Cross-bridging Reaction of 5,20-Diethynyl Substituted Hexaphyrins to Vinylene-bridged Hexaphyrins

Masaaki Suzuki and Atsuhiro Osuka*
Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

Acknowledgment

This work was partly supported by Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 17350017). MS thanks for JSPS for Research Fellowship for Young Scientists.

Supporting Information

I. General Information
II. Experimental Section
III. Figures

I. General Information

All reagents and solvents were of the commercial reagent grade and were used without further purification except where noted. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL ECA-600 spectrometer, (operating as 600.17 MHz for ${ }^{1} \mathrm{H}$ and 564.73 MHz for ${ }^{19} \mathrm{~F}$) using the residual solvent in CDCl_{3} and THF- d_{8} as the internal reference for ${ }^{1} \mathrm{H}$ ($\delta=7.26$ and 3.70 ppm , respectively) and hexafluorobenzene as external reference for ${ }^{19} \mathrm{~F}$ ($\delta=-162.9$ $\mathrm{ppm})$. The spectroscopic grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as solvents for all spectroscopic studies. UV/visible absorption was recorded on a Shimadzu UV-3100 spectrometer. Mass spectra were recorded on a BRUKER microTOF using positive mode ESI-TOF method of acetonitrile solutions. Preparative separations were performed by silica gel gravity column chromatography (Wako gel C-400).

Experimental Section

Compound 2:

To a solution of TIPS-propynal (105 $\mu \mathrm{g}$, 0.50 mmol) and 5,10-bis(pentafluorophenyl)tripyrrane (T) ($278 \mathrm{mg}, 0.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22.2 \mathrm{~mL})$ was added methanesulfonic acid (2.5 M diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 12.5 \mu \mathrm{~L}$) at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The reaction mixture was stirred for 2 h and then DDQ (500 mg) was added. After further stirring for 1 h at room temperature, the resulting solution was passed through a short basic-alumina column with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:9) as an eluent and the solvent was removed by a rotary evaporator. The residual mixture was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (3:7) as an eluent. Appropriate fractions were collected and evaporated to dryness. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ afforded $2(43 \mathrm{mg}, 12 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=$ -2.23 (s, 4H, inner β-H), -1.92 (br, 2H, NH), 1.51 (d, $J=7.3 \mathrm{~Hz}, 36 \mathrm{H}$, TIPS-primary), 1.58 (m, 6H, TIPS-tertiary), $9.37(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}$, outer β-H), and $9.91(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}$, outer β-H) ppm; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=-163.14(\mathrm{~m}, 8 \mathrm{~F}$, meta- F$),-153.14(\mathrm{~m}, 4 \mathrm{~F}$, para -F$)$, and -136.95 (d, $J=26.3 \mathrm{~Hz}, 8 \mathrm{~F}$, ortho-F) ppm; UV / vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }\left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right): 1066$ (25000), 925 (6200), 812 (22000), 744 (22000), 645 (46000) and 579 (260000) nm; HR-ESI-TOF-Mass (positive-mode) (\%intensity): $\mathrm{C}_{76} \mathrm{H}_{57} \mathrm{~F}_{20} \mathrm{~N}_{6} \mathrm{Si}_{2} \quad\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd: 1498.3858, found: 1498.3859 (100%); Crystal data: $\mathrm{C}_{76} \mathrm{H}_{56} \mathrm{~F}_{20} \mathrm{~N}_{6} \mathrm{Si}_{2}=1489$, triclinic, space group P-1 (No. 2), $a=8.390$ (5), $b=13.865$ (9), $c=15.169$ (7) $\AA, \alpha=95.39$ (2), $\beta=103.75$ (2), $\gamma=96.10(2)^{\circ}, V=1691(2) \AA^{3}, Z=1, D_{\text {calcd. }}=1.462 \mathrm{~g} / \mathrm{cm}^{3}, T=-150^{\circ} \mathrm{C}, R_{1}=0.073(I>$ $2 \sigma(I)), R_{W}=0.222$ (all data), $\mathrm{GOF}=1.072 . \mathrm{CCDC}, 622031$.

