 8H, H-2A, H-2B, H-3'A, H-4'A, H-6'A, H-11, H-2', H-5'), 0.84 (d, ³*J*_{7',5'} = 6.5 Hz, 3H, H-7'), 0.86 (d, ³*J*_{9',8'} = 7.0 Hz, 3H, H-9'), 0.94 (d, ³*J*_{12,11} = 7.0 Hz, 3H, H-12), 1.05 (d, ³*J*_{13,11} = 6.5 Hz, 3H, H-13), 1.50–1.62 (m, 2H, H-3'B, H-4'B), 1.81 (m_c, 1H, H-6'B), 1.86–2.04 (m, 2H, H-3), 2.23 (ttd, ³*J*_{8'9'} = ³*J*_{8'10'} = 7.0

Hz, ${}^{3}J_{8',2'}$ = 2.4 Hz, 1H, H-8'), 2.67 (ddd, ${}^{2}J_{4A,4B}$ = 15.9 Hz, ${}^{3}J_{4A,3A}$ = 8.8 Hz, ${}^{3}J_{4A,3B}$ = 3.4 Hz, 1H, H-4A), 2.80 (ddd, ${}^{2}J_{4B,4A}$ = 16.0 Hz, ${}^{3}J_{4B,3B}$ = 7.5 Hz, ${}^{3}J_{4B,3A}$ = 3.5 Hz, 1H, H-4B), 3.39 (ddd, ${}^{3}J_{1',2'}$ = ${}^{3}J_{1',6'A}$ = 10.3 Hz, ${}^{3}J_{1',6'B}$ = 4.5 Hz, 1H, H-1'), 7.10 (d, ${}^{3}J_{5,6}$ = 7.6 Hz, 1H, H-5), 7.18 (dd, ${}^{3}J_{7,6}$ = ${}^{3}J_{7,8}$ = 7.2 Hz, 1H, H-7), 7.26 (ddd, ${}^{3}J_{6,5}$ = ${}^{3}J_{6,7}$ = 7.5 Hz, ${}^{4}J_{6,8}$ = 1.5 Hz, 1H, H-6), 7.54 (dd, ${}^{3}J_{8,7}$ = 7.5 Hz, ${}^{4}J_{8,6}$ = 1.2 Hz, 1H, H-8) ppm. ¹³C NMR (CDCl₃, 100 MHz) δ 10.78 (C-2), 14.38 (C-11), 15.81 (C-10'), 17.12 (C-12), 17.33 (C-13), 21.43 (C-9'), 22.42 (C-7'), 22.84 (C-3'), 23.26 (C-3), 25.21 (C-8'), 31.69 (C-5'), 34.63 (C-4'), 35.67 (C-4), 45.61 (C-6'), 50.41 (C-2'), 72.29 (C-1'), 125.13 (C-7), 128.49 (C-5), 129.29 (C-6), 132.35 (C-9), 134.82 (C-8), 149.82 (C-10) ppm. LR-MS (EI): m/z 344 [(M+H)⁺], 301 [(M–C₃H₇)⁺]. Anal. Calcd for C₂₂H₃₆OSi: C 76.68, H 10.53. Found: C 76.41, H 10.60.

Analytical data for (Si*R*): R_f (cyclohexane) = 0.18; $[\alpha]_D^{20} = -51.1$, $[\alpha]_{578}^{20} = -52.7$, $[\alpha]_{546}^{20} = -60.3$, $[\alpha]_{436}^{20} = -102$, $[\alpha]_{365}^{20} = -160$ (*c* 1.32, CHCl₃); ¹H bg NMR (CDCl₃, 400 MHz) δ 0.59 (d, ³J_{10',8'} = 7.1 Hz, 3H, H-10'), 0.69–1.31 (m, 8H, H-2A, H-2B, H-3'A, H-4'A, H-6'A, H-11, H-2', H-5'), 0.80 (d, ³J_{7',5'} = 6.4 Hz, 3H, H-7'), 0.88 (d, ³J_{9',8'} = 7.1 Hz, 3H, H-9'), 0.90 (d, ³J_{12,11} = 6.7 Hz, 3H, H-12), 1.07 (d, ³J_{13,11} = 6.7 Hz, 3H, H-13), 1.51–1.61 (m, 2H, H-3'B, H-4'B),

1.75 (m_c, 1H, H-6'B), 1.94 (m_c, 2H, H-3A, H-3B), 2.23 (ttd, ${}^{3}J_{8',9'} = {}^{3}J_{8',10'} = 7.2$ Hz, ${}^{3}J_{8',2'} = 2.4$ Hz, 1H, H-8'), 2.67 (ddd, ${}^{2}J_{4A,4B} = 15.9$ Hz, ${}^{3}J_{4A,3A} = 8.3$ Hz, ${}^{3}J_{4A,3B} = 3.7$ Hz, 1H, H-4A), 2.79 (ddd, ${}^{2}J_{4B,4A} = 15.9$ Hz, ${}^{3}J_{4B,3B} = 6.9$ Hz, ${}^{3}J_{4B,3A} = 3.4$ Hz, 1H, H-4B), 3.45 (ddd, ${}^{3}J_{1',2'} = {}^{3}J_{1',6'A} = 10.0$ Hz, ${}^{3}J_{1',6'B} = 4.6$ Hz, 1H, H-1'), 7.10 (d, ${}^{3}J_{5,6} = 7.6$ Hz, 1H, H-5), 7.19 (dd, ${}^{3}J_{7,6} = {}^{3}J_{7,8} = 6.6$ Hz, 1H, H-7), 7.26 (ddd, ${}^{3}J_{6,5} = {}^{3}J_{6,7} = 7.5$ Hz, ${}^{4}J_{6,8} = 1.6$ Hz, 1H, H-6), 7.56 (dd, ${}^{3}J_{8,7} = 7.1$ Hz, ${}^{4}J_{8,6} = 1.2$ Hz, 1H, H-8) ppm. 13 C NMR (CDCl₃, 100 MHz) δ 9.75 (C-2), 14.41 (C-11), 15.75 (C-10'), 17.10 (C-12), 17.33 (C-13), 21.42 (C-9'), 22.36 (C-7'), 22.85 (C-3'), 23.42 (C-3), 25.22 (C-8'), 31.72 (C-5'), 34.63 (C-4'), 35.66 (C-4), 45.21 (C-6'), 50.41 (C-2'), 72.99 (C-1'), 125.13 (C-7), 128.51 (C-5), 129.27 (C-6), 133.00 (C-9), 134.77 (C-8), 149.65 (C-10) ppm. LR-MS (EI): m/z 344 [(M+H)⁺], 301 [(M-C₃H₇)⁺]. Anal. Calcd for C₂₂H₃₆OSi: C 76.68, H 10.53. Found: C 76.38, H 10.44.

(SiR)-1-Isopropyl-1-(1,2,3,4-tetrahydro)-1-silanaphthalene (SiR-2b)^[10]

A 25-mL Schlenk flask equipped with a magnetic stirring bar and a reflux condenser was charged with DIBAL-H (8.00 mL, 8.00 mmol, 4.00 equiv., 1.0M in CH_2Cl_2). After evaporation of dichloromethane under reduced pressure at ambient temperature, a solution of (Si*S*)-1-isopropyl-1-[(1*R*,2*S*,5*R*)-1-menthyloxy]-1,2,3,4-tetrahydro-1-silanaphthalene (689 mg, 2.00 mmol, 1.00 equiv., d.r. = 98:2) in *n*-heptane (15 mL) was added in one portion. The reaction mixture was subsequently heated to 100 °C and maintained at this temperature for 20 h. The

reaction was quenched at ambient temperature by careful addition of water (40 mL) followed by 2M HCl (25 mL) until pH 7 was reached. The organic layer was separated and the aqueous phase extracted with *t*-butyl methyl ether (4 × 40 mL). The combined organic layers were washed with brine (30 mL), dried (Na₂SO₄), filtered and volatiles were evaporated under reduced pressure. The crude product was purified by flash column chromatography on silica gel with cyclohexane as eluent, furnishing the analytically pure, highly enantiomerically enriched silane (Si*R*)-**2b** (342 mg, 90%, 97% *ee*) as a colorless liquid.

R_f (cyclohexane) = 0.73; $[\alpha]_D^{20}$ = +72.5, $[\alpha]_{578}^{20}$ = +76.1, $[\alpha]_{546}^{20}$ = +86.4, $[\alpha]_{436}^{20}$ = +148, $[\alpha]_{365}^{20}$ = +237 (*c* 1.67, CHCl₃); HPLC (Daicel Chiralcel OJ-RH column, column temperature 12 °C, MeCN:H₂O = 50:50, flow rate 0.50 mL/min, λ = 230 nm): 67.3 min [(Si*R*)-**2b**)], 70.3 min [(Si*S*)-**2b**)]

(SiS)-[1-²H]-1-lsopropyl-1-(1,2,3,4-tetrahydro)-1-silanaphthalene (SiS)-[²H]-2b)

Prepared according to GP1 from (Si*R*)-**2b** (246 mg, 1.29 mmol, 1.00 equiv.) furnishing the analytically pure silane (Si*S*)- $[^{2}H]$ -**2b** (205 mg, 83%, 95% *ee*, 99% D) as a colorless liquid.

R_f (cyclohexane) = 0.73; HPLC (Daicel Chiralcel OJ-RH column, column temperature 12°C, MeCN:H₂O = 50:50, flow rate 0.50 mL/min, λ = 230 nm): 67.3 min [(Si*R*)-1-[2H]-**2b**)], 70.3 min [(Si*S*)-1-[2H]-**2b**)]. IR (CHCl₃) \tilde{v} 3055 (w), 2998 (w), 2923 (s), 2860 (s), 1638 (m), 1532 (s), 1463 (m), 1435 (m), 1382 (m), 1292

(w), 1269 (w), 1141 (w), 1073 (w), 1031 (w), 973 (s), 880 (m), 782 (s), 742 (w), 724 (m), 701 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 0.92 (ddd, ² $J_{2A,2B}$ = 14.6 Hz, ³ $J_{2A,3A}$ = 9.8 Hz, ³ $J_{2A,3B}$ = 4.6 Hz, 1H, H-2A), 1.00–1.20 (m, 8H, H-2B, H-11, H-12, H-13), 1.92 (m_c, 2H, H-3A, H-3B), 2.75 (m_c, 2H, H-4A, H-4B), 7.12 (d, ³ $J_{5,6}$ = 7.4 Hz, 1H, H-5), 7.19 (dd, ³ $J_{7,6}$ = ³ $J_{7,8}$ = 7.3 Hz, 1H, H-7), 7.27 (ddd, ³ $J_{6,5}$ = ³ $J_{6,7}$ = 7.5 Hz, ⁴ $J_{6,8}$ = 1.4 Hz, 1H, H-6), 7.49 (dd, ³ $J_{8,7}$ = 7.3 Hz, ⁴ $J_{8,6}$ = 1.2 Hz, H-8) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 6.19 (C-2), 12.35 (C-11), 18.13 (C-12), 18.35 (C-13), 22.86 (C-3), 35.37 (C-4), 125.29 (C-7), 128.83 (C-5), 129.14 (C-6), 130.57 (C-9), 135.60 (C-8), 149.61 (C-10), ppm. HR-MS for C₁₂H₁₈Si: 191.1241. Found: 190.1235.

2.2.3 Preparation of [²H]-8

[1-²H]-Methyldiphenylsilane ([²H]-8)

Prepared according to GP1 from commercially available **8** (2.06 mg, 10.4 mmol, 1.00 equiv.) furnishing the analytically pure silane $[^{2}H]$ -**8** (1.61 g, 78%, >98% D by ¹H NMR) as a colorless liquid.

