SUPPORTING INFORMATION

Synthesis of Tricyclic Heterocycles via a Tandem Aryl Alkylation/Heck Coupling Sequence
Dino Alberico, Alena Rudolph, and Mark Lautens*
Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada, M5S 3H6

Table of Contents

General Experimental page S2
Synthesis of Aryl Iodides page S2
Alkylation/Alkenylation Reactions page S16
Synthesis of Mescaline Analogue 2 page S31
References page S38
NMR Spectra
page S39

General Experimental

The following includes general experimental procedures, specific details for representative reactions, isolation and spectroscopic information for new compounds. Microwave-assisted reactions were preformed in an Emrys Liberator model from Biotage (formerly Personal Chemistry) using Biotage Microwave Vials ($2-5 \mathrm{~mL}$). Microwave irradiation time was conducted using ramp time and hold time at the final temperature. ${ }^{1} \mathrm{H}$ NMR spectra were measured on spectrometers at 400 MHz or $300 \mathrm{MHz} .{ }^{13} \mathrm{C}$ NMR spectra were measured on spectrometers at 100 MHz or $75 \mathrm{MHz} .{ }^{1} \mathrm{H}$ spectra were referenced to tetramethylsilane (TMS, 0 ppm) or solvent hydrogens (3.31 ppm for $\mathrm{CD}_{3} \mathrm{OD}$ and 2.50 for $\mathrm{DMSO}-\mathrm{d}_{6}$). ${ }^{13} \mathrm{C}$ spectra were referenced to solvent carbons (77.23 ppm for $\mathrm{CDCl}_{3}, 49.86 \mathrm{ppm}$ for $\mathrm{CD}_{3} \mathrm{OD}$ or 39.43 ppm for $\mathrm{DMSO}-\mathrm{d}_{6}$).

Diethyl ether, toluene, and tetrahydofuran (THF) were distilled under nitrogen from $\mathrm{Na} /$ benzophenone immediately prior to use. 1,2-Dimethoxyethane (DME), benzene and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled under nitrogen from CaH_{2} immediately prior to use. All other solvents were used as received. Triphenylphosphine was recrystallized using hexane. Reactions were performed under an atmosphere of nitrogen.

Synthesis of Aryl Iodides

1-Iodo-3,5-dimethoxybenzene (52).

To a - $78{ }^{\circ} \mathrm{C}$ solution of 1-bromo-3,5-dimethoxybenzene ($10.0 \mathrm{~g}, 46.1 \mathrm{mmol}, 1$ equiv) in THF (60 mL) was added dropwise tert-butyllithium ($61 \mathrm{~mL}, 104 \mathrm{mmol}, 1.7 \mathrm{M}$ in pentane, 2.25 equiv). The reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$ then iodine ($35.1 \mathrm{~g}, 138 \mathrm{mmol}, 3$ equiv) in THF (70 mL)
was added via cannula. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h then warmed to rt , quenched with water $(100 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$. The organic layer was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, brine, dried with anhydrous MgSO_{4}, filtered and concentrated. The crude mixture was purified by flash chromatography using $10 \% \mathrm{EtOAc} /$ hexanes as eluant to yield $52(11.8 \mathrm{~g}, 98 \%)$ as a white solid, $\mathrm{mp}=74-75{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.69$ on silica gel $(10 \%$ EtOAc/hexanes). IR (neat) $v=1577,1425,1294,1199,1164,1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 6.85(\mathrm{~d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.40(\mathrm{t}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 3.76(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 161.2,116.0,100.8,94.3,55.7$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{IO}_{2}[\mathrm{M}]^{+}$263.9654, found 263.9647.

5-Iodobenzene-1,3-diol (53). ${ }^{1}$

A solution of $52(8.30 \mathrm{~g}, 31.4 \mathrm{mmol}, 1$ equiv) and $\mathrm{HI}(47 \mathrm{wt} . \%$ in water, 75 mL$)$ was refluxed for 24 h . The solution was cooled to rt and diluted with water $(100 \mathrm{~mL})$ followed by the addition of ether (100 mL). The organic layer was separated and washed with 1 M sodium thiosulfate solution $(2 \times 75 \mathrm{~mL})$ and once with water $(50 \mathrm{~mL})$. After drying with MgSO_{4}, removal of the solvent gave a crude oil that was purified by flash chromatography using $25 \% \mathrm{EtOAc} / \mathrm{hexanes}$ yielding $53(6.90 \mathrm{~g}, 93 \%)$ as a white solid, $\mathrm{mp}=93-95{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.21$ on silica gel $(25 \%$ EtOAc/hexanes). Spectral data match the previously reported data. ${ }^{1}$

1,3-Bis(2-bromoethoxy)-5-iodobenzene (5).