Compound 3:
A solution of $2(30 \mathrm{mg}, 0.020 \mathrm{mmol})$ in $\mathrm{AcOEt}(5 \mathrm{~mL})$ was heated at reflux for 1.5 d , followed by evaporation to dryness. The residue was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (1:4) as an eluent to give 3 ($27 \mathrm{mg}, 90 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=-2.63$ (m, 3H, TIPS-tertiary), -1.67 (d, $J=7.3 \mathrm{~Hz}, 18 \mathrm{H}$, TIPS-primary), -1.20 (s, 21H, TIPS), 8.56 ($\mathrm{d}, \mathrm{J}=4.6 \mathrm{~Hz}, 2 \mathrm{H}$, outer β-H), 8.72 (m, 6H, outer $\beta-\mathrm{H})$, $9.92(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta-\mathrm{H})$, and $10.01(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta-\mathrm{H})$ ppm; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=-161.14(\mathrm{~m}, 8 \mathrm{~F}$, meta-F), $-151.47(\mathrm{~m}, 4 \mathrm{~F}$, para-F), $-137.14(\mathrm{~d}, \mathrm{~J}=$ $26.3 \mathrm{~Hz}, 2 \mathrm{~F}$, ortho-F), -136.96 (d, $J=26.3 \mathrm{~Hz}, 2 \mathrm{~F}$, ortho-F), -136.78 (d, $J=26.3 \mathrm{~Hz}, 2 \mathrm{~F}$, ortho-F), and $-136.70\left(\mathrm{~d}, J=26.3 \mathrm{~Hz}, 4 \mathrm{~F}\right.$, ortho-F) ppm ; UV/vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\varepsilon$ $\left.\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right): 974$ (5600), 852 (5000), 753 (12000), 695 (29000), 586 (120000), and 556 (290000) nm; HR-ESI-TOF-Mass (positive-mode) (\%intensity): $\mathrm{C}_{76} \mathrm{H}_{57} \mathrm{~F}_{20} \mathrm{~N}_{6} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd: 1489.58 , found: 1489.3859 (100%); Elemental analysis calcd for $\mathrm{C}_{76} \mathrm{H}_{56} \mathrm{~F}_{20} \mathrm{~N}_{6} \mathrm{Si}_{2}$: C 61.29, H 3.79, N 5.64, F 25.51; found: C 61.29, H 3.66, N 5.70, F 25.55.

Compound 4:
To a suspension of 3 and excess NaBH_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added MeOH . Resulting mixture was stirred for 1 h and quenched with water. The organic phase was successively washed with water and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent gave 4 in an almost quantitative yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 3.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 18H, TIPS-primary), 3.19-3.74 ($12 \mathrm{H}, \beta$-H), 3.46 (m, 3H, TIPS-tertiary), 4.34 ($\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}$, 18H, TIPS-primary), 5.33 (m, 3H, TIPS-tertiary), 26.96 (s, 2H, NH), and 27.32 (s, 2H, NH) ppm; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=-163.38(\mathrm{~s}, 8 \mathrm{~F}$, meta-F), $-154.40(\mathrm{~m}, 2 \mathrm{~F}$, para-F), -154.23 ($\mathrm{m}, 2 \mathrm{~F}$, para- F), -139.63 ($\mathrm{s}, 2 \mathrm{~F}$, ortho- F), and -139.78 (m, 6F, ortho-F) ppm; UV/vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }\left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right): 589$ (37000), 506 (93000), and 308 (25000) nm; HR-ESI-TOF-Mass (negative-mode) (\%intensity): $\mathrm{C}_{76} \mathrm{H}_{57} \mathrm{~F}_{20} \mathrm{~N}_{6}([\mathrm{M}-\mathrm{H}])$), calcd: 1489.3869, found: 1489.3860 (100%); Elemental analysis calcd for $\mathrm{C}_{76} \mathrm{H}_{58} \mathrm{~F}_{20} \mathrm{~N}_{6}$: C 61.20, H 3.92, N 5.63, F 25.48; found: C 61.35, H 3.82, N 5.56, F 25.52.