R_f (cyclohexane) = 0.63; IR (CHCl₃) $\tilde{\nu}$ 3134 (w), 3068 (s), 3049 (s), 3016 (s), 2960 (m), 2902 (w), 1955 (w), 1882 (w), 1818 (w), 1765 (vw), 1588 (w), 1544 (s), 1485 (w), 1427 (s), 1328 (w), 1301 (w), 1251 (m), 1188 (w), 1115 (s), 1067 (w), 1028 (w), 997 (s), 797 (s), 725 (s), 697 (s), 670 (s), 646 (w), 584 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 0.65 (s, 3H, H-1'), 7.35–7.43 (m, 6H, H-2, H-4, H-6), 7.57–7.63 (m, 4H, H-3, 100 m)

H-5) ppm. ¹³C NMR (100 MHz, CDCl₃) δ –5.10 (C-1'), 127.95 (C-Ar), 129.50 (C-Ar), 134.82 (C-Ar), 135.32 (C-Ar_{ipso}) ppm. HR-MS for C₁₃H₁₃DSi: 199.0928. Found: 199.0922.

2.3 Experimental Details and Characterization Data for Hydrosilylation Products

(1*S*,2*S*,4*R*,Si*R*)-1-*tert*-Butyl-1-(1,2,3,4-tetrahydro-1,4-methano-naphthalen-2-yl)-1-sila-1,2,3,4-tetrahydronaphthalene [(Si*R*)-4a]

Prepared according to GP2 from **1** (35.6 mg, 0.250 mmol, 1.00 equiv.), (SiS)-**2a** (61.3 mg, 0.300 mmol, 1.20 equiv., 98% *ee*) furnishing analytically pure (Si*R*)-**4a** (68 mg, 78%, 99% *ee*) as a colorless, highly viscous oil.

R_f = 0.49 (cyclohexane). $[\alpha]_D^{20} = -41.5$, $[\alpha]_{578}^{20} = -43.3$, $[\alpha]_{546}^{20} = -50.5$, $[\alpha]_{436}^{20} = -99.0$, $[\alpha]_{365}^{20} = -191$ (*c* = 1.09 in CHCl₃). HPLC (Daicel Chiralcel OD-RH column, column temperature 20 °C, MeCN:H₂O =

75:25, flow rate 0.50 mL/min, λ = 230 nm): 29.0 min [(Si*R*)-4a)], 31.8 min [(Si*S*)-4a)]. IR (CHCl₃) $\tilde{\nu}$ 3050 (s), 2922 (s), 2401 (m), 2361 (m), 2329 (w), 1943 (w), 1923 (w), 1802 (w), 1684 (w), 1654 (w), 1588 (m), 1559 (m), 1521 (m), 1471 (s), 1435 (s), 1390 (m), 1362 (m), 1294 (m), 1262 (s), 1220 (s), 1198 (s), 1114 (m), 1069 (m), 1107 (m), 981 (m), 889 (m), 821 (s), 799 (s), 674 (s), 627 (s), 627 (s), 607 (s), 519 (s) cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 0.95–1.06 (m, 2H, H-2'endo, H-2ax), 1.00 (s, 9H, H-12, H-13, H-14), 1.15 (dddd, ${}^{2}J_{2eq,2ax} = 14.9 \text{ Hz}$, ${}^{3}J_{2eq,3aq} = 6.8 \text{ Hz}$, ${}^{3}J_{2eq,3ax} = 4.0 \text{ Hz}$, ${}^{4}J_{2eq,4eq} = 1.2 \text{ Hz}$, 1H, H-2eq), 1.32 (dddd, ${}^{2}J_{3'endo,3'exo} = 11.8$ Hz, ${}^{3}J_{3'endo,2'endo} = 9.7$ Hz, ${}^{3}J_{3'endo,4'} = 2.3$ Hz, ${}^{3}J_{3'endo,11'B} = 0.6$ Hz, 1H, H-3'endo), 1.43 (ddd, ${}^{2}J_{11'A \ 11'B} = 8.9$ Hz, ${}^{3}J_{11'A \ 4'} = {}^{3}J_{11'A \ 1'} = 1.5$ Hz, 1H, H-11'A), 1.60 (ddddd, ${}^{2}J_{11'B,11'A} = 8.9 \text{ Hz}, {}^{3}J_{11'B,4'} = {}^{3}J_{11'B,1'} = {}^{4}J_{11'B,3'endo} = {}^{3}J_{11'B,2'endo} = 1.6 \text{ Hz}, 1\text{H}, \text{H-11'B}, 1.78-1.87 \text{ (m, 1H, H-1)}$ 3ax), 1.84 (ddd, ²J_{3'exo,3'endo} =11.8 Hz, ³J_{3'exo,2'endo} = 6.9 Hz, ³J_{3'exo,4'} = 3.8 Hz, 1H, H-3'exo), 2.13 (ddddd, ${}^{2}J_{3eq,3ax} = 13.4 \text{ Hz}, {}^{3}J_{3eq,2aq} = {}^{3}J_{3eq,4eq} = 6.8 \text{ Hz}, {}^{3}J_{3eq,2ax} = 4.9 \text{ Hz}, {}^{3}J_{3eq,4ax} = 2.9 \text{ Hz}, 1\text{H}, \text{H-3eq}), 2.72$ $(ddd, {}^{2}J_{4ax,4eg} = 15.7 \text{ Hz}, {}^{3}J_{4ax,3ax} = 10.3 \text{ Hz}, {}^{3}J_{4ax,3eg} = 2.9 \text{ Hz}, 1\text{ H}, \text{H-4ax}), 2.79 (br ddd, {}^{2}J_{4eg,4ax} = 15.8 \text{ Hz})$ Hz, ${}^{3}J_{4ea,3ea} = 6.6$ Hz, ${}^{3}J_{4ea,3ex} = 2.7$ Hz, 1H, H-4eq), 3.32 (br d, ${}^{3}J_{4',3'exo} = 2.6$ Hz, 1H, H-4'), 3.42 (br s, 1H, H-1'), 7.05–7.14 (m, 4H, H-5, H-7, H-6', H-7'), 7.16–7.19 (m, 2H, H-5', H-8'), 7.23 (m_c, 1H, H-6), 7.41 (m_c, H-8) ppm. ¹³C NMR (125 MHz, CDCl₃) δ7.73 (C-2), 18.57 (C-11), 23.92 (C-3, C-2'), 27.67 (C-12, C-13, C-14), 31.54 (C-3'), 36.03 (C-4), 44.17 (C-4'), 45.70 (C-1'), 48.39 (C-11'), 118.84 (C-8'), 121.10 (C-5'), 124.96 (C-7), 125.23 (C-6'), 125.61 (C-7'), 128.64 (C-5), 128.71 (C-6), 132.61 (C-9), 135.72 (C-8), 147.20 (C-10'), 149.93 (C-10), 151.14 (C-9') ppm. ²⁹Si NMR (99.25 MHz, CDCl₃) δ-5.01 (s) ppm. LRMS (CI: NH₃) m/z 347 [(M+H)⁺], (EI) m/z 289 [(M-C₄H₉)⁺]. Anal. Calcd for C₂₄H₃₀Si: C, 83.17; H, 8.72. Found: C, 83.16; H, 8.94.

rac-(1 R^* ,2 R^* ,4 S^* ,Si S^*)-[3'-²H]-1-*tert*-Butyl-1-(1,2,3,4-tetrahydro-1,4-methano-naphthalen-2-yl)-1-sila-1,2,3,4-tetrahydronaphthalene (*rac*-[²H]-4a])

Prepared according to GP2 from **1** (42.7 mg, 0.300 mmol, 1.00 equiv.), rac-[²H]-**2a** (74.0 mg, 0.360 mmol, 1.20 equiv., 99% D) furnishing analytically pure rac-[²H]-**4a** (83 mg, 80%, 97% D) as a colorless, highly viscous oil.

 $\begin{array}{l} \mathsf{R}_{f} = \ 0.49 \ (cyclohexane). \ \mathsf{IR} \ (\mathsf{CHCl}_{3}) \ \widetilde{\nu} \ \ 3050 \ (m), \ 3017 \ (m), \ 2998 \ (m), \\ 2958 \ (s), \ 2927 \ (s), \ 2880 \ (s), \ 2854 \ (s), \ 1588 \ (w), \ 1466 \ (s), \ 1434 \ (m), \\ 1407 \ (w), \ 1389 \ (w), \ 1360 \ (m), \ 1293 \ (m), \ 1266 \ (m), \ 1239 \ (m), \ 1217 \ (m), \\ 1194 \ (m), \ 1155 \ (m), \ 1141 \ (m), \ 1128 \ (m), \ 1110 \ (m), \ 1072 \ (m), \ 1009 \ (m), \\ \end{array}$

994 (m), 975 (m), 929 (m), 876 (m), 848 (m), 821 (m), 782 (s), 753 (s), 741 (s), 726 (s), 690 (m), 671 (m), 620 (m), 603 (m) cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 0.94–1.06 (m, 2H, H-2'endo, H-2ax), 1.00 (s, 9H, H-12, H-13, H-14), 1.15 (dddd, ²J_{2eq,2ax} = 14.9 Hz, ³J_{2eq,3eq} = 6.8 Hz, ³J_{2eq,3ax} = 4.0 Hz, ⁴J_{2eq,4eq} = 1.2 Hz, 1H, H-2eq), 1.31 (ddd, ${}^{3}J_{3'\text{endo},2'\text{endo}} = 9.7$ Hz, ${}^{3}J_{3'\text{endo},4'} = 1.7$ Hz, ${}^{3}J_{3'\text{endo},11'B} = 0.6$ Hz, 1H, H-3'endo), 1.43 (ddd, ${}^{2}J_{11'A,11'B} = 8.9$ Hz, ${}^{3}J_{11'A,4'} = {}^{3}J_{11'A,1'} = 1.5$ Hz, 1H, H-11'A), 1.60 (ddddd, ${}^{2}J_{11'B,11'A} = 8.9$ Hz, ${}^{3}J_{11'B,4'} = {}^{3}J_{11'B,1'} = {}^{4}J_{11'B,3'\text{endo}} = {}^{3}J_{11'B,2'\text{endo}} = 1.7 \text{ Hz}, 1\text{H}, \text{H-11'B}, 1.82 \text{ (ddddd}, {}^{2}J_{3ax,3ea} = 13.2 \text{ Hz}, {}^{3}J_{3ax,2ax}$ = 11.5 Hz, ³J_{3ax,4ax} = 10.3 Hz, ³J_{3ax,2eq} = 4.0 Hz, ³J_{3ax,4eq} = 2.9 Hz, 1H, H-3ax), 2.13 (ddddd, ²J_{3eq,3ax} = 13.4 Hz, ${}^{3}J_{3eq,2ac} = {}^{3}J_{3eq,4ec} = 6.8$ Hz, ${}^{3}J_{3eq,2ax} = 4.9$ Hz, ${}^{3}J_{3eq,4ax} = 2.9$ Hz, 1H, H-3eq), 2.73 (ddd, ${}^{2}J_{4ax,4ec}$ = 15.7 Hz, ${}^{3}J_{4ax,3ax}$ = 10.3 Hz, ${}^{3}J_{4ax,3eq}$ = 2.8 Hz, 1H, H-4ax), 2.79 (br ddd, ${}^{2}J_{4eq,4ax}$ = 15.8 Hz, ${}^{3}J_{4eq,3eq}$ = 6.4 Hz, ${}^{3}J_{4eq,3ax} = 2.8$ Hz, 1H, H-4eq), 3.32 (br s, 1H, H-4'), 3.42 (br s, 1H, H-1'), 7.05–7.14 (m, 4H, H-1) 5, H-7, H-6', H-7'), 7.16–7.19 (m, 2H, H-5', H-8'), 7.23 (m_c, 1H, H-6), 7.38–7.43 (m, 1H, H-8) ppm. ¹³C NMR (125 MHz, CDCl₃) § 7.74 (C-2), 18.57 (C-11), 23.92 (C-3, C-2'), 27.64 (C-12, C-13, C-14), 31.22 (t, ²J_{C,D} = 20 Hz, C-3'), 36.03 (C-4), 44.14 (C-4'), 45.71 (C-1'), 48.39 (C-11'), 118.84 (C-8'), 121.10 (C-5'), 124.96 (C-7), 125.23 (C-6'), 125.61 (C-7'), 128.65 (C-5), 128.71 (C-6), 132.61 (C-9), 135.72 (C-8), 147.20 (C-10'), 149.93 (C-10), 151.14 (C-9') ppm. ²⁹Si NMR (99.25 MHz, CDCl₃) δ –5.00 (br s) ppm. LRMS (EI) *m/z* 289 [(M–C₄H₉)⁺]. HR-MS for C₂₄H₂₉DSi: 347.2180. Found: 347.2174.

