Supporting Information

Titanium and Zirconium Complexes for Polymerization of Propylene and Cyclic

Esters

Florina Gornshtein, Moshe Kapon, Mark Botoshansky, and Moris S. Eisen*

Department of Chemistry and Institute of Catalysis Science and Technology,

Eyring plots

Complex 3

Complex 4

Eyring equation: $k=\left(k_{B} T / h\right) \cdot e^{-\Delta H^{\ddagger} / R T} \cdot e^{\Delta S^{\ddagger} / R}$
k values were calculated using line shape analysis

Derivation of Equation 5 - Calculative method for finding the number of the moles

 of living species in a mixture of living and non-living species:Definitions:
M_{n} - number-average molecular weight
m_{pp} - polymer's mass
n_{pp} - moles of polymer chains
R_{i} - rate of monomer insertion
R_{t} - rate of termination
t - polymerization time
$\mathrm{n}_{\text {cat }}$ - moles of catalyst
D.P - degree of polymerization

1. $\mathrm{M}_{\mathrm{n}}=\mathrm{m}_{\mathrm{pp}} / \mathrm{n}_{\mathrm{pp}}$
2. $R_{i}=\mathrm{n}_{\text {propylene }} / \mathrm{t}$
3. $R_{t}=\mathrm{n}_{\mathrm{pp}} / \mathrm{t}$

Living polymerization - time dependencies:

$R_{i}=$ constant
$\mathrm{m}_{\mathrm{pp}} \propto \mathrm{t}$
$R_{t}=0$
$M_{n} \propto t$
$\mathrm{n}_{\mathrm{pp}}=\mathrm{n}_{\mathrm{cat}}$
D. $P \propto t$

Non-living polymerization - time dependencies:
$R_{i}=$ constant $\quad \mathrm{m}_{\mathrm{pp}} \propto \mathrm{t}$
$R_{t}=$ constant $\neq 0 \quad \mathrm{M}_{\mathrm{n}}=$ constant
$\mathrm{n}_{\mathrm{pp}}=\mathrm{m}_{\mathrm{pp}} / \mathrm{M}_{\mathrm{n}} \propto \mathrm{t} \quad$ D. $\mathrm{P}=\mathrm{constant}$

In a mixture containing both living (l) and non-living (n) species the following relationships can be written:
4. $\mathrm{n}_{\mathrm{pp}}(\mathrm{mix})=\mathrm{n}_{1}+\mathrm{n}_{\mathrm{n}}$
5. $\mathrm{m}_{\mathrm{pp}}(\operatorname{mix})=\mathrm{MW}_{\text {monomer }} \mathrm{t}\left(R_{\text {il }}+R_{\text {in }}\right)=\mathrm{MW}_{\text {monomer }} \mathrm{t} R_{\text {itot }}$
6. $\mathrm{M}_{\mathrm{n}}(\mathrm{mix})=\mathrm{m}_{\mathrm{pp}}(\operatorname{mix}) / \mathrm{n}_{\mathrm{pp}}(\operatorname{mix})$

Substitution of Eq. 6 with Eq. 4 and Eq. 5 yields:
7. $\mathrm{M}_{\mathrm{n}}(\mathrm{mix})=\mathrm{MW}_{\text {monomer }} R_{\text {itot }} /\left(\mathrm{n}_{1}+\mathrm{n}_{\mathrm{n}}\right)$

Expressing n_{n} in terms of M_{n} and $R_{\text {in }}$ (Eq. 1 and Eq. 2, respectively) gives:
8. $\mathrm{M}_{\mathrm{n}}(\mathrm{mix})=\mathrm{MW}_{\text {monomer }} \mathrm{t} R_{\text {itot }} /\left(\mathrm{n}_{1}+\left(\mathrm{MW}_{\text {monomer }} \mathrm{t} R_{\text {in }}\right) / \mathrm{M}_{\mathrm{nn}}\right)$

If $t \rightarrow \infty$ then n_{1} is negligible and Eq. 8 can be written as:
9. $R_{i n} / \mathrm{M}_{\mathrm{nn}}=R_{\text {itot }} / \mathrm{M}_{\mathrm{n}(\mathrm{t} \rightarrow \infty)}$

Substitution of the $R_{i n} / \mathrm{M}_{\mathrm{nn}}$ ratio in Eq. 8 with that found in Eq. 9 gives the expression from which n_{1} (moles of living species) can be isolated:

$$
\text { 10. } \mathbf{M}_{\mathbf{n}}=\mathbf{M W}_{\text {monomer }} t \boldsymbol{R}_{i} /\left(\mathbf{n}_{1}+\left(\mathbf{M W}_{\text {monomer }} t \boldsymbol{R}_{i}\right) / \mathbf{M}_{\mathbf{n}(\mathrm{t} \rightarrow \infty)}\right)
$$