To a solution of $53(8.00 \mathrm{~g}, 33.9 \mathrm{mmol}, 1$ equiv) and 1,2-dibromoethane ($44 \mathrm{~mL}, 508 \mathrm{mmol}, 15$ equiv) in acetone (70 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(23.4 \mathrm{~g}, 170 \mathrm{mmol}$, 5 equiv). The mixture was stirred at reflux for 36 h . The reaction was cooled to rt and filtered through celite. Distillation of excess 1,2-dibromoethane gave a crude oil that was purified by flash chromatography using 10% EtOAc/hexanes as eluant yielding $5(9.30 \mathrm{~g}, 62 \%)$ as a white solid, $\mathrm{mp}=97-98^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.75$ on silica gel (25\% EtOAc/hexanes). IR (neat) $v=1421,1168,1052 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\left.\mathrm{CDCl}_{3}\right) \delta 6.89(\mathrm{~s}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{t}, 4 \mathrm{H}, J=6.0 \mathrm{~Hz})\right), 3.61(\mathrm{t}, 4 \mathrm{H}, J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,117.4,102.3,94.3,68.3,28.9$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{IO}_{2}[\mathrm{M}]^{+}$ 447.8161 , found 447.8170 .

1,3-Bis(2-bromo-1-tert-butoxyethoxy)-5-iodobenzene (16)

tert-Butyl vinyl ether ($0.51 \mathrm{~mL}, 3.9 \mathrm{mmol}$, 2 equiv) was added to a solution of NBS ($686 \mathrm{mg}, 3.9$ mmol, 2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 45 minutes. A solution of $53\left(500 \mathrm{mg}, 2.1 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and DMF (0.5 mL) was added to the reaction mixture at $-40^{\circ} \mathrm{C}$ and the mixture was further stirred at this temperature for 2 h . The mixture was washed successively with $5 \% \mathrm{aq} \mathrm{NaOH}(5 \mathrm{~mL})$, water (5 mL) and brine (5 mL). The organic layer was dried with anhydrous MgSO_{4}, filtered and
concentrated. The crude product was purified by flash chromatography using $5 \% \mathrm{EtOAc} /$ hexanes eluant to afford $\mathbf{1 6}(375 \mathrm{mg}, 30 \%)$ as a yellow oil, $1: 1$ mixture of diastereomers. $\mathrm{R}_{\mathrm{f}}=0.73$ on silica gel ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $v=1587,1568,1471,1431,1394,1367,1263,1241$, 1177, 1124, 1060, 1044, 1011, 968, 940, 921, $827 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.00(\mathrm{~d}$, $4 \mathrm{H}, J=1.9 \mathrm{~Hz}), 6.64(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.62(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 5.45(\mathrm{dd}, 2 \mathrm{H}, J=1.7,4.2 \mathrm{~Hz})$, $5.43(\mathrm{dd}, 2 \mathrm{H}, J=1.7,4.2 \mathrm{~Hz}), 3.47(\mathrm{dd}, 4 \mathrm{H}, J=4.2,10.7 \mathrm{~Hz}), 3.40(\mathrm{dd}, 4 \mathrm{H}, J=4.2,10.7 \mathrm{~Hz})$, $1.26(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.1,157.1,120.8,107.5,107.4,97.2,94.3,76.7$, 32.4, 28.7; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{Br}_{2} \mathrm{IO}_{4}[\mathrm{M}]^{+}$591.9321, found 591.9319.

3-(2-Bromoethoxy)-5-iodophenol (54).

