Cross-bridging Reaction of 5,20-Diethynyl Substituted Hexaphyrins to Vinylene-bridged Hexaphyrins

Masaaki Suzuki and Atsuhiro Osuka* Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

Acknowledgment

This work was partly supported by Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 17350017). MS thanks for JSPS for Research Fellowship for Young Scientists.

Supporting Information

- I. General Information
- II. Experimental Section
- III. Figures

I. General Information

All reagents and solvents were of the commercial reagent grade and were used without further purification except where noted. ¹H NMR spectra were recorded on a JEOL ECA-600 spectrometer, (operating as 600.17 MHz for ¹H and 564.73 MHz for ¹⁹F) using the residual solvent in CDCl₃ and THF-d₈ as the internal reference for ¹H (δ = 7.26 and 3.70 ppm, respectively) and hexafluorobenzene as external reference for ¹⁹F (δ = –162.9 ppm). The spectroscopic grade CH₂Cl₂ was used as solvents for all spectroscopic studies. UV/visible absorption was recorded on a Shimadzu UV-3100 spectrometer. Mass spectra were recorded on a BRUKER microTOF using positive mode ESI-TOF method of acetonitrile solutions. Preparative separations were performed by silica gel gravity column chromatography (Wako gel C-400).

Experimental Section

Compound 2:

То а solution of **TIPS-propynal** (105)0.50 mmol) and μg, 5,10-bis(pentafluorophenyl)tripyrrane (T) (278 mg, 0.5 mmol) in CH₂Cl₂ (22.2 mL) was added methanesulfonic acid (2.5 M diluted with CH2Cl2, 12.5 µL) at 0 °C under nitrogen atmosphere. The reaction mixture was stirred for 2 h and then DDQ (500 mg) was added. After further stirring for 1 h at room temperature, the resulting solution was passed through a short basic-alumina column with $MeOH/CH_2Cl_2$ (1:9) as an eluent and the solvent was removed by a rotary evaporator. The residual mixture was purified by silica gel column chromatography with CH_2Cl_2 /hexane (3:7) as an eluent. Appropriate fractions were collected and evaporated to dryness. Recrystallization from CH₂Cl₂/MeOH afforded **2** (43 mg, 12%). ¹H-NMR (CDCl₃): $\delta =$ -2.23 (s, 4H, inner β-H), -1.92 (br, 2H, NH), 1.51 (d, *J* = 7.3 Hz, 36H, TIPS-primary), 1.58 (m, 6H, TIPS-tertiary), 9.37 (d, J = 4.6 Hz, 4H, outer β -H), and 9.91 (d, J = 4.6 Hz, 4H, outer β -H) ppm; ¹⁹F-NMR (CDCl₃): δ = -163.14 (m, 8F, meta-F), -153.14 (m, 4F, para-F), and -136.95 (d, J = 26.3 Hz, 8F, ortho-F) ppm; UV/vis (CH₂Cl₂): λ_{max} (ϵ [M⁻¹cm⁻¹]): 1066 (25000), 925 (6200), 812 (22000), 744 (22000), 645 (46000) and 579 (260000) nm; HR-ESI-TOF-Mass (positive-mode) (% intensity): $C_{76}H_{57}F_{20}N_6Si_2$ ([M+H]⁺), calcd: 1498.3858, found: 1498.3859 (100%); Crystal data: $C_{76}H_{56}F_{20}N_6Si_2 = 1489$, triclinic, space group *P*-1 (No. 2), a = 8.390 (5), b = 13.865 (9), c = 15.169 (7) Å, $\alpha = 95.39$ (2), $\beta = 103.75$ (2), $\gamma = 96.10$ (2) °, V = 1691 (2) Å³, Z = 1, $D_{calcd} = 1.462$ g/cm³, T = -150 °C, $R_1 = 0.073$ (I > 100 $2\sigma(I)$, $R_W = 0.222$ (all data), GOF = 1.072. CCDC, 622031.