rac- $(1R^*, 2R^*, 4S^*, SiS^*)$ - $[2^{-13}C]$ -1-*tert*-Butyl-1-(1, 2, 3, 4-tetrahydro-1, 4-methano-naphthalen-2-yl)-1-sila-1, 2, 3, 4-tetrahydronaphthalene [*rac*- $[^{13}C]$ -4a]

Prepared according to GP2 from **1** (35.6 mg, 0.250 mmol, 1.00 equiv.), *rac*-[¹³C]-**2a** (61.6 mg, 0.300 mmol, 1.20 equiv., 99% ¹³C) furnishing analytically pure *rac*-[¹³C]-**4a** (62 mg, 72%, 98% ¹³C) as a colorless, highly viscous oil.

672 (m), 644 (m), 588 (s) cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 0.81–1.22 (m, 3H, H-2'endo, H-2ax, H-2eq), 1.00 (s, 9H, H-12, H-13, H-14), 1.32 (ddd, ${}^{2}J_{3'endo,3'exo} = 11.5$ Hz, ${}^{3}J_{3'endo,2'endo} = 9.6$ Hz, ${}^{3}J_{3'endo,4'} = 1.5$ Hz, ${}^{3}J_{3'endo,2'endo} =$

2.5 Hz, 1H, H-3'endo), 1.42 (ddd, ${}^{2}J_{11'A,11'B} = 8.9$ Hz, ${}^{3}J_{11'A,4'} = {}^{3}J_{11'A,1'} = 1.4$ Hz, 1H, H-11'A), 1.60 (ddddd, ${}^{2}J_{11'B,11'A} = 8.8$ Hz, ${}^{3}J_{11'B,4'} = {}^{3}J_{11'B,1'} = {}^{4}J_{11'B,3'endo} = {}^{3}J_{11'B,2'endo} = 1.8$ Hz, 1H, H-11'B), 1.75–1.89 (m, 1H, H-3ax), 1.80–1.86 (ddd, ${}^{2}J_{3'exo,3'endo} = 11.7$ Hz, ${}^{3}J_{3'exo,2'endo} = 6.9$ Hz, ${}^{3}J_{3'exo,4'} = 3.7$ Hz, 1H, H-3'exo), 2.12 (m_c, 1H, H-3eq), 2.76 (m_c, 2H, H-4ax, H-4eq), 3.31 (br d, ${}^{3}J_{4',3'exo} = 2.8$ Hz, 1H, H-4'), 3.41 (br s, 1H, H-1'), 7.03–7.14 (m, 4H, H-6', H-7', H-5, H-7), 7.15–7.20 (m, 2H, H-8', H-5'), 7.23 (m_c, 1H, H-6), 7.38–7.43 (m, 1H, H-8) ppm. 13 C NMR (100 MHz, CDCl₃) δ 7.78 (13 C-2), 18.57 (d, ${}^{2}J_{11,2} = 2.5$ Hz, C-11), 23.92 (d, ${}^{1}J_{3,2} = 25$ Hz, C-3), 23.98 (d, ${}^{2}J_{2',2} = 2.4$ Hz, C-2') 27.67 (C-12, C-13, C-14), 31.55 (C-3'), 36.03 (d, ${}^{2}J_{4,2} = 1.0$ Hz, C-4), 44.17 (C-4'), 45.70 (C-1'), 48.39 (C-11'), 118.84 (C-8'), 121.10 (C-5'), 124.96 (C-7), 125.23 (C-6'), 125.61 (C-7'), 128.65 (C-5), 128.71 (C-6), 132.61 (d, ${}^{2}J_{9,2} = 2.5$ Hz, C-9), 135.72 (d, ${}^{3}J_{8,2} = 1.4$ Hz, C-8), 147.20 (C-10'), 149.93 (C-10), 151.14 (C-9') ppm. 29 Si NMR (99.25 MHz, CDCl₃): -5.02 (d, ${}^{2}J_{5I,C} = 49.5$ Hz) ppm. Anal. Calcd for C₂₃ 13 CH₃₀Si: 347.2150. Found: 347.2145.

(1R,2R,4S,SiR)-1-lsopropyl-1-(1,2,3,4-tetrahydro-1,4-methano-naphthalen-2-yl)-1-sila-1,2,3,4-tetrahydronaphthalene [(SiR)-4b]^[11]

Prepared according to GP2 from **1** (42.7 mg, 0.300 mmol, 1.00 equiv.), (Si*R*)-**2b** (62.8 mg, 0.330 mmol, 1.10 equiv., 96% *ee*) furnishing analytically pure (Si*R*)-**4b** (85 mg, 85%, 95% *ee*) as a colorless, highly viscous oil.

R_f = 0.52 (cyclohexane). $[α]_D^{20} = -3.5$, $[α]_{578}^{20} = -3.7$, $[α]_{546}^{20} = -3.9$, $[α]_{436}^{20} = -0.8$, $[α]_{365}^{20} = +18.5$ (*c* = 0.94 in CHCl₃). HPLC (Daicel Chiralcel OD-RH column, column temperature 12°C, MeCN:H₂O =

75:25, flow rate 0.50 mL/min, $\lambda = 230$ nm): 29.9 min [(2*S*,Si*R*)-**4b**)], 32.3 min [(2*S*,Si*S*)-**4b**)], 34.6 min [(2R,SiR)-4b)], 40.9 min [(2R,SiS)-4b)]. IR (CHCl₃) v 3050 (m), 3017 (m), 2956 (s), 2923 (s), 2861 (s), 1589 (w), 1466 (s), 1405 (m), 1382 (w), 1292 (w), 1263 (w), 1195 (w), 1140 (m), 1073 (m), 997 (m), 978 (m), 943 (m), 916 (m), 882 (m), 820 (m), 781 (w), 753 (s), 740 (s), 726 (s), 679 (m), 636 (m), 610 (w), 587 (w) cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 0.93 (ddd, ³J_{2'endo,3'endo} = 9.6 Hz, ³J_{2'endo,3'exo} = 6.8 Hz, ³*J*_{2'endo,11'B} = 1.8 Hz, 1H, H-2'endo), 1.01 (d, ³*J*_{12,11} = 7.4 Hz, 3H, H-12), 1.04 (m_c, 2H, H-2A, H-2B), 1.05 (d, ${}^{3}J_{13,12} = 7.4$ Hz, 3H, H-13), 1.20 (tt, ${}^{3}J_{11,12} = {}^{3}J_{11,13} = 7.4$ Hz, 1H, H-11), 1.32 (m_c, 1H, H-3'endo), 1.33 (ddd, ${}^{2}J_{11'A,11'B} = 8.9$ Hz, ${}^{3}J_{11'A,1'} = {}^{3}J_{11'A,4'} = 1.5$ Hz, 1H, H-11'A), 1.52 (ddddd, ${}^{2}J_{11'B,11'A} = 1.5$ 8.9 Hz, ${}^{3}J_{11'B,1'} = {}^{3}J_{11'B,4'} = {}^{4}J_{11'B,2'endo} = {}^{4}J_{11'B,3'endo} = 1.8$ Hz, 1H, H-11'B), 1.87 (ddd, ${}^{2}J_{3'exo,3'endo} = 11.5$ Hz, ${}^{3}J_{3'exo,2'endo} = 6.8$ Hz, ${}^{3}J_{3'exo,4'} = 4.0$ Hz, 1H, H-3'exo), 1.92 (m_c, 1H, H-3A), 2.03 (m_c, 1H, H-3B), 2.77 $(m_c, 2H, H-4A, H-4B), 3.34$ (br s, 2H, H-1', H-4'), 7.06 (ddd, ${}^{3}J_{6'.5'} = {}^{3}J_{6'.7'} = 7.5$ Hz, ${}^{4}J_{6'.8'} = 1.4$ Hz, 1H, H-6'), 7.08 (ddd, ${}^{3}J_{7',6'} = {}^{3}J_{7',8'} = 7.5$ Hz, ${}^{4}J_{7',5'} = 1.4$ Hz, 1H, H-7'), 7.12 (br d, ${}^{3}J_{5,6} = 7.5$ Hz, 1H, H-5), 7.14 (br dd, ${}^{3}J_{7.6} = {}^{3}J_{7.8} = 7.2$ Hz, 1H, H-7), 7.16 (dd, ${}^{3}J_{8'.7'} = 6.8$ Hz, ${}^{4}J_{8'.6'} = 1.5$ Hz, 1H, H-8'), 7.17 (dd, ${}^{3}J_{5',6'} = 6.8$ Hz, ${}^{4}J_{5',7'} = 1.5$ Hz, 1H, H-5'), 7.24 (ddd, ${}^{3}J_{6,5} = {}^{3}J_{6,7} = 7.5$ Hz, ${}^{4}J_{6,8} = 1.5$ Hz, 1H, H-6), 7.41 (dd, ${}^{3}J_{87} = 7.2$ Hz, ${}^{4}J_{86} = 1.4$ Hz, 1H, H-8) ppm. ${}^{13}C$ NMR (150 MHz, CDCl₃) δ 7.61 (C-2), 13.29 (C-11), 18.02 (C-13), 18.35 (C-12), 23.66 (C-3), 25.07 (C-2'), 30.20 (C-3'), 35.90 (C-4), 44.26 (C-4'), 45.18 (C-1'), 48.08 (C-11'), 118.84 (C-8'), 121.06 (C-5'), 125.16 (C-7, C-6'), 125.56 (C-7'), 128.67 (C- 5), 128.72 (C-6), 132.56 (C-9), 135.16 (C-8), 147.23 (C-10'), 149.82 (C-10), 151.19 (C-9') ppm. GC-MS (EI) m/z 332 [M⁺], 289 [(M–C₃H₇)⁺]. Anal. Calcd for C₂₃H₂₈Si: 332.1960. Found: 332.1955. Anal. Calcd for C₂₃H₂₈Si: C, 83.07; H, 8.49. Found: C, 82.63; H, 8.67.

rac- $(1R^*, 2R^*, 4S^*, SiR^*)$ -3'-[2H]-1-Isopropyl-1-(1, 2, 3, 4-tetrahydro-1, 4-methano-naphthalen-2-yl)-1-sila-1, 2, 3, 4-tetrahydronaphthalene (*rac*-3'-[²H]-4b)

Prepared according to GP2 from **1** (42.7 mg, 0.300 mmol, 1.00 equiv.), rac-[²H]-**2b** (63.1 mg, 0.330 mmol, 1.10 equiv., 99% D) furnishing analytically pure rac-[²H]-**4b** (88 mg, 88%, 99% D) as a colorless, highly viscous oil.