To a solution of $53(2.75 \mathrm{~g}, 11.6 \mathrm{mmol}, 1$ equiv) and 1,2-dibromoethane ($7.0 \mathrm{~mL}, 81.6 \mathrm{mmol}, 7$ equiv) in acetone (20 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.10 \mathrm{~g}, 15.1 \mathrm{mmol}$, 1.3 equiv). The mixture was stirred at reflux for 24 h . The reaction was cooled to room temperature and filtered through celite. Distillation of excess 1,2-dibromoethane gave a crude oil that was purified by flash chromatography using $10 \% \mathrm{EtOAc} /$ hexanes as eluant yielding the desired product ($1.33 \mathrm{~g}, 34 \%$) as a white solid, $m p=139-141^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.39$ on silica gel ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $v=$ 3385, 1596, 1493, 1279, $1148 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.83(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{t}, 1 \mathrm{H}, J=$ $2.2 \mathrm{~Hz}), 4.89(\mathrm{brs}, 1 \mathrm{OH}), 4.21(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 3.59(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.8,157.2,118.3,116.8,102.6,94.3,68.2,28.9 ;$ HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrIO}_{2}[\mathrm{M}]^{+}$ 341.8752, found 341.8752 .

1-(2-Bromoethoxy)-3-(3-bromopropoxy)-5-iodobenzene (18).

To a solution of $54(1.88 \mathrm{~g}, 5.48 \mathrm{mmol}, 1$ equiv) and 1,2-dibromopropane ($5.6 \mathrm{~mL}, 54.8 \mathrm{mmol}$, 10 equiv) in acetone (15 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.27 \mathrm{~g}, 16.4 \mathrm{mmol}, 3$ equiv). The mixture was stirred at reflux for 36 h . The reaction was cooled to room temperature and filtered through celite. Distillation of excess 1,2-dibromopropane gave a crude oil that was purified by flash chromatography using 10% EtOAc/hexanes as eluant yielding 18 ($1.00 \mathrm{~g}, 40 \%$) as a white solid, $\mathrm{mp}=63-64{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.50\left(50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $)$. IR (neat) $v=1574,1434,1277,1163 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 4.24(\mathrm{t}, 2 \mathrm{H}, J=$ 6.2 Hz), $4.06(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.61(\mathrm{t}, 2 \mathrm{H}, J=2.7 \mathrm{~Hz}), 3.56(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.29$ (quint, $2 \mathrm{H}, J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.4,159.7,117.4,116.9,102.1,94.3,68.2$, 65.8, 32.3, 29.9, 28.9; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{IO}_{2}[\mathrm{M}]^{+} 461.8333$, found 461.8327 .

1,3-Bis(3-bromopropoxy)-5-iodobenzene (20).

To a solution of $53(1.24 \mathrm{~g}, 5.25 \mathrm{mmol}, 1$ equiv) and 1,2-dibromopropane ($5.3 \mathrm{~mL}, 52.5 \mathrm{mmol}$, 10 equiv) in acetone (15 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(3.63 \mathrm{~g}, 26.3 \mathrm{mmol}, 5$ equiv). The mixture was stirred at reflux for 36 h . The reaction was cooled to room temperature and filtered through celite. Distillation of excess 1,2-dibromopropane gave a crude oil that was purified by flash chromatography using 10% EtOAc/hexanes as eluant yielding 20 ($1.46 \mathrm{~g}, 58 \%$) as a white solid,
$\mathrm{mp}=62{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.40$ (10% EtOAc/hexanes). IR (neat) $v=1593,1434,1166,1053 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 6.87(\mathrm{~d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.42(\mathrm{t}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 4.06(\mathrm{t}, 4 \mathrm{H}, J=5.8$ Hz), $3.58\left(\mathrm{t}, 4 \mathrm{H}, J=6.4 \mathrm{~Hz}\right.$), 2.29 (quint, $4 \mathrm{H}, J=6.4 \mathrm{~Hz}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.3$, 116.8, 101.8, 94.3, 65.8, 32.4, 29.9; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{IO}_{2}[\mathrm{M}]^{+}$475.8477, found 475.8483.

1,3-Bis(4-bromobutoxy)-5-iodobenzene (23).

53

23

To a solution of 53 ($3.5 \mathrm{~g}, 14.8 \mathrm{mmol}, 1$ equiv) and 1,4-dibromobutane ($27 \mathrm{~mL}, 222 \mathrm{mmol}, 15$ equiv) in methyl ethyl ketone (30 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(10.3 \mathrm{~g}, 74.1 \mathrm{mmol}$, 5 equiv). The mixture was stirred at reflux for 24 h . The reaction was cooled to room temperature and filtered through celite. Distillation of excess 1,4-dibromobutane gave a crude oil that was purified by flash chromatography using 10% EtOAc/hexanes as eluant yielding $23(3.67 \mathrm{~g}, 50 \%)$ as a white solid, $\mathrm{mp}=51-53{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.48$ (25% EtOAc/hexanes). IR (neat) $v=1592,1433,1168,1050 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.89(\mathrm{~d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.37(\mathrm{t}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 3.93(\mathrm{t}, 4 \mathrm{H}, J$ $=6.0 \mathrm{~Hz}), 3.48(\mathrm{t}, 4 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.98-2.10(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.97(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 160.5,116.5,101.6,94.3,67.2,33.6,29.5,27.9 ;$ HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{IO}_{2}[\mathrm{M}]^{+}$ 503.8778, found 503.8785 .