Compound 3:

A solution of **2** (30 mg, 0.020 mmol) in AcOEt (5 mL) was heated at reflux for 1.5 d, followed by evaporation to dryness. The residue was purified by silica gel column chromatography with CH_2Cl_2 /hexane (1:4) as an eluent to give **3** (27mg, 90%).

¹H-NMR (CDCl₃): δ = -2.63 (m, 3H, TIPS-tertiary), -1.67 (d, *J* = 7.3 Hz, 18H, TIPS-primary), -1.20 (s, 21H, TIPS), 8.56 (d, *J* = 4.6 Hz, 2H, outer β -H), 8.72 (m, 6H, outer β -H), 9.92 (d, *J* = 4.6 Hz, 2H, outer β -H), and 10.01 (d, *J* = 4.6 Hz, 2H, outer β -H) ppm; ¹⁹F-NMR (CDCl₃): δ = -161.14 (m, 8F, meta-F), -151.47 (m, 4F, para-F), -137.14 (d, *J* = 26.3 Hz, 2F, ortho-F), -136.96 (d, *J* = 26.3 Hz, 2F, ortho-F), -136.78 (d, *J* = 26.3 Hz, 2F, ortho-F), and -136.70 (d, *J* = 26.3 Hz, 4F, ortho-F) ppm; UV/vis (CH₂Cl₂): λ_{max} (ϵ [M⁻¹cm⁻¹]): 974 (5600), 852 (5000), 753 (12000), 695 (29000), 586 (120000), and 556 (290000) nm; HR-ESI-TOF-Mass (positive-mode) (%intensity): C₇₆H₅₇F₂₀N₆Si₂ ([*M*+H]⁺), calcd: 1489.58, found: 1489.3859 (100%); Elemental analysis calcd for C₇₆H₅₆F₂₀N₆Si₂: C 61.29, H 3.79, N 5.64, F 25.51; found: C 61.29, H 3.66, N 5.70, F 25.55.

Compound 4:

To a suspension of **3** and excess NaBH₄ in CH₂Cl₂ was added MeOH. Resulting mixture was stirred for 1 h and quenched with water. The organic phase was successively washed with water and brine, then dried over Na₂SO₄. Removal of solvent gave **4** in an almost quantitative yield. ¹H-NMR (CDCl₃): 3.26 (d, *J* = 7.2 Hz, 18H, TIPS-primary), 3.19-3.74 (12H, β -H), 3.46 (m, 3H, TIPS-tertiary), 4.34 (d, *J* = 7.2 Hz, 18H, TIPS-primary), 5.33 (m, 3H, TIPS-tertiary), 26.96 (s, 2H, NH), and 27.32 (s, 2H, NH) ppm; ¹⁹F-NMR (CDCl₃): δ = -163.38 (s, 8F, *meta*-F), -154.40 (m, 2F, *para*-F), -154.23 (m, 2F, *para*-F), -139.63 (s, 2F, *ortho*-F), and -139.78 (m, 6F, *ortho*-F) ppm; UV/vis (CH₂Cl₂): λ_{max} (ϵ [M⁻¹cm⁻¹]): 589 (37000), 506 (93000), and 308 (25000) nm; HR-ESI-TOF-Mass (negative-mode) (%intensity): C₇₆H₅₇F₂₀N₆ ([*M*-H]⁻), calcd: 1489.3869, found: 1489.3860 (100%); Elemental analysis calcd for C₇₆H₅₈F₂₀N₆: C 61.20, H 3.92, N 5.63, F 25.48; found: C 61.35, H 3.82, N 5.56, F 25.52.