Compound 6:
To a solution of phenylpropynal (61 $\mu \mathrm{L}, \quad 0.50 \quad \mathrm{mmol})$ and

5,10-bis(pentafluorophenyl)tripyrrane (T) (278 g, 0.50 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$ was added methanesulfonic acid (2.5 M diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 12.5 \mu \mathrm{~L}$) at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The reaction mixture was stirred for 2 h and then DDQ (500 mg) was added. After further stirring for 1 h at room temperature, the resulting solution was passed through a short basic-alumina column with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:9) and solvent was removed by a rotary evaporator. The residual mixture was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (1:4) as an eluent. Appropriate fractions were collected and evaporated to dryness. Recrystallization from hexane afforded $6(15 \mathrm{mg}, 4.5 \%)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=1.17(\mathrm{~s}, 2 \mathrm{H}$, inner NH), $1.31(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-ortho), $4.61(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-meta), $4.71(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 2 \mathrm{H}$, phenyl-ortho), $5.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl-para), $6.09(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-meta), $6.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl-para), $8.68(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta-\mathrm{H})$, $8.74(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta-\mathrm{H}), 8.84(\mathrm{~s}, 4 \mathrm{H}$, outer $\beta-\mathrm{H}), 10.00(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta-\mathrm{H})$, and $10.14(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta-\mathrm{H}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=-160.88(\mathrm{~m}, 8 \mathrm{~F}$, meta-F), -151.06 ($\mathrm{s}, 4 \mathrm{~F}$, para-F), -136.68 ($\mathrm{d}, \mathrm{J}=26.3 \mathrm{~Hz}, 2 \mathrm{~F}$, ortho-F), $-136.42(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}$, 2 F , ortho-F), $-136.34(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}, 2 \mathrm{~F}$, ortho-F), and $-136.15(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 2 \mathrm{~F}$, ortho-F) ppm; UV / vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}\left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right): 962$ (3700), 845 (5100), 743 (6000), 691 (30000), and 553 (320000) nm; HR-ESI-TOF-Mass (positive-mode) (\%intensity): $\mathrm{C}_{70} \mathrm{H}_{25} \mathrm{~F}_{20} \mathrm{~N}_{6}$ $\left([M+H]^{+}\right)$, calcd: 1329.1816, found: 1329.1818 (100%); Elemental analysis calcd for $\mathrm{C}_{70} \mathrm{H}_{24} \mathrm{~F}_{20} \mathrm{~N}_{6}$: C 63.26, H 1.82, N 6.32, F 28.59; found: C 63.54, H 1.66, N 6.39, F 28.54 .

Compound 7:

To a suspension of 6 and excess NaBH_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added MeOH. Resulting mixture was stirred for 1 h and quenched with water. The organic phase was successively washed with water and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent gave 7 in an almost quantitative yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=2.16-2.94(12 \mathrm{H}$, $\beta-\mathrm{H}), 8.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl-para), $9.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-meta), $9.97(\mathrm{t}, J$
$=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl-para) 10.78 ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-meta), $11.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-ortho), 15.86 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-ortho), 31.61 (br, $4 \mathrm{H}, \mathrm{NH}$) $\mathrm{ppm} ;{ }^{19} \mathrm{~F}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta=-160.26(\mathrm{~m}, 8 \mathrm{~F}$, meta- F$)$, $-154.09(\mathrm{~m}, 4 \mathrm{~F}$, para- F$),-139.42$ (s, 2F, ortho- F$)$, $-138.64\left(\mathrm{~s}, 2 \mathrm{~F}\right.$, ortho-F), and $-138.48\left(\mathrm{~s}, 4 \mathrm{~F}\right.$, ortho-F) ppm; UV/vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\varepsilon$ $\left.\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right): 567$ (5900, sh), 508 (120000), and 304 (48000) nm; HR-ESI-TOF-Mass (negative-mode) (\%intensity): $\mathrm{C}_{70} \mathrm{H}_{25} \mathrm{~F}_{20} \mathrm{~N}_{6}([M-\mathrm{H}])$), calcd: 1329.1827, found: 1329.1822 (100%); Elemental analysis calcd for $\mathrm{C}_{70} \mathrm{H}_{26} \mathrm{~F}_{20} \mathrm{~N}_{6}$: C 63.17, H 1.97, N 6.31, F 28.55; found: C 62.91, H 1.86, N 6.11, F 28.60 .