1,3-Bis-bromomethyl-5-iodobenzene (55).

A mixture of 3,5-dimethyliodobenzene $(5.00 \mathrm{~g}, 21.5 \mathrm{mmol}, 1$ equiv), NBS ($8.44 \mathrm{~g}, 47.4 \mathrm{mmol}$, 2.2 equiv) and $\operatorname{AIBN}(0.71 \mathrm{~g}, 4.3 \mathrm{mmol}, 0.2$ equiv) was refluxed in benzene (150 mL) for 6 h . The reaction mixture was cooled to room temperature, diluted with ether (150 mL) and washed with water $(150 \mathrm{~mL})$. The aqueous layer was extracted with ether $(3 \times)$ and the combined organic layers were dried with anhydrous MgSO_{4} and filtered. Removal of the solvent gave a crude oil that was purified by flash chromatography using $2-5 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes to afford 55 and $\mathbf{5 5 a}$ as an inseparable mixture (55:55a $=3: 1,4.55 \mathrm{~g}, 54 \%$); white solid, $\mathrm{mp}=75-80^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.33$ on silica gel (5\% ether/hexanes). IR (neat 55/55a) $v=1640,1432,1252,1208 \mathrm{~cm}^{-1} ; 55:{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3},) $\delta 7.67\left(\mathrm{~d}, 2 \mathrm{H}, J=1.5 \mathrm{~Hz}\right.$), $7.37(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 140.4,138.0,129.2,94.5,31.5$; HRMS $[\mathrm{M}]^{+}$not found. 55a: ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, $) \delta 7.82(\mathrm{t}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 7.69(\mathrm{t}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}), 7.54(\mathrm{t}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 6.52(\mathrm{~s}, 1 \mathrm{H})$, $4.39(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 144.1,139.3,135.5,132.1,126.7,94.1,38.5,31.1$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{3} \mathrm{I}[\mathrm{M}]^{+}$465.7064, found 465.7071.

2-[3-(2-Hydroxy-ethoxymethyl)-5-iodo-benzyloxy]-ethanol (56).

55

cat. $n-\mathrm{Bu}_{4} \mathrm{NI}, \mathrm{THF}, 50^{\circ} \mathrm{C}$

56
Ethylene glycol (3.0 mL , 54 mmol , 6 equiv) was added to a suspension of sodium hydride (95% dispersion in mineral oil, $0.7 \mathrm{~g}, 27 \mathrm{mmol}, 3$ equiv) in THF (75 mL) at $0^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred for an additional 30 min . In a separate round-bottom
flask, a catalytic amount of $n-\mathrm{Bu}_{4} \mathrm{NI}$ was added to a solution of $55(3.5 \mathrm{~g}, 9 \mathrm{mmol}, 1$ equiv) in THF (100 mL). This solution was cannulated into the solution of sodioethylene glycolate at room temperature. The reaction mixture was heated to $50{ }^{\circ} \mathrm{C}$ for 20 h , cooled to room temperature and quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. THF was removed under reduced pressure and the aqueous layer was extracted with ether $(3 \times 75 \mathrm{~mL})$. The combined organic layers were dried with anhydrous MgSO_{4} and filtered. Removal of the solvent afforded a crude oil that was purified by flash chromatography using $2 / 38 / 60-5 / 35 / 60 \mathrm{MeOH} / \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielding $56(1.85 \mathrm{~g}, 58 \%)$ as a light yellow oil. $\mathrm{R}_{\mathrm{f}}=0.31$ on silica gel (5/35/60 $\mathrm{MeOH} / \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (neat) $v=3386,1602,1569,1442,1352,1246,1156,1118,1069$, 890, 854, $806 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~s}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 4 \mathrm{H}), 3.73$ (bs, 4H), $3.57(\mathrm{t}, 4 \mathrm{H}, J=4.6 \mathrm{~Hz}), 2.84(\mathrm{bs}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 140.7, 136.0, 126.2, 94.6, 72.3, 71.9, 62.0; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{IO}_{4}[\mathrm{M}]^{+} 352.0172$, found 352.0174.