 $\begin{array}{l} \mathsf{R}_{f} = 0.52 \ (\text{cyclohexane}). \ \mathsf{IR} \ (\mathsf{CHCl}_{3}) \ \widetilde{\nu} \ \ 3050 \ (\text{m}), \ 3017 \ (\text{m}), \ 2957 \ (\text{s}), \\ 2926 \ (\text{s}), \ 2861 \ (\text{s}), \ 1589 \ (\text{w}), \ 1463 \ (\text{s}), \ 1434 \ (\text{m}), \ 1405 \ (\text{m}), \ 1382 \ (\text{w}), \\ 1363 \ (\text{m}), \ 1292 \ (\text{w}), \ 1266 \ (\text{w}), \ 1193 \ (\text{w}), \ 1155 \ (\text{m}), \ 1140 \ (\text{m}), \ 1127 \ (\text{w}), \\ 1072 \ (\text{m}), \ 995 \ (\text{m}), \ 973 \ (\text{m}), \ 948 \ (\text{m}), \ 929 \ (\text{m}), \ 879 \ (\text{m}), \ 847 \ (\text{m}), \ 782 \ (\text{w}), \\ \end{array}$

752 (s), 740 (s), 694 (w), 677 (m), 630 (m), 607 (w), 587 (w) cm⁻¹. ¹H NMR (600 MHz, CDCl₃) & 0.93 (dd, ³ $J_{2'endo,3'endo} = 9.6$ Hz, ³ $J_{2'endo,11'B} = 1.8$ Hz, 1H, H-2'endo), 1.02 (d, ³ $J_{12,11} = 7.8$ Hz, 3H, H-12), 1.05 (m_c, 2H, H-2A, H-2B), 1.06 (d, ³ $J_{13,12} = 7.5$ Hz, 3H, H-13), 1.21 (tt, ³ $J_{11,12} = {}^{3}J_{11,13} = 7.4$ Hz, 1H, H-11), 1.32 (m_c, 1H, H-3'endo), 1.34 (ddd, ² $J_{11'A,11'B} = 8.9$ Hz, ³ $J_{11'A,1'} = {}^{3}J_{11'A,4'} = 1.2$ Hz, 1H, H-11'A), 1.53 (dddd, ² $J_{11'B,11'A} = 8.9$ Hz, ³ $J_{11'B,1'} = {}^{3}J_{11'B,4'} = {}^{4}J_{11'B,2'endo} = {}^{4}J_{11'B,3'endo} = 1.8$ Hz, 1H, H-11'B), 1.93 (m_c, 1H, H-3A), 2.03 (m_c, 1H, H-3B), 2.78 (m_c, 2H, H-4A, H-4B), 3.34 (br s, 2H, H-1', H-4'), 7.07 (ddd, {}^{3}J_{6',5'} = {}^{3}J_{6',7'} = 7.5 Hz, ${}^{4}J_{6',8'} = 1.0$ Hz, 1H, H-6'), 7.09 (ddd, {}^{3}J_{7,6'} = {}^{3}J_{7',8'} = 7.5 Hz, ${}^{4}J_{7',5'} = 1.0$ Hz, 1H, H-7'), 7.13 (br d, {}^{3}J_{5,6} = 7.5 Hz, 1H, H-5), 7.13 (br dd, {}^{3}J_{7,6} = {}^{3}J_{7,8} = 7.0 Hz, 1H, H-7), 7.17 (br d, {}^{3}J_{8',7'} = 7.1 Hz, 1H, H-8'), 7.18 (br d, {}^{3}J_{5,6'} = 7.0 Hz, 1H, H-5'), 7.25 (ddd, {}^{3}J_{6,5} = {}^{3}J_{6,7} = 7.5 Hz, ${}^{4}J_{6,8} = 1.4$ Hz, 1H, H-6), 7.42 (dd, {}^{3}J_{8,7} = 7.1 Hz, ${}^{4}J_{8,6} = 1.0$ Hz, 1H, H-8) ppm. 1³C NMR (150 MHz, CDCl₃) δ 7.61 (C-2), 13.30 (C-11), 18.02 (C-13), 18.35 (C-12), 23.65 (C-3), 24.97 (C-2'), 29.98 (t, {}^{2}J_{C,D} = 20 Hz, C-3'), 35.90 (C-4), 44.14 (C-4'), 45.17 (C-1'), 48.06 (C-11'), 118.83 (C-8'), 121.07 (C-5'), 125.16 (C-7, C-6'), 125.55 (C-7'), 128.67 (C-5), 128.72 (C-6), 132.56 (C-9), 135.15 (C-8), 147.23 (C-10'), 149.81 (C-10), 151.20 (C-9') ppm. GC-MS (EI) *m/z* 333 [M⁺], 290 [(M-C₃H₇)⁺]. HR-MS C₂₃H₂₇DSi: 333.2023. Found: 332.2018.

rac-(1 S^* ,2 R^* ,4 S^*)-1-Methyl-1,1-diphenyl-1-(1,2,3,4-tetrahydro-1,4-methano-naphthalen-2-yl)silane (*rac*-9)^[12]

Prepared according to GP2 from **1** (42.7 mg, 0.300 mmol, 1.00 equiv.), **8** (65.5 mg, 0.330 mmol, 1.10 equiv.) furnishing analytically pure *rac*-**9** (80 mg, 78%) as a white solid.

R_f = 0.32 (cyclohexane). $[\alpha]_D^{20} = -14.9$, $[\alpha]_{578}^{20} = -15.4$, $[\alpha]_{546}^{20} = -17.6$, $[\alpha]_{436}^{20} = -31.0$, $[\alpha]_{365}^{20} = -51.8$ (*c* = 0.94 in CHCl₃, 34% *ee* sample of a isotopic mixture with H/D 48:52). HPLC (Daicel Chiralcel OD-H column, column temperature 20 °C, *n*-heptane, flow rate 0.80 mL/min, λ = 230 nm): 16.8 min [(1*R*,2*S*,4*R*)-**9**)], 19.6 min [(1*S*,2*R*,4*S*)-**9**)]. IR (CHCl₃) $\tilde{\nu}$ 3068 (m), 3047 (m), 3017 (m), 2962 (s), 2907 (m), 2865 (m), 1955 (w), 1897 (w), 1819 (w), 1588 (w), 1486 (w), 1469 (m), 1427 (s), 1306 (w), 1253 (s), 1217 (w), 1194 (m), 1156 (w), 1137 (s), 1109 (s), 1064 (w), 1013 (w), 998 (m), 976 (w), 944 (m), 915 (w), 889 (s), 846 (s), 822 (s), 784 (s), 756 (s), 737 (s), 699 (s), 673 (w), 628 (w), 587 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 0.56 (s, 3H, H-1"), 1.13–1.23 (m, 2H, H-2"endo, H-11"A), 1.36–1.45 (m, 2H, H-3"endo, H-11"B), 1.88 (ddd, ²*J*_{3"exo,3"endo} = 11.6 Hz, ³*J*_{3"exo,4"} = 6.7 Hz, ³*J*_{3"exo,2"endo} = 3.6 Hz, 1H, H-3"exo), 3.30 (br s, 2H, H-1", H-4"), 6.96–7.04 (m, 2H, H-Ar), 7.05–7.14 (m, 2H, H-Ar), 7.21–7.35 (m, 6H, H-Ar), 7.43–7.55 (m, 4H, H-Ar) ppm. ¹³C NMR (100 MHz, CDCl₃) δ –4.73 (C-1"), 25.67 (C-2"), 30.00 (C-3"), 44.43 (C-4"), 45.10 (C-1"), 47.89 (C-11"), 118.91 (C-Ar), 121.19 (C-Ar), 125.28 (C-Ar), 125.68 (C-Ar), 127.89 (C-Ar), 127.96 (C-Ar), 129.33 (C-Ar), 134.88 (C-Ar), 134.95 (C-Ar), 136.98 (*ipso*-C-Ar), 137.16 (*i*pso-C-Ar), 147.13 (*ipso*-C-Ar), 151.20 (*i*pso-C-Ar) ppm. GC-MS (EI) *m/z* 340 [M⁺]. HR-MS for C₂₄H₂₄Si: 340.1647. Found: 340.1642. Anal. Calcd for C₂₄H₂₄Si: C 84.65, H 7.10. Found: C 84.52, H 7.23.

rac- $(1S^*, 2R^*, 4S^*)$ -[3'-²H]-1-Methyl-1,1-diphenyl-1-(1, 2, 3, 4-tetrahydro-1,4-methano-naphthalen-2-yl)silane (*rac*-[²H]-9)^[12]

Prepared according to GP2 from **1** (42.7 mg, 0.300 mmol, 1.00 equiv.), $[^{2}H]$ -**8** (65.8 mg, 0.330 mmol, 1.10 equiv.) furnishing analytically pure *rac*- $[^{2}H]$ -**9** (82 mg, 81%, 98% D) as a white solid.

 $R_f = 0.32$ (cyclohexane). IR (CHCl₃) $\tilde{\nu}$ 3068 (m), 3047 (m), 3017 (m), 2962 (s), 2875 (m), 1955 (w), 1897 (w), 1588 (w), 1486 (w), 1463 (m), 1427 (s), 1304 (w), 1251 (s), 1218 (w), 1192 (m), 1156 (w), 1110 (s), 1068 (w), 1013 (w), 995 (m), 950 (w), 929 (m), 879 (s), 850 (s), 827 (s), 791 (s), 755 (s), 736 (s), 699 (s), 672 (w), 618 (w), 586 (w) cm⁻¹. ¹H

NMR (400 MHz, CDCl₃) δ 0.54 (s, 3H, H-1"), 1.12–1.20 (m, 2H, H-2"endo, H-11"A), 1.35–1.45 (m, 2H, H-3"endo, H-11"B), 3.26–3.30 (m, 2H, H-1", H-4"), 6.95–7.03 (m, 2H, H-Ar), 7.04–7.08 (m, 1H, H-Ar), 7.09–7.13 (m, 1H, H-Ar), 7.21–7.35 (m, 6H, H-Ar), 7.42–7.47 (m, 2H, H-Ar), 7.47–7.54 (m, 2H, H-Ar) ppm. ¹³C NMR (100 MHz, CDCl₃) δ –4.72 (C-1"), 25.58 (C-2"), 29.65 (C-3", ²J_{C,D} = 20 Hz), 44.35 (C-4"), 45.09 (C-1"), 47.88 (C-11"), 118.90 (C-Ar), 121.89 (C-Ar), 125.28 (C-Ar), 125.68 (C-Ar), 127.89 (C-Ar), 129.26 (C-Ar), 129.33 (C-Ar), 134.88 (C-Ar), 134.95 (C-Ar), 136.99 (*ipso*-C-Ar), 137.06 (*i*pso-C-Ar), 147.13 (*ipso*-C-Ar), 151.22 (*i*pso-C-Ar) ppm. GC-MS (EI) *m/z* 341 [M⁺]. HR-MS for C₂₄H₂₃DSi: 341.1710. Found: 341.1705.