Compound 8:
To a solution of $6(20.5 \mathrm{mg}, 0.0154 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(1 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added $\mathrm{MeOH}(3 \mathrm{~mL})$ and the resulting solution was stirred for 5 h at room temperature under nitrogen atmosphere. Reaction mixture was diluted with 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and passed through silica gel column with MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \%)$ as an eluent. After removal of solvent, the residual mixture was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CHCl}_{3}$ to get Zn -complex 8 ($17.4 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{THF}-\mathrm{d}_{8}\right): \delta=2.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-ortho), 3.43 (d , $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-ortho), $4.58(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-meta), $5.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl-para), $5.71(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-meta), $6.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl-para), $9.22(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta-\mathrm{H}), 9.26(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta-\mathrm{H}), 9.28(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, 1 H , outer $\beta-\mathrm{H}$), $9.33(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta-\mathrm{H})$, $9.54(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta-\mathrm{H})$, $9.75(\mathrm{~m}, 2 \mathrm{H}$, outer β-H), $9.87(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}$, outer β-H), $11.18(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta-\mathrm{H}) 11.24(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta-\mathrm{H}) 11.28(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta-\mathrm{H})$ and $11.37(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta-\mathrm{H}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{THF}-\mathrm{d}_{8}\right): \delta=-163.95(\mathrm{~m}, 8 \mathrm{~F}$, meta-F), -154.23 (m, 4F, para-F), -139.50 (d, $J=26.3 \mathrm{~Hz}, 1 \mathrm{~F}$, ortho-F), -138.91 (d, $J=26.3 \mathrm{~Hz}, 1 \mathrm{~F}$, ortho-F), -138.70 (d, $J=17.6 \mathrm{~Hz}, 2 \mathrm{~F}$, ortho-F), -138.39 (d, $J=17.5 \mathrm{~Hz}, 1 \mathrm{~F}$, ortho-F), -138.25 (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{~F}$, ortho-F) and $-138.07\left(\mathrm{~s}, 2 \mathrm{~F}\right.$, ortho-F) ppm; UV/vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\varepsilon$ $\left.\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right): 902$ (4800), 821 (22000), 625 (72000), 581 (390000), and 399 (230000) nm;

HR-ESI-TOF-Mass (negative-mode) (\%intensity): $\mathrm{C}_{70} \mathrm{H}_{22} \mathrm{~F}_{20} \mathrm{~N}_{6} \mathrm{Zn}_{2} \mathrm{Cl}_{2}$ ([M] $]^{-}$), calcd: 1527.9520, found: 1527.9590 (100%); Elemental analysis calcd for $\mathrm{C}_{70} \mathrm{H}_{22} \mathrm{~F}_{20} \mathrm{~N}_{6} \mathrm{Zn}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 54.36, \mathrm{H} 1.56, \mathrm{~N} 5.43$; found: C 54.25, H 1.65, N 5.35 .