Compound 6:

To a solution of phenylpropynal (61 µl, 0.50 mmol) and

3

5,10-bis(pentafluorophenyl)tripyrrane (T) (278 g, 0.50 mmol) in CH₂Cl₂ (22 mL) was added methanesulfonic acid (2.5 M diluted with CH₂Cl₂, 12.5 µL) at 0 °C under nitrogen atmosphere. The reaction mixture was stirred for 2 h and then DDQ (500 mg) was added. After further stirring for 1 h at room temperature, the resulting solution was passed through a short basic-alumina column with $MeOH/CH_2Cl_2$ (1:9) and solvent was removed by a rotary evaporator. The residual mixture was purified by silica gel column chromatography with $CH_2Cl_2/hexane$ (1:4) as an eluent. Appropriate fractions were collected and evaporated to dryness. Recrystallization from hexane afforded 6 (15 mg, 4.5%). ¹H-NMR (CDCl₃): δ = 1.17 (s, 2H, inner NH), 1.31 (d, J = 8.8 Hz, 2H, phenyl-ortho), 4.61 (t, J = 8.7 Hz, 2H, phenyl-meta), 4.71 (d, J = 8.7 Hz, 2H, phenyl-ortho), 5.25 (t, J = 7.3 Hz, 1H, phenyl-para), 6.09 (t, J = 8.7 Hz, 2H, phenyl-meta), 6.30 (d, *J* = 7.3 Hz, 1H, phenyl-*para*), 8.68 (d, *J* = 4.6 Hz, 2H, outer β-H), 8.74 (d, J = 4.1 Hz, 2H, outer β -H), 8.84 (s, 4H, outer β -H), 10.00 (d, J = 4.6 Hz, 2H, outer β -H), and 10.14 (d, J = 4.6 Hz, 2H, outer β -H) ppm; ¹⁹F-NMR (CDCl₃): $\delta = -160.88$ (m, 8F, *meta*-F), -151.06 (s, 4F, *para*-F), -136.68 (d, *J* = 26.3 Hz, 2F, *ortho*-F), -136.42 (d, *J* = 17.6 Hz, 2F, ortho-F), -136.34 (d, J = 17.6 Hz, 2F, ortho-F), and -136.15 (d, J = 17.6 Hz, 2F, ortho-F) ppm; UV/vis (CH₂Cl₂): λ_{max} (ϵ [M⁻¹cm⁻¹]): 962 (3700), 845 (5100), 743 (6000), 691 (30000), and 553 (320000) nm; HR-ESI-TOF-Mass (positive-mode) (%intensity): C₇₀H₂₅F₂₀N₆ ([M+H]⁺), calcd: 1329.1816, found: 1329.1818 (100%); Elemental analysis calcd for C₇₀H₂₄F₂₀N₆: C 63.26, H 1.82, N 6.32, F 28.59; found: C 63.54, H 1.66, N 6.39, F 28.54.

Compound 7:

To a suspension of **6** and excess NaBH₄ in CH₂Cl₂ was added MeOH. Resulting mixture was stirred for 1 h and quenched with water. The organic phase was successively washed with water and brine, then dried over Na₂SO₄. Removal of solvent gave **7** in an almost quantitative yield. ¹H-NMR (CDCl₃): δ = 2.16-2.94 (12H, β -H), 8.71 (t, *J* = 7.2 Hz, 1H, phenyl-*para*), 9.06 (t, *J* = 7.2 Hz, 2H, phenyl-*meta*), 9.97 (t, *J*

4

= 7.8 Hz, 1H, phenyl-*para*) 10.78 (t, *J* = 7.2 Hz, 2H, phenyl-*meta*), 11.71 (d, *J* = 6.6 Hz, 2H, phenyl-*ortho*), 15.86 (d, *J* = 7.2 Hz, 2H, phenyl-*ortho*), 31.61 (br, 4H, NH) ppm; ¹⁹F-NMR (CDCl₃): δ = -160.26 (m, 8F, *meta*-F), -154.09 (m, 4F, *para*-F), -139.42 (s, 2F, *ortho*-F), -138.64 (s, 2F, *ortho*-F), and -138.48 (s, 4F, *ortho*-F) ppm; UV/vis (CH₂Cl₂): λ_{max} (ε [M⁻¹cm⁻¹]): 567 (5900, sh), 508 (120000), and 304 (48000) nm; HR-ESI-TOF-Mass (negative-mode) (% intensity): C₇₀H₂₅F₂₀N₆ ([*M*-H]⁻), calcd: 1329.1827, found: 1329.1822 (100%); Elemental analysis calcd for C₇₀H₂₆F₂₀N₆: C 63.17, H 1.97, N 6.31, F 28.55; found: C 62.91, H 1.86, N 6.11, F 28.60.