3 Cross-over Experiments involving [²H]-2a and [¹³C]-2a

3.1 Experimental Details

Representative Procedure for the Hydrosilylation of **1** with mixtures of *rac*-[²H]-**2a** and *rac*-[¹³C]-**2a**

A Schlenk tube was charged with a solution of $rac - [^{2}H]$ -**2a** (30.8 mg, 0.150 mmol, 0.500 equiv.), $rac - [^{13}C]$ -**2a** (30.8 mg, 0.150 mmol, 0.500 equiv.), and bicyclic alkene **1** (427 mg, 10.0 equiv.) in anhydrous degassed CH₂Cl₂ (2.5 mL) under argon atmosphere. An aliquot (0.50 mL) was taken via syringe to determine the exact composition of the unreacted mixture by ¹H NMR. After cooling to 0 °C, a solution of (phen)PdMe(OEt₂)⁺ BAr₄⁻ (**3**) [Ar = 3,5-bis(trifluoromethyl)phenyl] (100 µL, 0.00075 mmol, 0.003 equiv., 0.0075M in CH₂Cl₂) – prepared in situ from (phen)PdMe₂ (2.4 mg, 0.0075 mmol, 0.03 equiv.) and [H(OEt₂)₂]⁺BAr₄⁻ (7.6 mg, 0.0075 mmol, 0.03 equiv.) in CH₂Cl₂ (1.0 mL) at 0 °C – was added via a microliter syringe. The resulting solution was maintained at 0 °C for the 20 h and monitored by ¹H NMR. After removal of the catalyst by filtration through a plug of silica gel, the solvent was evaporated. The remaining mixture was dissolved in CDCl₃ together with a drop of TMS for subsequent NMR analysis (see Table S1 for results).

²⁹Si NMR Spectra were measured on a JEOL Alpha500 spectrometer with a tuneable multinuclear TH5 probe. The data were obtained using a ²⁹Si-¹H DEPT sequence with a ²⁹Si-¹H coupling constant of 21 Hz. Spectral width was 4 kHz (~40 ppm) and the FID contained 32 k points which were zero-filled to 128 k for processing. Standard processing employed a single exponential window function (typically 2 Hz) prior to Fourier transform, although where elucidation of isotope shifts was required, sequential Gaussian (0.15 Hz) and single exponential (-0.32 Hz) window functions were applied, prior to Fourier transform.

			Run			
	1	2	3	4	5	
	Initial Composition ^a					
1 [equiv.]	400	113	400	1000	1000	
<i>rac</i> -[² H]- 2a [equiv.]	0.48	0.51	0.48	0.48	0.48	
<i>rac</i> -[¹³ C]- 2a [equiv.]	0.52	0.49	0.52	0.52	0.52	
3 [equiv.]	0.003	0.003	0.003	0.003	0.003	
Conversion [%] ^b	18	26	38	11	38	
Reaction time [h]	30	20	78	20	40	
Temperature [$^{\circ}$ C]	0	0	0	0	0	
		ŀ	Final Composition ^{⊳,}	С		
<i>rac</i> -[² H]- 2a [%]	43.05	32.78	32.84	44.37	33.25	
<i>ra</i> c-[¹³ C]- 2a [%]	3.28	6.14	3.78	0.00	1.80	
rac- 2a [%]	2.46	6.81	2.53	1.15	1.52	
<i>rac</i> -[² H, ¹³ C]- 2a [%]	33.21	28.34	22.84	43.48	25.42	
Total silanes [%] ^b	82.00	74.07	61.99	89.00	61.99	
<i>rac</i> -[² H]- 4a [%]	1.94	5.43	5.97	0.92	3.80	
<i>rac</i> -[¹³ C]- 4a [%.]	7.67	8.11	13.98	4.66	17.18	
rac- 4a [%]	5.26	8.84	9.54	3.63	9.83	
<i>rac</i> -[¹³ C, ² H]- 4a [%]	3.13	3.61	8.47	1.79	7.19	
Total Products [%] ^b	18.00	25.99	37.96	11.00	38.00	
Total [%]	100.00	100.06	99.95	100.00	99.99	

Table S1. Cross-over experiments of rac-[²H]-2a and rac-[¹³C]-2a

^a The composition of the mixture of alkene and silanes was determined by integration of the ¹H NMR signals at 3.82 ppm (alkene **1**, 2H), 2.56–2.79 ppm (silanes *rac*-[²H]-**2a** and *rac*-[¹³C]-**2a**, 2H), and 4.17 ppm (silane *rac*-[¹³C]-**2a**, 1H). ^b The conversion was calculated by comparison of the ¹H NMR integrals at 2.56–2.79 ppm (silanes *rac*-[²H]-**2a** and *rac*-[¹³C]-**2a**, 2H_{silanes}, and all isotopomers of **4a**, 2H_{products}) versus 3.38 ppm (all isotopomers of **4a**, 1H_{products}) by the equation: *conversion (%)* = *100 {integral (3.38 ppm) /[(integral (2.56–2.79 ppm)/2])*. ^c According to ²⁹Si{¹H} NMR; only integrals of the same moieties were compared (isotopomers of **2a** *or* isotopomers of **4a**); for partially overlapping integrals of *rac*-[²H]-**4a** and *rac*-**4a** and, analogously *rac*-[²H,¹³C]-**4a** and *rac*-[¹³C]-**4a**, results were obtained by integration from baseline to maximum for downfield shifted *rac*-[²H]-**4a** and *rac*-[¹³C]-**4a**, being consistent with preliminary integration results of samples with known H/D ratios.

3.2 Copies of ²⁹Si{¹H} NMR Spectra

• Reference Sample (0.6 mol% 3, 2.5 h, 0 ℃, 60% conversion)

G	4a	$\delta = -5.01$ [s] ppm.
н	[¹³ C, ² H]- 4a	$\delta = -5.01 \text{ [br d, } ^{1}J_{Si,C} = 49.5 \text{ Hz}, \ \Delta \delta(\gamma^{-2}\text{H}) = +1.0 \text{ Hz}, \ \Delta \delta(\alpha^{-13}\text{C}) = -1.0 \text{ Hz} \text{] ppm}.$

• Run 2

ppm (t1)

• Run 4

3.3 Product Distribution Analysis / Modeling

The product distributions from all five runs were modelled by computer-based application of the Gear integration method.^[13] Models were simplified such that steps (i), (ii) and (iii) shown in Scheme 2 were telescoped into one step: $7a + 2a \rightarrow 4a + 7a + X$, with an associated rate constant k_1 , where 'X' was used as a marker of total number of turnovers, where intermediates 7a were denoted as '12C' or '13C' as appropriate, and where silane 2a was denoted as '[²H]', '[¹³C]', '[²H,¹³C]' or unlabeled as appropriate. When reactions involved 2a or [¹³C]-2a, the value of k_1 was multiplied by k_{KIE} (to reflect the net PKIE which was found to give the best fit). Absolute rate constants have no meaning outside of the framework of the model. The units of concentration of all species were arbitrarily based on % mol fractions. The starting concentrations were such that **7a** and $[^{13}C]$ -**7a** were equal (0.15 mol %) and the concentrations of [²H]-2a and [¹³C]-2a reflected the isotopic purities (98% ²H, 99% ¹³C) of the reagent as well as their initial ratios (e.g. for runs 1, 3, 4 and 5, $[[^{13}C]-2a]_0 = 51.48$; $[[^2H]-2a]_0 = 47.04$; $[2a]_0 = 47.04$; $[2a]_$ 1.48). The models included a scrambling mechanism to generate [²H,¹³C]-2a and 2a from the initial state. As the catalyst loading was invariant between all five runs, there was no need for this to occur via a chemically meaningful model involving 5a (or 7a) and a simple bimolecular exchange proces between species 2a was employed with a rate constant k_2 . To account for the effect of [1] on K_1 in Scheme 2, and an associated reduction in silane exchange via 5a, the magnitude of k_2 was inversely linked to the alkene concentration such that k_2 [1a]₀ = k_{ex} (where [1a] is in mol%) and all of the four non-degenerate interactions were given the same relative rate (no KIE). Relative rates were varied, and best fits obtained through manual iteration. A satisfactory fit for all five runs was found when k_{KF} =

 $2.5 \times k_1$ and $k_{ex} = 325 \times k_1$. A comparison of observed (grey) with model (pink) data is given in Figure S1.

Figure S1. Comparison of observed (grey shaded bars, data from Table 1) versus predicted (pink shaded bars, using model outlined in section 3.3) product **4a** and silane **2a** distributions for cross-over experiments involving [²H]-**2a** and [¹³C]-**2a**.

4 Cross-over Experiments of 2b and 8

4.1 Experimental Details

Representative Procedure for the Hydrosilylation of **1** with mixtures of $(SiR/SiS)-[^{1}H/^{2}H]-2b$ and $[^{1}H/^{2}H]-8$

A Schlenk tube was charged with a solution of (Si*R*)-**2b** (28.7 mg, 0.150 mmol, 0.500 equiv., 97% *ee*), $[^{2}$ H]-**8** (29.9 mg, 0.150 mmol, 0.500 equiv., >98% D), and bicyclic alkene **1** (427 mg, 3.00 mmol, 10.0 equiv.) in anhydrous degassed CH₂Cl₂ (2.5 mL) under argon atmosphere. An aliquot (0.50 mL) was taken via syringe to determine the exact composition of the mixture by ¹H NMR. Subsequently, a freshly prepared solution of (phen)PdMe(OEt₂)⁺ BAr₄⁻ (**3**) [Ar = 3,5-bis(trifluoromethyl)phenyl] (0.50 mL, 0.00125 mmol, 0.005 equiv., 0.0025M in CH₂Cl₂) – prepared in situ from (phen)PdMe₂ (0.8 mg, 0.0025 mmol, 0.010 equiv.) and [H(OEt₂)₂]⁺BAr₄⁻ (2.5 mg, 0.0025 mmol, 0.010 equiv.) in CH₂Cl₂ (1.0 mL) at 0°C – was added via a microliter syringe. The resulting solution was stirred at room temperature for 48 h. ¹H NMR analysis indicated complete conversion of silanes. After removal of the catalyst by filtration through a plug of silica gel using cyclohexane as eluent, the solvents were evaporated. The excess alkene was removed by Kugelrohr distillation in vacuo. Subsequent flash column chromatography on silica gel with cylcohexane as eluent delivered (Si*R*)-[¹H/²H]-**4b** (36 mg, 87%, 97% *ee*) and (2*R*)-[¹H/²H]-**9** (28 mg, 66%, 34% *ee*) as separated products. Mass spectrometric analysis revealed a golbal ¹H/²H ratio of 52:48 for (Si*R*)-**4b** and 48:52 for (2*R*)-**9**.

Both products were subjected to analytical HPLC analysis using chiral stationary phases. Identical stereoisomeric fractions of several runs were collected, concentrated and analyzed by mass spectrometry (see Table S2 for results).