1,3-Bis-(2-bromo-ethoxymethyl)-5-iodobenzene (25).

Bromine ($0.35 \mathrm{~mL}, 6.8 \mathrm{mmol}, 2.4$ equiv) was added slowly to a solution of triphenylphosphine $\left(1.79 \mathrm{~g}, 6.8 \mathrm{mmol}, 2.4\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting yellow suspension was stirred for an additional 10 min at $0^{\circ} \mathrm{C}$. A solution of $56\left(1 \mathrm{~g}, 2.8 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.95$ $\mathrm{mL}, 6.8 \mathrm{mmol}$, 2.4 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added to the suspension at $0{ }^{\circ} \mathrm{C}$ and the resulting yellow solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , then at room temperature for an additional 30 min . The solvent was removed from the reaction mixture and the crude residue was purified by flash chromatography using $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes to afford $25(0.96 \mathrm{~g}, 71 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.31$ on silica gel $\left(50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes). IR (neat) $v=1644,1570,1440$,

1355, 1276, 1112, $907,730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 4.53$ (s 4 H$), 3.80(\mathrm{t}, 4 \mathrm{H}, J=6.1 \mathrm{~Hz}), 3.50(\mathrm{t}, 4 \mathrm{H}, J=6.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.5$, 136.0, 126.1, 94.7, 72.2, 70.4, 30.5; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{IO}_{2}[\mathrm{M}]^{+}$475.8484, found 475.8494.

(3-tert-Butoxycarbonylmethylsulfanyl-5-iodo-2-methoxy-phenylsulfanyl)-acetic acid tert-

 butyl ester (57).

45

1. n-BuLi, ether, $-78{ }^{\circ} \mathrm{C}$ 2. Sulfur, $-78{ }^{\circ} \mathrm{C}$ to rt $\xrightarrow{\text { 3. } \mathrm{BrCH}_{2} \mathrm{CO}_{2} t-\mathrm{Bu},-78{ }^{\circ} \mathrm{C} \text { to rt }}$

A solution of $45\left(10.2 \mathrm{~g}, 21 \mathrm{mmol}, 1\right.$ equiv) in ether $(200 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C} . n-\mathrm{BuLi}(1.6$ M solution in hexanes, $29 \mathrm{~mL}, 46 \mathrm{mmol}, 2.2$ equiv) was added slowly and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hr . Sulfur ($1.4 \mathrm{~g}, 42 \mathrm{mmol} 2$ equiv) was added in one portion and the reaction mixture was stirred again at $-78^{\circ} \mathrm{C}$ for 10 min . The mixture was then warmed to room temperature and stirred for an additional 3 h . The reaction mixture was cooled back down to -78 ${ }^{\circ} \mathrm{C}$ and tert-butyl bromoacetate ($6.2 \mathrm{~mL}, 42 \mathrm{mmol}, 2$ equiv) was added. The mixture was stirred at this temperature for 5 minutes, and then warmed back up to room temperature and stirred for an additional hour. The reaction was quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and the aqueous layer was extracted with ether $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried with anhydrous MgSO_{4}, filtered and concentrated. The crude product was purified by flash chromatography using $5 \% \mathrm{EtOAc} /$ hexanes as an eluant to afford $57(5.7 \mathrm{~g}$, 51%) as a yellow oil. $\mathrm{R}_{\mathrm{f}}=0.2$ ($10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $v=1728,1542,1453,1402$, $1368,1294,1238,1133,991,849 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$,
$3.56(\mathrm{~s}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.4,155.1,134.9,132.9,88.2,82.6$, 60.1, 35.8, 28.1; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{IO}_{5} \mathrm{~S}_{2} \mathrm{Na}$ (ESI) 549.0236, found 549.0232.

2-[3-(2-Hydroxy-ethylsulfanyl)-5-iodo-2-methoxy-phenylsulfanyl]-ethanol (58).