Compound 8:

To a solution of 6 (20.5 mg, 0.0154 mmol) and $ZnCl_2$ (1 g) in CH_2Cl_2 (7 mL) was added MeOH (3 mL) and the resulting solution was stirred for 5 h at room temperature under nitrogen atmosphere. Reaction mixture was diluted with 20 mL of CH₂Cl₂ and passed through silica gel column with MeOH in CH_2Cl_2 (5%) as an eluent. After removal of solvent, the residual mixture was recrystallized from CH₂Cl₂/CHCl₃ to get Zn-complex **8** (17.4 mg, 74%). ¹H-NMR (THF-d₈): δ = 2.21 (d, J = 8.7 Hz, 2H, phenyl-*ortho*), 3.43 (d, *J* = 8.7 Hz, 2H, phenyl-*ortho*), 4.58 (t, *J* = 8.7 Hz, 2H, phenyl-*meta*), 5.08 (t, *J* = 7.3 Hz, 1H, phenyl-*para*), 5.71 (t, *J* = 7.8 Hz, 2H, phenyl-*meta*), 6.10 (d, *J* = 7.3 Hz, 1H, phenyl-*para*), 9.22 (d, J = 4.6 Hz, 1H, outer β -H), 9.26 (d, J = 4.6 Hz, 1H, outer β -H), 9.28 (d, J = 4.1 Hz, 1H, outer β -H), 9.33 (d, J = 4.6 Hz, 1H, outer β -H), 9.54 (d, J = 4.6 Hz, 1H, outer β -H), 9.75 (m, 2H, outer β -H), 9.87 (d, J = 4.6 Hz, 2H, outer β -H), 11.18 (d, J = 5.0 Hz, 1H, outer β -H) 11.24 (d, J = 4.6 Hz, 1H, outer β -H) 11.28 (d, J = 4.6 Hz, 1H, outer β -H) and 11.37 (d, J = 5.0 Hz, 1H, outer β -H) ppm; ¹⁹F-NMR (THF-d₈): $\delta = -163.95$ (m, 8F, meta-F), -154.23 (m, 4F, para-F), -139.50 (d, J = 26.3 Hz, 1F, ortho-F), -138.91 (d, J = 26.3 Hz, 1F, ortho-F), -138.70 (d, J = 17.6 Hz, 2F, ortho-F), -138.39 (d, J = 17.5 Hz, 1F, ortho-F), -138.25 (d, J = 17.6 Hz, 1F, ortho-F) and -138.07 (s, 2F, ortho-F) ppm; UV/vis (CH₂Cl₂): λ_{max} (ϵ [M⁻¹cm⁻¹]): 902 (4800), 821 (22000), 625 (72000), 581 (390000), and 399 (230000) nm; HR-ESI-TOF-Mass (negative-mode) (%intensity): $C_{70}H_{22}F_{20}N_6Zn_2Cl_2$ ([*M*]⁻), calcd: 1527.9520, found: 1527.9590 (100%); Elemental analysis calcd for $C_{70}H_{22}F_{20}N_6Zn_2Cl_2 \cdot H_2O$: C 54.36, H 1.56, N 5.43; found: C 54.25, H 1.65, N 5.35.