Analogously, mixtures of (SiS)-[²H]-4b (95% *ee*, 99% D) and **8**, or (SiS)-[²H]-4b (95% *ee*, 99% D) and **8**, or (SiR)-4b (97% *ee*) and [²H]-8 (>98% D) were co-reacted and analyzed (see Table S2 for results).

			null	
	1	2	3	4
equiv. ^b	0.52	0.48	0.47	0.46
<i>ee</i> [%] ^c	97 (Si <i>R</i>)	95 (Si <i>S</i>)	97 (Si <i>R</i>)	95 (Si <i>S</i>)
H/D ^d	100:0	1:99	100:0	1:99
equiv. ^b	0.48	0.52	0.53	0.54
H/D ^e	<2:98	100:0	100:0	<2:98
yield [%] ^f	87	72	77	70
d.r. [(Si <i>R</i>)-[¹ H/ ² H]- 4b] ^g	99:1		99:1	
d.r. [(Si <i>S</i>)-[¹ H/ ² H]- 4b] ^g		99:1		99:1
<i>ee</i> (major) [%] ^h	97 (Si <i>R</i>)	94 (Si <i>S</i>)	91 (Si <i>R</i>)	93 (Si <i>S</i>)
H/D (global) ^d	52:48	38:62	100:0	2:98
H/D (major) ⁱ	56:44	39:61		
H/D (minor) ⁱ	65:35	22:78		
d.r. [(Si <i>R</i>)- 4b] ^j	99:1			
d.r. [(Si <i>R</i>)-[² H]- 4b] ^j	99:1			
d.r. [(Si <i>S</i>)- 4b] ^j		99:1		
d.r. [(Si <i>S</i>)-[² H]- 4b] ^j		99:1		
yield [%] [*]	66	87	70	66
ee (global) [%] ^{k}	34 (2 <i>R</i>)	10 (2 <i>S</i>)	19 (2 <i>R</i>)	11(2 <i>S</i>)
H/D (global) ^d	48:52	69:31	100:0	1:99
H/D [(2 <i>R</i>)- 9] [/]	56:44	80:20		
H/D [(2 <i>S</i>)- 9] [/]	28:72	58:42		
ee (9) $[\%]^m$	62 (2 <i>R</i>)	6 (2 <i>R</i>)		
<i>ee</i> ([² H]- 9) [%] ^m	10 (2 <i>R</i>)	44 (2 <i>S</i>)		
	equiv. ^b $ee [\%]^{c}$ H/D^{d} equiv. ^b H/D^{g} yield [%]^{f} $d.r. [(SiR)-[^{1}H/^{2}H]-4b]^{g}$ $ee (major) [\%]^{h}$ $H/D (global)^{d}$ $H/D (major)^{i}$ $d.r. [(SiR)-4b]^{j}$ $d.r. [(SiS)-4b]^{i}$ $d.r. [(SiS)-24b]^{i}$ $d.r. [(SiS)-25)-240]^{i}$ $d.r. [(SiS)-26)^{i}$ $d.r. [($	1equiv. p 0.52ee [%] c 97 (SiR)H/D d 100:0equiv. p 0.48H/D e $<$ 2:98yield [%] f 87d.r. [(SiR)-[^1H/^2H]-4b] g 99:1d.r. [(SiS)-[^1H/^2H]-4b] g 97 (SiR)H/D (global) d 52:48H/D (major) i 56:44H/D (minor) i 65:35d.r. [(SiR)-4b] j 99:1d.r. [(SiR)-2H]-4b] i 99:1d.r. [(SiS)-2H] 2 H]-4b] i 99:1d.r. [(SiS)-2H] 2 H] 2 H) 2 Hyield [%] f 66ee (global) [%] k 34 (2R)H/D (global) d 48:52H/D (global) d 48:52H/D (global) d 28:72ee (9) [%] m 62 (2R)ee (1 2 H)-9) [%] m 10 (2R)	12equiv. ^b 0.520.48 $ee [\%]^{c}$ 97 (Si R)95 (Si S) H/D^{d} 100:01:99equiv. ^b 0.480.52 H/D^{e} 2:98100:0yield [\%]^{f}8772d.r. [(Si R)-[¹ H/ ² H]-4b] ^g 99:1d.r. [(Si S)-[¹ H/ ² H]-4b] ^g 99:1 ee (major) [%] ^h 97 (Si R)94 (Si S)H/D (global) ^d 52:4838:62H/D (minor) ⁱ 56:3522:78d.r. [(Si R)-f ¹ H)-4b] ⁱ 99:1d.r. [(Si R)-f ² H]-4b] ⁱ 99:1d.r. [(Si R)-f ² H]-4b] ⁱ 99:1d.r. [(Si S)-f ¹ H, f99:1d.r. [(Si S)-f ¹ H, fd.r. [(Si S)-fd.r. [(Si S]-f	123equiv. ⁶ 0.52 0.48 0.47 ee [%] ⁶ 97 (SiR)95 (SiS)97 (SiR)H/D ^d 100:01:99100:0equiv. ⁶ 0.48 0.52 0.53 H/D ^g $2:98$ 100:0100:0yield [%] ^f 877277d.r. [(SiS)-[¹ H/ ² H]-4b] ^g 99:199:1d.r. [(SiS)-[¹ H/ ² H]-4b] ^g 97 (SiR)94 (SiS)91 (SiR)H/D (global) ^d 52:4838:62100:0H/D (major) ⁱ 56:4439:61d.r. [(SiS)-[⁴ H]-4b] ^j 99:1d.r. [(SiS)-[⁴ H]-4b] ^j 99:1d.r. [(SiS)-4b] ^j 99:1d.r. [(SiS)-[⁴ H]-4b] ^j 99:1yield [%] ¹ 668770ee (global) [%] ^k 34 (2R)10 (2S)19 (2R)H/D [(2S)-9] ^j 56:4480:20H/D [(2S)-9] ^j 56:4480:20H/D [(2S)-9] ^j 56:4480:20H/D [(2S)-9] ^j 56:4480:20H/D [(2S)-9] ^j 62 (2R)6 (2R)ee (9) [%] ^m 62 (2R)6 (2R)ee (¹ (H)-9) [%] ^m 10 (2F) <t< td=""></t<>

Duna

Table S2. Co-reactions of 2b and 8.

^{*a*} See representative procedure for experimental details. ^{*b*} Determined by integration of ¹H NMR signals at 0.65 (d, 3H for **8** or s, 3H, for [²H]-**8**) and 0.87–1.20 ppm (m, 9H, [¹H/²H]-**2b**. ^{*c*} HPLC analysis using a Daicel Chiralcel OJ-RH column (MeCN/H₂O 50:50 at 12°C) provided sufficient separation of enantiomers. ^{*d*} Determined by EI-MS. ^{*e*} Determined by ¹H NMR. ^{*t*} Yields of isolated product based on employed amount of corresponding silane. ^{*g*} HPLC analysis using a Daicel Chiralcel OD-RH column (MeCN/H₂O 75:25 at 12°C) provided baseline separation of all four stereoisomers; only major enantiomer included. ^{*h*} HPLC analysis using a Daicel Chiralcel OD-RH column (MeCN/H₂O 75:25 at 12°C) provided baseline separation of all four stereoisomers; only major enantiomer included. ^{*h*} HPLC analysis using a Daicel Chiralcel OD-RH column (MeCN/H₂O 75:25 at 12°C) provided baseline separation of all four stereoisomers; only major diastereomer included. ^{*i*} Determined by EI-MS of concentrated samples of stereoisomerically pure fractions obtained from three analytical HPLC runs; major = major diastereomer, major enantiomer; minor = minor diastereomer, major enantiomer. ^{*i*} Values calculated by comparison of H/D ratios of each stereoisomer (see correlation scheme for details). ^{*k*} HPLC analysis using a Daicel Chiralcel OD-H column (*n*-heptane at 20°C) provided baseline separation of enantiomers. ^{*i*} Determined by EI-MS of concentrated samples of enantiomers. ^{*i*} Determined by EI-MS of concentrated samples (for three analytical HPLC runs). ^{*m*} Calculated from H/D ratio and *ee_{global}*; e.g. run 1 with e.r._{global} = 67:33: e.r. (**9**) = (67·0.56):(33·0.28) = 37.5:9.2 (62% *ee*) [*cf*. Correlation Schemes].

4.2 Correlation Schemes

Scheme S1. Results for co-reaction of (SiR)-2b and $[^{2}H]$ -8 (Run 1).

Scheme S2. Results for co-reaction of $(SiS)-[^{2}H]-2b$ and 8 (Run 2).

4.3 Copies of HPLC and MS analyses

Complete Characterization Data for Pure Compounds can be found in a separate file. This is consisting of NMR files, copies of HPLC data for racemic 2b and 4b, 9 as well as MS analyses of deuterated and non-deuterated compounds thereof and of 8. In addition, data for enantioenriched 2b and 4b are included.

Run 1: Products

rac-4b (HPLC)

4b (HPLC, run 1)

Data File C:\HPCHEM\1\DATA\SR\SRB74_02.D

OD-RH

Injection Date	: 03.10.2006 10:	20:12	Ingetion : Vial	5.6	
Acq. Operator	: Rendler		rocation : viat	26	
Acq. Instrumer	it : Instrument 1	THODS SP ODDH1	Inj Volume : 2 µl		
Last changed OD-RH	: 03.10.2006 08:	30:47 by Rend	ler		
0.50 mL/min, 1	20, 0V 230 nm 12°C				
DADIO	Sine 230 16 Date 360 100 /CDIS	D874 02 D)			
mAU	ag-200, 10 Hai-000, 100 (0110	1014_02.0)		A 2	
160				34.6	
100				pron	
140					
120 -					
-					
100					
80					
60					
60					
60 40					
60 40 20				and and	
60 40 20			3. A.	and 8 411.960	
60 40 20			R. A.	And And Ist	
60 40 20			R. AND	alter and take	
60 40 20 0	10	20	R. 1905 Suddhad 30	1.000	m
60 40 20 0	10	20	2	1.000	
60 40 20 0	10 Area Pe	20 rcent Report	8	10 100 10 10 10 10 10 10 10 10 10 10 10	
60 - 40 - 20 - 0	10 Area Pe	20 rcent Report	2. ja 2. 30	40	m
60 40 20 0 0 Sorted By Wultiplier	10 Area Po : Sig : 1.0	20 rcent Report mal 000	8. 99 90 90	40 	m
60 40 20 0 Sorted By Multiplier Dilution	10 Area Pe : Sig : 1.0 : 1.0	29 rcent Report nal 000 000	8. ja 3. ja 30	40	
sorted By Multiplier Dilution Sample Amount Des Multiplier	10 Area Pe : Sig : 1.0 : 1.0 : 1.0	20 rcent Report nal 000 000 000 (ng/ul]	20 (not used in calc.	40 40 40	
66 40 20 0 Sorted By Multiplier Dilution Sample Amount Use Multiplier	10 Area Pe : Sig : 1.0 : 1.0 : 0.0 : 1.0	29 rcent Report nal 000 0000 (ng/ul] with ISTDs	(not used in calc.	10000	
66 49 20 0 Sorted By Multiplier Dilution Sample Amount Use Multiplier Signal 1: DADI	19 Area P : Sig : 1.0 : 1.0 : 1.0 : 1.0 : 0.0 : 6 Dilution Factor	29 rcent Report nal 000 0000 (ng/ul] with ISTDs =360.100	20 (not used in calc.	100000 10000 10000 10000000000000000000	
66 40 20 0 Sorted By Multiplier Sample Amount Use Multiplier Sample Amount Sample Jacoba	10 Area Po : Sig : 10 : 10 : 10 : 0 : 10 : 0 : 10 : 0 : 10 : 0 : 10 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :	20 rcent Report nal 000 0000 [ng/ul] with ISTDs =360,100	2 20 (not used in calc.		
sorted By Multiplier Dample Amount Use Multiplier Signal 1: DADI Paak RetTime J f Tmin1	10 Area Pe : 510 : 100 : 100 : 100 : 5010410 Area (ain) (==200	29 rcent Report nal 000 0000 with ISTDs =360,100 a Height s I matri	a set 30 (not ward in calc. Arms		m
sorted By Multiplier Dilution Sample Arount Dee Multiplier Signal 1: DADU + [min]	10 Area Pe : Sig : 1.0 :	20 rcent Report nal 000 000 mith ISTDs =360,100 a [Height s] [mAU]	2 20 20 (not used in calc.		n
sorted By Multiplier Dilution Sample Amount Signal 1: DADI Peak RetTime 1 4 [min] 1 30,730 8	10 Area Pe : 510 : 1.0 : 1.0 : 1.0 : 5 Dilation Factor D, Sig=230,16 Mef (man) [m2002 (man) [m20226.6	20 rcent Report nal 000 0000 [ng/u]] wich 18702 =360,100 a Height s] [mA0] 4574 1.0700	20 10 t used in calc.		
sorted By built piler built piler bilt ion built piler built piler bu	10 Area Pe : Sig : 1.0 : 0 : 10 : 10 : 10 : 10 : 10 : 10 : 10	20 rcent Report nal 0000 0000 (ng/ul] with ISTDs =360,100 a =1 [FA3] 4574 1.0700 4574 1.0700 4574 1.0700 4574 1.0700	20 (not used in calc.		m
60 42 20 0 0 50rted By Multiplier Diution Sample Amount Durbin Signal 1: DADI Peak Berlins 1 4 [min] 3 23.219 3 3.4.692 E	10 Area Pe : Sig : 10 : 10 : 10 : 5 Dilation Factor D, Sig=230,16 Ref [min] [mi00 ff 0.4130 280.0 M 0.4673 4901.7 M 0.4673 11.9	29 rcent Report nai 000 0000 (ng/ul) =360,100 a [leight [mR0] 522 1.000 522 1.000 522 1.000 522 1.000 522 1.000 523 1.0000 523 1.00000 523 1.00000 523 1.0000 523 1.00000 523 1.00000 523 1.000	20 (not used in calc. Arms 2 0.5304 2 0.5304 1 97.5754 1 9.2722		m

Sample Name: SR874F1

10',70eV,100DuA ,m/z 41-600 ¥1: + LRM, #2: + LRM.