Compound 10:

To a solution of TIPS-propynal ($210 \mathrm{mg}, 1.0 \mathrm{mmol}$), phenylpropynal ($122 \mu \mathrm{l}, 1.0 \mathrm{mmol}$) and 5,10-bis(pentafluorophenyl) tripyrrane ($1.12 \mathrm{~g}, 2.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{ml})$ was added methanesulfonic acid (2.5 M diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50 \mu \mathrm{~L}$) at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. The reaction mixture was stirred for 2 h and then DDQ (2.0 g) was added. After further stirring for 1 h at room temperature, the resulting solution was passed through a short basic-alumina column with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:9) and the solvent was removed by a rotary evaporator. The residual mixture was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (1:4) as an eluent. $\mathbf{1 0}(47 \mathrm{mg}$, $3.4 \%), 6(41 \mathrm{mg}, 3.1 \%)$, and $2(25 \mathrm{mg}, 1.7 \%)$ were obtained in this order. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right):-1.00(\mathrm{~m}, 21 \mathrm{H}, \mathrm{TIPS}), 1.41(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 1.53(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-ortho), $4.68(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-meta), $5.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl-para), $8.62(\mathrm{~d}, J=4.6$ $\mathrm{Hz}, 2 \mathrm{H}$, outer $\beta-\mathrm{H}$), $8.68(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta-\mathrm{H}), 8.81(\mathrm{~s}, 4 \mathrm{H}$, outer $\beta-\mathrm{H}), 9.89(\mathrm{~d}, J$ $=4.1 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta-\mathrm{H}$), and $10.03(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta-\mathrm{H}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta=-160.89(\mathrm{~m}, 8 \mathrm{~F}$, meta-F), $-151.14(\mathrm{~m}, 4 \mathrm{~F}$, para- F$),-136.71(\mathrm{~m}, 4 \mathrm{~F}$, ortho- F$)$, and $-136.50\left(\mathrm{~m}, 4 \mathrm{~F}\right.$, ortho-F) ppm; UV / vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }\left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right): 962$ (2900), 846 (4500), 737 (6300), 689 (21000), and 556 (290000) nm; HR-ESI-TOF-Mass (positive-mode) (\%intensity): $\mathrm{C}_{73} \mathrm{H}_{41} \mathrm{~F}_{20} \mathrm{~N}_{6} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd: 1409.2837, found: 1409.2830 (100\%).

Compound 11:

To a suspension of $\mathbf{1 0}$ and excess NaBH_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added MeOH . Resulting mixture was stirred for 1 h and quenched with water. The organic phase was successively washed with water and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of
solvent gave 11 in an almost quantitative yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=3.26(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 18 \mathrm{H}$, TIPS-primary), 2.18-2.91 ($12 \mathrm{H}, \beta-\mathrm{H}$), $4.06(\mathrm{~m}, 3 \mathrm{H}$, TIPS-tertiary), $9.99(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}$, phenyl-para), 10.77 ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-meta), 15.71 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl-ortho), 31.89 (br, 2H, NH), and 31.97 (br, 2H,NH) ppm; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=$ -160.38 (s, 8F, meta-F), -154.40 (m, 2F, para-F), -154.23 (m, 2F, para-F), -139.63 (s, 2F, ortho-F), -138.87 ($\mathrm{s}, 2 \mathrm{~F}$, ortho-F) -138.78 ($\mathrm{s}, 2 \mathrm{~F}$, ortho-F) and -138.64 ($\mathrm{s}, 2 \mathrm{~F}$, ortho-F) ppm; $\mathrm{UV} / \mathrm{vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}\left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right): 687$ (18000), 552 (90000), and 508 (110000) nm; HR-ESI-TOF-Mass (positive-mode) (\%intensity): $\mathrm{C}_{73} \mathrm{H}_{42} \mathrm{~F}_{20} \mathrm{~N}_{6}\left([M]^{+}\right)$, calcd: 1410.2915, found: 1410.2918 (100%).