Compound 10:

To a solution of TIPS-propynal (210 mg, 1.0 mmol), phenylpropynal (122 µl, 1.0 mmol) and 5,10-bis(pentafluorophenyl) tripyrrane (1.12 g, 2.0 mmol) in CH₂Cl₂ (90 ml) was added methanesulfonic acid (2.5 M diluted with CH₂Cl₂, 50 µL) at 0 °C under nitrogen atmosphere. The reaction mixture was stirred for 2 h and then DDQ (2.0 g) was added. After further stirring for 1 h at room temperature, the resulting solution was passed through a short basic-alumina column with MeOH/CH₂Cl₂ (1:9) and the solvent was removed by a rotary evaporator. The residual mixture was purified by silica gel column chromatography with CH_2Cl_2 /hexane (1:4) as an eluent. **10** (47 mg, 3.4%), 6 (41 mg, 3.1%), and 2 (25 mg, 1.7%) were obtained in this order. ¹H-NMR (CDCl₃): -1.00 (m, 21H, TIPS), 1.41 (s, 2H, NH), 1.53 (d, J = 8.3 Hz, 2H, phenyl-ortho), 4.68 (t, J = 8.2 Hz, 2H, phenyl-meta), 5.29 (t, J = 7.3 Hz, 1H, phenyl-para), 8.62 (d, J = 4.6 Hz, 2H, outer β-H), 8.68 (d, J = 4.6 Hz, 2H, outer β-H), 8.81 (s, 4H, outer β-H), 9.89 (d, J= 4.1 Hz, 2H, outer β -H), and 10.03 (d, J = 4.6 Hz, 2H, outer β -H) ppm; ¹⁹F-NMR $(CDCl_3)$: $\delta = -160.89$ (m, 8F, meta-F), -151.14 (m, 4F, para-F), -136.71 (m, 4F, ortho-F), and -136.50 (m, 4F, ortho-F) ppm; UV/vis (CH₂Cl₂): λ_{max} (ϵ [M⁻¹cm⁻¹]): 962 (2900), 846 (4500), 737 (6300), 689 (21000), and 556 (290000) nm; HR-ESI-TOF-Mass (positive-mode) (% intensity): $C_{73}H_{41}F_{20}N_6Si$ ([M+H]⁺), calcd: 1409.2837, found: 1409.2830 (100%).

Compound 11:

To a suspension of **10** and excess $NaBH_4$ in CH_2Cl_2 was added MeOH. Resulting mixture was stirred for 1 h and quenched with water. The organic phase was successively washed with water and brine, then dried over Na_2SO_4 . Removal of

solvent gave **11** in an almost quantitative yield. ¹H-NMR (CDCl₃): δ = 3.26 (d, *J* = 7.2 Hz, 18H, TIPS-primary), 2.18-2.91 (12H, β-H), 4.06 (m, 3H, TIPS-tertiary), 9.99 (t, *J* = 7.8 Hz, 1H, phenyl-*para*), 10.77 (t, *J* = 7.2 Hz, 2H, phenyl-meta), 15.71 (d, *J* = 7.2 Hz, 2H, phenyl-*ortho*), 31.89 (br, 2H, NH), and 31.97 (br, 2H, NH) ppm; ¹⁹F-NMR (CDCl₃): δ = -160.38 (s, 8F, *meta*-F), -154.40 (m, 2F, *para*-F), -154.23 (m, 2F, *para*-F), -139.63 (s, 2F, *ortho*-F), -138.87 (s, 2F, *ortho*-F) -138.78 (s, 2F, *ortho*-F) and -138.64 (s, 2F, *ortho*-F) ppm; UV/vis (CH₂Cl₂): λ_{max} (ε [M⁻¹cm⁻¹]): 687 (18000), 552 (90000), and 508 (110000) nm; HR-ESI-TOF-Mass (positive-mode) (%intensity): C₇₃H₄₂F₂₀N₆ ([M]⁺), calcd: 1410.2915, found: 1410.2918 (100%).