189

200

80',70eV,1000uA ,m/z 41-550 #1: + LRM, #2: + LRM.

e: El. S

File Title Operato Instrume Notes

90

80

70

60

50

30

20

10 59.1

0 50

Creation File Typ File Sou

File Title Operator Instrumer Notes

90

80

70

60

30

20

57.1

97.

100

150

(906%) 50 ntensity (

100

65*@10 TSQ700

SCAN GRAPH. Flagging=Low Rosolution M/z. Highlighting 100 - Entries=505. Base M/z=174.1. 100% Int.=55,97228 174.1

H/D_{global} (before separation) 9 (EI-MS)

H/D_{global} (before separation) 9 (EI-MS) [enlarged]

9 (run 1)

H/D (2*R*)-9 (EI-MS) t_R = 19.5 min

Manela

338 340 342 Low Resolution M/z

334 336 0.117.

346 348 350

Run 2: Products

rac-4b (HPLC)

H/Dglobal (before separation) 4b (EI-MS)

H/Dglobal (before separation) 4b (EI-MS) [enlargement]

4b (HPLC, run 2)

H/D (Si*S*,2*S*) **4b** (EI-MS) (t_R = 32.4 min)

H/D (SiS,2R) 4b (EI-MS) (t_R = 41.1 min)

9 (run 2)

H/D (Si*S*,2*S*) **4b** (EI-MS) [enlargement]

H/D_{global} (before separation) 9 (EI-MS)

H/D (2*S*)-**9** (EI-MS) t_R = 16.3 min

File Type File Source A ,m/z 41-600 + LRM. SCAN PH. Flagging=Low Resolution M/z. Highlighting ies=444. Base M/z=197, 100% Int.=105.2032. 16 14 11.45 12 340.1 A:D= 69:31 341.1 8.08 6 2.92 2 0.56 330 332 334 336 338 24 348

H/D (2S)-9 (EI-MS) [enlarged]

Run 3: Products ٠

rac-4b (HPLC, run 3)

H/Dglobal (H only) 4b (EI-MS)

H/Dglobal 4b (EI-MS) [enlarged]

9 (run 3, HPLC)

• Run 4: Products

rac-4b (HPLC, run 4)

H/Dglobal (H only) 4b (EI-MS)

4b (HPLC, run 4)

9 (run 4, HPLC)

H/D_{global} 9 (EI-MS)

348 350

5 Cross-over Experiments of (Si*S*)-[²H]-2b and (Si*R*)-2b

5.1 Experimental Details

Hydrosilylation of **1** with a mixture of (Si*R*)-**2b** and (Si*S*)-[²H]-**2b**

A Schlenk tube was charged with a solution of (SiR)-**2b** (19.0 mg, 0.100 mmol, 0.333 equiv., 97% *ee*), (SiS)-[²H]-**2b** (38.3 mg, 0.200 mmol, 0.667 equiv., 95% *ee*), and bicyclic alkene **1** (427 mg, 3.00 mmol, 10.0 equiv.) in anhydrous degassed CH₂Cl₂ (2.0 mL) under argon atmosphere. An aliquot (0.50 mL) was taken via syringe to determine the exact composition of the mixture by ¹H NMR. Subsequently, a freshly prepared solution of (phen)PdMe(OEt₂)⁺ BAr₄⁻ (**3**) [Ar = 3,5-bis(trifluoromethyl)phenyl] (0.50 mL, 0.00125 mmol, 0.005 equiv., 0.0025M in CH₂Cl₂) – prepared in situ from (phen)PdMe₂ (0.8 mg, 0.0025 mmol, 0.010 equiv.) and [H(OEt₂)₂]⁺BAr₄⁻ (2.5 mg, 0.0025 mmol, 0.010 equiv.) in CH₂Cl₂ (1.0 mL) at 0 °C – was added via a microliter syringe. The resulting solution was stirred at room temperature for 48 h. ¹H NMR analysis indicated complete conversion of silanes. After removal of the catalyst by filtration through a plug of silica gel using cyclohexane as eluent, the solvents were evaporated. The excess alkene was removed by Kugelrohr distillation in vacuo. Subsequent flash column chromatography on silica gel with cylcohexane as eluent delivered a mixture of enantio- and isotopomers of **4b** (72 mg, 86%). Mass spectrometric analysis revealed a H/D ratio of 35:65.

Analytical HPLC using chiral stationary phases. provided sufficient separation of all four stereoisomers. Identical fractions of several runs were collected, concentrated and analyzed by mass spectrometry (see Scheme S3 for results).

Scheme S3. Results for co-reaction of (SiR)-2b and (SiS)-[²H]-2b

5.2 Copies of HPLC and MS data

 H/D_{global} of (SiRS,2RS)-[$^{1}H/^{2}H$]-4b

H/D for (SiR, 2S)-[¹H/²H]-**4b** (EI-MS)

H/D for $(SiS, 2S) - [^{1}H/^{2}H] - 4b$ (EI-MS)

File Nam Creation File Type File Sour

File Title Operator Instrumer

SCAN GR

90

80

70

60

40

20

50

57.1

H/D for $(SiR,2R)-[^{1}H/^{2}H]-4b$ (EI-MS)

H/D for (SiS,2R)-[¹H/²H]-**4b** (EI-MS)

H/D for $(SiR,2R)-[^{1}H/^{2}H]-4b$ (EI-MS) [enlarged]

5.3 Product Distribution Analysis / Modeling

The relative proportions (mol fraction %) of (SiR)-4b, $(SiR)-[^2H]-4b$, (SiS)-4b and $(SiS)-[^2H]-4b$ as a function of conversion of total 2b were modeled by computer-based application of the Gear integration method.^[13] The model was simplified such that steps (i), (ii) and (iii) shown in Scheme 2 were telescoped into one step: **7b** + **2b** \rightarrow **4b** + **7b** + **X**, with an associated rate constant k_1 . Stereochemical / labeling descriptors were applied such that intermediate 7 has two forms: (SiR)-7b and (SiS)-7b and silane **2b** has four forms (SiR)-**2b**, (SiR)-[²H]-**2b**, (SiS)-**2b**, (SiS)-[²H]-**2b**. Eight possible combinations of **2b** and **7b** emerge. For those combinations involving $[{}^{2}H]$ -**2b**, the rate constant k_{1} was reduced to reflect the PKIE. For those combinations involving opposite stereoisomers of 2b and 7b the rate constant was reduced by a mismatching factor (k^m/k^{mm}) . For combinations involving both [²H]-**2b** and opposite stereoisomers of **2b** and **7b** the rate constant was reduced by both factor (PKIE $\times k^m/k^{mm}$). The absolute rate constants have no meaning outside of the framework of the model. The concentration of all species were based on mol fraction % as defined by the initial charging of the reagents to the reaction vessel (see above for details) and also take into account the enantiomeric and isotopic purities of the reagents ($[(SiR)-2b]_0 = 33.49 \text{ mol}\%; [(SiR)-[^2H]-2b]_0 = 1.6 \text{ mol}\%; [(SiS)-2b]_0 = 1.6 \text{ mol}\%;$ 1.81 mol%; $[(SiS)-[^{2}H]-2b]_{0} = 63.10 \text{ mol}\%)$. The output for (SiR)-4b, $(SiR)-[^{2}H]-4b$, (SiS)-4b and (SiS)-4 $[^{2}H]$ -4b at X = 86% [total-2b]₀ was compared with the observed data (see Figure S2) and a best-fit of PKIE = 2.5 and k^m/k^{mm} = 2.5 obtained through manual iteration and comparing the sum square errors for all four components. The distributions and sum square error (%) values obtained, together with a comparison of observed versus best fit is given in Figure S2.

Figure S2. Upper section: predicted and observed distributions of (SiS)-4b, (SiR)-4b, (SiS)-[²H]-4b and (SiR)-[²H]-4b at X = 84.5% [total-2]₀ using model outlined in section 5.3 at various values of KIE and k^m/k^{mm} . Lower section: graphical comparison of observed (grey shaded bars, data from Scheme 5) versus predicted (pink shaded bars) for best fit when PKIE = k^m/k^{mm} = 2.5.

			(Si <i>S</i>)- 4b	(Si <i>R</i>)- 4b	(Si <i>S</i>)-[² H]- 4b	(Si <i>R</i>)-[² H]- 4b	SSE (%)
OBSERVED (mol fraction %)			13.1	26.2	46.0	14.7	0.0
MODELS	PKIE	<i>k</i> ^m / <i>k</i> ^{mm}					
	2.5	2.4	14.4	25.0	46.4	13.7	155.4
	2.5	2.5	14.1	25.3	47.0	13.5	126.9
	2.5	2.6	13.8	25.7	47.6	13.1	148.6
	2.4	2.5	14.2	25.1	47.3	13.6	138.2
	2.6	2.5	14.1	25.6	47.1	13.4	136.4
	2.4	2.4	14.5	24.9	46.7	13.8	169.8
	2.6	2.6	13.7	25.8	47.7	13.1	140.3

5.4 Modeling of Asymmetric Amplification

The relative proportions of (Si*R*)-2, (Si*S*)-2, (Si*R*)-4, (Si*S*)-4, (Si*R*)-5, (Si*S*)-5 and (Si*R*)-7, (Si*S*)-7 as a function of conversion of 1 (%), according to Scheme 2 (two-silicon cycle) were modeled by computerbased application of the Gear integration method.^[13] The model was simplified such that steps (i) and (ii) shown in Scheme 2 were telescoped into one step, giving a two-step cycle: step one is alkene coordination / insertion via 1 + 5 \rightarrow 7, k_1 (and an associated equilibrium constant K_1 , to allow reversibility) and step 2 is σ -bond metathesis via $2 + 7 \rightarrow 4 + 5$, k_3 (irreversible). The value of k_3 was set as 4 for matched combinations and as 1 for mismatched combinations of stereoisomers of 2 and 7 (thus $k_3^{m/k_3} = 4$). The absolute rate constants have no meaning outside of the framework of the model. The concentration of all species were based on mol fraction %. The initial ee of 2 = 60% (thus (SiR)-2:(SiS)-2 = 80:20) and the stoichiometry of 2 was set at 20% excess over 1. The catalyst loading was set at 0.1 mol% 7 (starting with 5, and/or with different enantiomer ratios of 7 or 5 was found to have little or no effect after 5 or less % reaction). A schematic of the model is outlined at the top of Figure S3. Various values of k_1 , and K_1 were explored such that the 'resting state' (= bulk catalyst concentration) was 5 or 7 or both. As shown graphically in Figure S3, it is found that the asymmetric amplification is independent of relative values of k_1 and K_1 and depends only on the enantiomer ratio of 2 which sets the enantiomer ratio of 7. At any point, the nascent enantiomer ratio of 4 is given by:

er 4_{nascent} =

$\{k_3^{m}[(SiR)-2][(SiR)-7] + k_3^{mm}[(SiS)-2][(SiS)-7]\} / \{k_3^{m}[(SiS)-2][(SiS)-7] + k_3^{mm}[(SiR)-2][(SiR)-7]\}$

A key point for the discussion of the attenuation (masking) of asymmetric amplification below is that when K_1 is small, the *er* of **5** becomes predominantly determined by the *er* of **7** (and thus **2**). As K_1 increases, the *er* becomes predominantly determined by *er* **4**_{*nascent*} (and thus *er* **5**_{*nascent*}).

