Supporting Information

Titanium and Zirconium Complexes for Polymerization of Propylene and Cyclic Esters

Florina Gornshtein, Moshe Kapon, Mark Botoshansky, and Moris S. Eisen*

Department of Chemistry and Institute of Catalysis Science and Technology,

Technion - Israel Institute of Technology, Haifa 32000, Israel

Eyring plots

Eyring equation:
$$k = (k_{_B}T/h) \cdot e^{-\Delta H^{\ddagger}/RT} \cdot e^{\Delta S^{\ddagger}/R}$$

k values were calculated using line shape analysis

Derivation of Equation 5 – Calculative method for finding the number of the moles of living species in a mixture of living and non-living species:

Definitions:

M_n - number-average molecular weight

m_{pp} - polymer's mass

 n_{pp} - moles of polymer chains

 R_i - rate of monomer insertion

 R_t - rate of termination

t - polymerization time

n_{cat} - moles of catalyst

D.P - degree of polymerization

- 1. $M_n = m_{pp}/n_{pp}$
- 2. $R_i = n_{\text{propylene}}/t$
- 3. $R_t = n_{pp}/t$

Living polymerization - time dependencies:

 $R_i = constant$

 $m_{pp} \propto t\,$

 $R_t = 0$

 $M_{\text{n}} \propto t$

$$n_{pp} = n_{cat}$$

 $D.P \propto t$

Non-living polymerization - time dependencies:

$$R_i = \text{constant}$$
 $m_{pp} \propto t$

$$R_t = \text{constant} \neq 0$$
 $M_n = \text{constant}$

$$n_{pp} = m_{pp}/M_n \propto t$$
 D.P = constant

In a mixture containing both living (l) and non-living (n) species the following relationships can be written:

4.
$$n_{pp}(mix) = n_1 + n_n$$

5.
$$m_{pp}(mix) = MW_{monomer}t(R_{i1} + R_{in}) = MW_{monomer}tR_{itot}$$

6.
$$M_n(mix) = m_{pp}(mix)/n_{pp}(mix)$$

Substitution of Eq. 6 with Eq. 4 and Eq. 5 yields:

7.
$$M_n(mix) = MW_{monomer}tR_{itot}/(n_l + n_n)$$

Expressing n_n in terms of M_{nn} and R_{in} (Eq. 1 and Eq. 2, respectively) gives:

8.
$$M_n(mix) = MW_{monomer}tR_{itot}/(n_l + (MW_{monomer}tR_{in})/M_{nn})$$

If $t\rightarrow \infty$ then n_1 is negligible and Eq. 8 can be written as:

9.
$$R_{in}/M_{nn} = R_{itot}/M_{n(t\to\infty)}$$

Substitution of the R_{in}/M_{nn} ratio in Eq. 8 with that found in Eq. 9 gives the expression from which n_1 (moles of living species) can be isolated:

10.
$$\mathbf{M_n} = \mathbf{MW_{monomer}} t \mathbf{R}_i / (\mathbf{n_l} + (\mathbf{MW_{monomer}} t \mathbf{R}_i) / \mathbf{M_{n(t \to \infty)}})$$