Compound 12:

To a suspension of **2** and excess NaBH₄ in CH₂Cl₂ was added MeOH. Resulting mixture was stirred for 1 h and quenched with water. The organic phase was successively washed with water and brine, then dried over Na₂SO₄. Removal of solvent gave **12**, respectively, in an almost quantitative yield. ¹H-NMR (CDCl₃): δ = 2.08 (br, 2H, β -H), 2.78 (br, 2H, β -H), 3.90 (s, 2H, NH), 7.61 (d, *J* = 4.6 Hz, 2H, β -H), 7.84 (d, *J* = 4.6 Hz, 2H, β -H), 7.91 (d, *J* = 5.0 Hz, 2H, β -H), 8.05 (d, *J* = 4.6 Hz, 2H, β -H), and 8.26 (br, 2H, NH) ppm; ¹⁹F-NMR (CDCl₃): δ = -161.40 (m, 4F, *meta*-F), -160.63 (m, 4F, *meta*-F), -152.88 (m, 2F, *para*-F), -151.73 (m, 2F, *para*-F), -137.70 (d, *J* = 26.3 Hz, 4F, *ortho*-F), and -136.93 (d, *J* = 17.6 Hz, 4F, *ortho*-F) ppm; UV/vis (CH₂Cl₂): λ_{max} (ϵ [M⁻¹cm⁻¹]): 1052 (1800), 922 (6200), 869 (10000), 781 (16000), 617 (220000), 452 (29000), 403 (39000), and 314 (30000) nm; HR-ESI-TOF-Mass (negative-mode) (%intensity): C₇₆H₅₇F₂₀N₆ ([M-H]⁻), calcd: 1489.3869, found: 1489.3875 (100%); Elemental analysis calcd for C₇₆H₅₈F₂₀N₆: C 61.20, H 3.92, N 5.63, F 25.48; found: C 61.39, H 4.06, N 5.57, F 25.75.

Figure S2. ¹H NMR spectrum of 3 in CDCl₃.

Figure S3. ¹H NMR spectrum of **4** in CDCl₃.

Figure S4. ¹H NMR spectrum of **6** in CDCl₃.

Figure S5. ¹H NMR spectrum of 7 in CDCl₃.

Figure S6. ¹H NMR spectrum of 8 in CDCl₃.

Figure S7. ¹H NMR spectrum of **10** in CDCl₃.

Figure S8. ¹H NMR spectrum of **11** in CDCl₃.

Figure S9. ¹H NMR spectrum of **12** in CDCl₃.

Figure S10. Comparison of chemical shifts of [26]hexaphyrins **3**, **6**, and **10**, and [28]hexaphyrins **4**, **7**, and **11**. The former exhibit diatropic ring currents and the latter exhibit paratropic ring currents.

Figure S11. UV-visible absorption spectra of **2**, **3**, **4**, and **12** in CH₂Cl₂.

Figure S12. Crystal structures of **2**. Upper: top view, lower: side view. Pentafluorophenyl groups and hydrogen atoms in the side view are omitted. Thermal ellipsoids are scaled to the 50% probability level.

Figure S13. Distances between zinc(II) ions and vinylene bridge of 8.

Figure S14. Preliminary crystal structure of **12**. Thermal ellipsoids are scaled to the 50% probability level. Crystal data: monoclinic, space group $P2_1/n$ (No. 14), a = 16.210(4), b = 20.391(5), c = 23.229(6) Å, $\beta = 98.095(12)$ °, Z = 4, $R_1 = 0.152$ ($I > 2\sigma(I)$).

Figure S15. ESI TOS-mass spectrum of **2**. Upper: calcd; lower: found.

Figure S16. ESI TOS-mass spectrum of **3**. Upper: calcd; lower: found.

Figure S17. ESI TOS-mass spectrum of 4. Upper: calcd; lower: found.

Figure S18. ESI TOS-mass spectrum of 6. Upper: calcd; lower: found.

Figure S19. ESI TOS-mass spectrum of 7. Upper: found; lower: calcd.

Figure S20. ESI TOS-mass spectrum of 8. Upper: calcd; lower: found.

Figure S21. ESI TOS-mass spectrum of **10**. Upper: calcd; lower: found.

Figure S22. ESI TOS-mass spectrum of **11**. Upper: found; lower: calcd.

Figure S23. ESI TOS-mass spectrum of **12**. Upper: calcd; lower: found.

Scheme S1. A possible reaction mechanism of the cross bridging reaction.