Figure S3. A selection of graphical analyses of asymmetric amplification according to the simplified model shown at the top of the figure. In the lower section, plots of relative % 5 and 7 and of enantiomer ratios of 2, 4, 5 and 7 as functions of conversion (%) of 1 are given. See text above for full discussion.

Starting conditions: 0.1 mol % 7, 1.2 equiv. 2 (60 % ee R)

$$k_3^{m} = 4 k_3^{mm} =$$

1

A second model was explored in which exchange of silane 2 with 5 was faciliated *via* the process $[(SiS)-2] + [(SiR)-5] \rightarrow [(SiR)-2] + [(SiS)-5]$, with associated rate constant k_{exch} as well as the reverse process ($K_{exch} = 1$). A schematic of the model is outlined at the top of Figure S4. Various values of k_1 , and K_1 were again explored such that the 'resting state' was 5 or 7 or both. It was found that under the conditions that would normally generate 5 in higher *er* than that of 2 (see Figure S3) relatively low values of k_{exch} faciliate the equilibration of the *er* of 5 with that of 2. Due to the requirement for equal flux around all stages of the cycle at 'steady state', the reduction in the *er* of 5 causes a reduction in the *er* of 7 and thus attenuates the *er* of nascent 4. With high values of k_{exch} the *er* of 4 becomes equal

to that of **2** (not net amplification) eventhough the value of $k_3^{m/k_3^{mm}} = 4$ and the *match/mismatch* is just as efficient as in Figure S3. Increasing the reactivity of **1** (k_1) or its concentration ([**1**]) supresses the attenuation (i.e. restores amplification). Analogously, it was also found that under the conditions that would normally generate **5** in equal *er* to that of **2** and **7** (see Figure S3) extrememely high values of k_{exch} were required to have any effect on the *er* of **4**. Thus as the *er* of **5** approaches that of **7** the system becomes increasingly immune to supression of amplification (as is logical since equilibration of **5** with **2**will have no effect on the *er* of **5** or **7**).

Figure S4. A selection of graphical analyses of attenuation of asymmetric amplification according to the simplified model shown at the top of the figure which has in addition to that shown in Figure S3, a mechanism for silane exchange with **5**. In the lower section, plots of relative % **5** and **7** and of enantiomer ratios of **2**, **4**, **5** and **7** as functions of conversion (%) of **1** are given (See text above for full discussion).

Starting conditions: 0.1 mol % 7, 1.2 equiv. 2 (60 % ee R)

$$k_3^{m} = 4 \quad k_3^{mm} = 1$$

6 Estimation of the Kinetic Isotope Effect (PKIE)

Hydrosilylation of **1** with a mixture of *rac*-**2a** and *rac*-[²H]-**2a**

A NMR tube was charged with a solution of *rac*-**2a** (20.4 mg, 0.100 mmol, 1.00 equiv.), *rac*-[²H]-**2a** (20.5 mg, 0.100 mmol, 1.00 equiv.), and bicyclic alkene **1** (14.2 mg, 0.100 mmol, 1.00 equiv.) in anhydrous degassed CD₂Cl₂ (0.80 mL) under argon atmosphere. After the exact composition had been determined by ¹H NMR, a freshly prepared solution of (phen)PdMe(OEt₂)⁺ BAr₄⁻ (**3**) [Ar = 3,5-bis(trifluoromethyl)phenyl] (200 μ L, 0.00100 mmol, 0.001 equiv., 0.0005M in CD₂Cl₂) – prepared in situ from (phen)PdMe₂ (1.0 mg, 0.0030 mmol, 0.030 equiv.) and [H(OEt₂)₂]⁺BAr₄⁻ (3.0 mg, 0.0010 mmol, 0.010 equiv.) in CD₂Cl₂ (600 μ L) at 0°C – was added via a microliter syringe. The reaction was monitored by ¹H NMR analysis at 25°C over a period of 48h. The results are obtained by integration are shown in Table S3 (see Figure S6 for exemplified NMR spectra).

			Concentration [mmol/mL] ^a					
Entry	time [h]	conversion [%] ^b	1	rac- 2a	<i>rac</i> -[² H]- 2a	rac- 4a	<i>rac</i> -[² H]- 4a	
1	0.00	0.00	0.1000	0.0898	0.1352	0.0000	0.0000	
2	0.17	13.73	0.1179	0.0650	0.1291	0.0145	0.0164	
3	0.22	15.46	0.1047	0.0658	0.1244	0.0141	0.0207	
4	0.28	15.19	0.1048	0.0653	0.1255	0.0151	0.0190	
5	0.35	16.65	0.0956	0.0659	0.1217	0.0137	0.0238	
6	0.43	15.79	0.0918	0.0603	0.1292	0.0045	0.0311	
7	0.48	16.70	0.0935	0.0650	0.1225	0.0253	0.0123	
8	0.53	16.58	0.0938	0.0655	0.1222	0.0235	0.0138	
9	0.58	17.33	0.0887	0.0649	0.1211	0.0337	0.0052	
10	0.62	16.42	0.0902	0.0630	0.1251	0.0074	0.0296	
11	0.67	17.69	0.0835	0.0630	0.1222	0.0146	0.0252	
12	1.07	17.65	0.0854	0.0643	0.1210	0.0259	0.0139	
13	1.33	19.16	0.0787	0.0652	0.1167	0.0282	0.0150	
14	1.38	19.02	0.0788	0.0652	0.1170	0.0201	0.0227	

Table S3. Concentrations as determined by ¹H NMR

15	1.42	19.55	0.0764	0.0644	0.1166	0.0346	0.0093
16	1.47	23.32	0.0571	0.0577	0.1148	0.0332	0.0193
17	4.10	22.97	0.0528	0.0570	0.1164	0.0279	0.0237
18	4.18	23.42	0.0526	0.0579	0.1144	0.0394	0.0133
19	4.23	22.20	0.0544	0.0572	0.1179	0.0292	0.0208
20	7.43	26.07	0.0384	0.0531	0.1132	0.0384	0.0203
21	7.47	26.79	0.0374	0.0533	0.1114	0.0399	0.0204
22	24.23	38.80	0.0082	0.0347	0.1031	0.0506	0.0367
23	26.23	39.53	0.0078	0.0382	0.0979	0.0493	0.0397
24	26.30	38.83	0.0070	0.0337	0.1039	0.0521	0.0353
25	26.35	41.03	0.0068	0.0348	0.0979	0.0705	0.0218
26	43.17	44.80	0.0003	0.0310	0.0931	0.0705	0.0303
27	43.22	44.54	0.0003	0.0322	0.0926	0.0623	0.0379
28	43.25	44.09	0.0003	0.0313	0.0945	0.0584	0.0408

^a Reaction performed in 0.1M solution in CD₂Cl₂. Initial concentrations calculated by weight of used **1** (giving a 0.1M solution) and comparison of ¹H NMR signals at 4.12 (*rac*-**2a**, 1H), 3.78 (**1**, 2H), 2.70 (*rac*-**2a**, 2H; *rac*-[²H]-**2a**, 2H; *rac*-**4a**, 2H; *rac*-**7**H]-**2a**, 2H]-**7**

The concentrations of **2a** and $[{}^{2}H]$ -**2a** as a function of conversion were modeled by computer-based application of the Gear integration method.^[13] The model was simplified to a pair of bimolecular non-catalysed competitions: **1** + **2a** \rightarrow **X**, with an associated rate constant k_1 and **1** + $[{}^{2}H]$ -**2a** \rightarrow **X** with an associated rate constant k_2 . In both processes, '**X**' was used as a marker for conversion of **1**. The absolute rate constants have no meaning outside of the framework of the model. The concentration of all species were based on molarity as defined by the initial charging of the reagents to the NMR tube (see above for details). The relative rate k_1/k_2 (= PKIE) was varied manually and compared with the observed data as a function of concentration of **2a** and $[{}^{2}H]$ -**2a** with conversion of **1**, see Figure S5. A best-fit of $k_1 / k_2 = 3.0$ (green line) ± 0.5 (black and red lines) was obtained.

Figure S5. Graphical analysis of predicted and observed concentrations of silane **2a** and deuterated silane $[^{2}H]$ -**2a** as determined by ¹H NMR analysis. Circles: NMR derived data; solid lines passing through data: predictions based on simple first-order bimolecular competition model: red PKIE = 2.5, green PKIE = 3.0; black PKIE = 3.5.

Figure S6. Characteristic ¹H NMR signals for analysis of a PKIE.

7 References and Footnotes

† Westfälische Wilhelms-Universität Münster

‡ University of Bristol

[1] Wittig, G.; Knauss, E. Chem. Ber. 1958, 91, 895–907.

[2] Rendler, S.; Auer, G.; Keller, M.; Oestreich, M. Adv. Synth. Catal. 2006, 348, 1171–1182.

[3] a) De Graaf, W.; Boersma, J.; Smeets, W. J. J.; Spek, A. L.; Van Koten, G. *Organometallics* **1989**, *8*, 2907–2917. b) Rix, F. C.; Brookhart, M.; White, P. S. *J. Am. Chem. Soc.* **1996**, *118*, 2436–2448.

[4] a) Brookhart, M.; Grant, B.; Volpe Jr., A. F. *Organometallics* **1992**, *11*, 3920–3922; b) improved procedure for the prepration of NaBAr₄ used: Yakelis, N. A.; Bergman, R. G. *Organometallics* **2005**, *24*, 3579–3581.

[5] Oestreich, M.; Schmid, U. K.; Auer, G.; Keller, M. Synthesis 2003, 2725–2739.

[6] a) Required [2-¹³C]-2,4,4-Trimethyloxazoline was prepared by analogy to ref. ^[6b] starting with commercially available [2-¹³C]-acetic acid; b) Myers, A. I.; Temple, D. L.; Nolen, R. L.; Mihelich, E. D. *J. Org. Chem.* **1974**, *39*, 2778–2783.

[7] Tyler, L. J.; Sommer, L. H.; Whitmore, F. C. J. Am. Chem. Soc. 1948, 78, 2876–2878.

[8] Cook, M. A..; Eaborn, C.; Walton, D. R. M. J. Organomet. Chem. 1971, 29, 389–396.

[9] Absolute configuration deducted in from polarity in comparison to the known properties and absolute configuration of the **2a** derived (–)-menthyl ether.^[2] The assignment is in agreemnent with comparable chiral HPLC properties of silanes **2b** *versus* **2a** after stereospecific reductive cleavage.

[10] Absolute configuration deducted from similar HPLC properties as (Si*R*)-2a using the same chiral stationary phase.

[11] Relative stereochemistry assigned by analogy to **4a**; absolute stereochemistry assigned by a stereoretentive process being operative.

[12] Stereochemistry assigned by comparison of the stereoinduction being operative in the formation of **4b**.

[13] a) Weigert, F. J. *Computers and Chemistry* **1987**, *II*, 273; b) Stabler, R. N.; Cheswick, J. *Int. J. Kinet.* **1978**, *10*, 461; c) McKinney, R. J.; Weigert, F. J. *Quantum Chemistry, Program Exchange, program No. QCMP022*. Commercially available software (MacKinetics, Leipold Associates, USA) was employed for the simulations described herein.