$\mathrm{LiAlH}_{4}\left(1.02 \mathrm{~g}, 26.9 \mathrm{mmol}, 2.5\right.$ equiv) was suspended in ether $(20 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. A solution of $57\left(5.66 \mathrm{~g}, 10.8 \mathrm{mmol}\right.$, 1 equiv) in ether (40 mL) was added to the LiAlH_{4} at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 30 min , then at room temperature for 1 hour. To work-up the reaction: 1 mL water $/ \mathrm{g}$ of LiAlH_{4} was slowly added to the reaction mixture and stirred at room temperature for 10 minutes; followed by $1 \mathrm{~mL} 15 \%$ (w/w) $\mathrm{NaOH} / \mathrm{g} \mathrm{LiAlH}_{4}$ and stir for 10 minutes; finally 3 mL water $/ \mathrm{g} \mathrm{LiAlH}_{4}$ was added to the reaction mixture for 10 minutes, or until a fluffy white precipitate formed. The precipitate was filtered off and the ether was removed under reduced pressure. Crude product was purified by flash chromatography using $50 \%-100 \% \mathrm{EtOAc} /$ hexanes eluant to afford $58(3 \mathrm{~g}, 72 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.17(25 \%$ EtOAc/hexanes). IR (neat) $v=3385,1538,1450,1398,1234,1044,990 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{t}, 4 \mathrm{H}, J=5.6 \mathrm{~Hz}), 3.07(\mathrm{t}, 4 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.56$ (bs, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.9,136.7,132.6,88.7,60.7,60.5,36.1$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{IO}_{3} \mathrm{~S}_{2}[\mathrm{M}]^{+} 385.9507$, found 385.9506 .

1,3-Bis-(2-bromo-ethylsulfanyl)-5-iodo-2-methoxy-benzene (29).

58

29

Bromine ($0.9 \mathrm{~mL}, 17.4 \mathrm{mmol}, 2.4$ equiv) was added slowly to a solution of triphenylphosphine ($4.56 \mathrm{~g}, 17.4 \mathrm{mmol}, 2.4$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting yellow suspension was stirred for an additional 10 min at $0^{\circ} \mathrm{C}$. A solution of $58\left(2.8 \mathrm{~g}, 7.3 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($2.4 \mathrm{~mL}, 17.4 \mathrm{mmol}, 2.4$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ was added to the suspension at $0{ }^{\circ} \mathrm{C}$ and the resulting yellow solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , then at room temperature for an additional 30 min . The solvent was removed from the reaction mixture and the crude residue was purified by flash chromatography using 2 to $5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes to afford $29(1.52 \mathrm{~g}, 41 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.18$ on silica gel ($2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes). IR (neat) $v=1587,1534,1447,1388$, 1222, 1185, 1097, $986 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.29$ (m, 8H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.7,136.5,132.2,88.6,60.3,34.5,29.6$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{IOS}_{2}[\mathrm{M}]^{+}$509.7819, found 509.7821.

1,3-Bis-[(chloromethyl-dimethyl-silanyl)-methoxy]-5-iodo-benzene (59)

A solution of 53 ($1 \mathrm{~g}, 4.2 \mathrm{mmol}$, 1 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.76 \mathrm{~g}, 12.7 \mathrm{mmol}, 3$ equiv) was stirred in acetone (45 mL) for 30 min at room temperature. Bis(chloromethyl)dimethylsilane ($5.4 \mathrm{~mL}, 37.3$ mmol, 9 equiv) and a catalytic amount of $n-\mathrm{Bu}_{4} \mathrm{NI}(155 \mathrm{mg}, 0.4 \mathrm{mmol}, 0.1$ equiv) were added to
this solution and the reaction mixture was heated to $65^{\circ} \mathrm{C}$ for 20 h . The acetone was removed under reduced pressure and the residue was partitioned between water and $\mathrm{Et}_{2} \mathrm{O}$ (50 mL each). The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic layers were washed with brine (50 mL), dried with anhydrous MgSO_{4}, filtered and concentrated. The crude product was purified by flash chromatography using $0-5 \% \mathrm{EtOAc} /$ hexanes eluant to afford 59 $(1.43 \mathrm{~g}, 71 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.84$ on silica gel ($10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $v=$ 1590, 1569, 1420, 1252, 1153, 1047, 1014, $847 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90(\mathrm{~d}, 2 \mathrm{H}$, $J=2.2 \mathrm{~Hz}), 6.50(\mathrm{t}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 3.67(\mathrm{~s}, 4 \mathrm{H}), 2.92(\mathrm{~s}, 4 \mathrm{H}), 0.26(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.8,116.2,100.9,94.1,58.9,28.5,-5.8 ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{IO}_{2} \mathrm{Si}_{2}[\mathrm{M}]^{+}$ 475.9658, found 475.9650 .