Compound 12:

To a suspension of 2 and excess NaBH_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added MeOH. Resulting mixture was stirred for 1 h and quenched with water. The organic phase was successively washed with water and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent gave 12, respectively, in an almost quantitative yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=$ 2.08 (br, 2H, $\beta-\mathrm{H}$), 2.78 (br, 2H, $\beta-\mathrm{H}$), 3.90 (s, 2H, NH), 7.61 (d, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 7.84$ (d, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 7.91(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.05(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H})$, and 8.26 (br, 2H, NH) ppm; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=-161.40(\mathrm{~m}, 4 \mathrm{~F}$, meta-F), $-160.63(\mathrm{~m}, 4 \mathrm{~F}$, meta-F), -152.88 (m, 2F, para-F), -151.73 (m, 2F, para-F), -137.70 (d, J = $26.3 \mathrm{~Hz}, 4 \mathrm{~F}$, ortho-F), and -136.93 (d, $J=17.6 \mathrm{~Hz}, 4 \mathrm{~F}$, ortho-F) ppm ; UV/vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\varepsilon$ $\left.\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right): 1052$ (1800), 922 (6200), 869 (10000), 781 (16000), 617 (220000), 452 (29000), 403 (39000), and 314 (30000) nm; HR-ESI-TOF-Mass (negative-mode) (\%intensity): $\mathrm{C}_{76} \mathrm{H}_{57} \mathrm{~F}_{20} \mathrm{~N}_{6}$ ([$\left.\mathrm{M}-\mathrm{H}\right]^{-}$), calcd: 1489.3869, found: 1489.3875 (100%); Elemental analysis calcd for $\mathrm{C}_{76} \mathrm{H}_{58} \mathrm{~F}_{20} \mathrm{~N}_{6}$: C 61.20, H 3.92, N 5.63, F 25.48; found: C 61.39, H 4.06, N 5.57, F 25.75.

III. Figures

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3}.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in CDCl_{3}.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of 4 in CDCl_{3}.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of 6 in CDCl_{3}.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of 7 in CDCl_{3}.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of 8 in CDCl_{3}.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of 10 in CDCl_{3}.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of 11 in CDCl_{3}.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of 12 in CDCl_{3}.

3

10

4

Figure S10. Comparison of chemical shifts of [26]hexaphyrins 3, 6, and 10, and [28]hexaphyrins 4, 7, and 11 . The former exhibit diatropic ring currents and the latter exhibit paratropic ring currents.

Figure S11. UV-visible absorption spectra of 2, 3, 4, and 12 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S12. Crystal structures of 2. Upper: top view, lower: side view. Pentafluorophenyl groups and hydrogen atoms in the side view are omitted. Thermal ellipsoids are scaled to the 50% probability level.

Figure S13. Distances between zinc(II) ions and vinylene bridge of 8 .

Figure S14. Preliminary crystal structure of 12. Thermal ellipsoids are scaled to the 50% probability level. Crystal data: monoclinic, space group $P 2_{1} / \mathrm{n}$ (No. 14), $a=$ $16.210(4), b=20.391(5), c=23.229(6) \AA, \beta=98.095(12)^{\circ}, Z=4, R_{1}=0.152(I>2 \sigma(I))$.

Figure S15. ESI TOS-mass spectrum of 2. Upper: calcd; lower: found.

Figure S16. ESI TOS-mass spectrum of 3. Upper: calcd; lower: found.

Figure S17. ESI TOS-mass spectrum of 4. Upper: calcd; lower: found.

Figure S18. ESI TOS-mass spectrum of 6. Upper: calcd; lower: found.

Figure S19. ESI TOS-mass spectrum of 7. Upper: found; lower: calcd.

Figure S20. ESI TOS-mass spectrum of 8 . Upper: calcd; lower: found.

Figure S21. ESI TOS-mass spectrum of 10. Upper: calcd; lower: found.

Figure S22. ESI TOS-mass spectrum of 11. Upper: found; lower: calcd.

Figure S23. ESI TOS-mass spectrum of 12. Upper: calcd; lower: found.

Scheme S1. A possible reaction mechanism of the cross bridging reaction.