1-Iodo-3,5-bis-[(iodomethyl-dimethyl-silanyl)-methoxy]-benzene (33)

Sodium iodide ($3.96 \mathrm{~g}, 26 \mathrm{mmol}$, 10 equiv) was added to a solution of $59(1.26 \mathrm{~g}, 2.6 \mathrm{mmol}, 1$ equiv) in acetone (30 mL). The reaction mixture was heated to $65^{\circ} \mathrm{C}$ for 6 h , during which time a white precipitate had formed. The solvent was removed under reduced pressure and the residue was partitioned between water and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL}$ each $)$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic layers were washed with brine $(50 \mathrm{~mL})$, dried with anhydrous MgSO_{4}, filtered and concentrated. The crude product was purified by flash chromatography using $0-4 \%$ EtOAc/hexanes eluant to afford $33(1.51 \mathrm{~g}, 87 \%)$ as a yellow oil. $\mathrm{R}_{\mathrm{f}}=0.43$ on silica gel ($2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $) . \mathrm{IR}$ (neat) $v=1589,1568,1418,1251,1153,1047$, $1009,842 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90(\mathrm{~d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.50(\mathrm{t}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz})$,
$3.67(\mathrm{~s}, 4 \mathrm{H}), 2.12(\mathrm{~s}, 4 \mathrm{H}), 0.28(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.9,116.2,100.9$, 94.1, 59.9, -4.20, -16.4; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{I}_{3} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}]^{+}$659.8371, found 659.8372.
N-(3-Iodo-5-\{[(4-methylphenyl)sulfonyl]amino\}phenyl)-4-methylbenzenesulfonamide (61).

To a solution of 1-iodo-3,5-dinitrobenzene ($2.9 \mathrm{~g}, 9.9 \mathrm{mmol}$, 1 equiv) in $\mathrm{MeOH}(100 \mathrm{~mL}$) was added 1% platinum on activated carbon (vanadium doped) $(200 \mathrm{mg})$. The reaction mixture was placed under an atmosphere of hydrogen (30 psi) for 12 hr . The reaction mixture was filtered over Celite ${ }^{\circledR}$ and concentrated to afford crude $\mathbf{6 0}$ as brown solid, which was used without further purification. To a solution of $\mathbf{6 0}$ in pyridine $(15 \mathrm{~mL})$ was added p-toluenesulfonyl chloride (4.2 $\mathrm{g}, 21.8 \mathrm{mmol}, 2.2$ equiv). The reaction mixture was stirred at room temperature for 1 hr and then quenched with water $(20 \mathrm{~mL})$. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organic extracts were washed with aqueous $\mathrm{CuSO}_{4}(2 \times 20 \mathrm{~mL})$, dried with anhydrous MgSO_{4}, filtered and concentrated. The crude product was purified by flash chromatography using $25 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluant to afford 61 ($3.9 \mathrm{~g}, 72 \%$); tan solid, $\mathrm{mp}=230{ }^{\circ} \mathrm{C}$ (decomposed). $\mathrm{R}_{\mathrm{f}}=0.34$ on silica gel ($25 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (Nujol) $v=3251,3221,1601,1581,1462$, 1377, $1156 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 10.41(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, 4 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.35(\mathrm{~d}$, $4 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.16(\mathrm{t}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 6.97(\mathrm{~d}, 2 \mathrm{H}, J=1.9 \mathrm{~Hz}), 2.36(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $(100$ MHz, DMSO) $\delta 143.5,139.8,136.1,129.6,126.6,122.1,108.2,94.7,20.9$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaS}_{2} \mathrm{I}$ (ESI) 564.9723, found 564.9735. Data for 60: Brown solid, $\mathrm{mp}=128-130{ }^{\circ} \mathrm{C}$. $\mathrm{R}_{\mathrm{f}}=0.58$ on silica gel (EtOAc). IR (neat) $v=3433,3304,3195,1565,977,800 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 6.46(\mathrm{~d}, 2 \mathrm{H}, J=2.0 \mathrm{~Hz}), 5.93(\mathrm{t}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 3.55(\mathrm{bs}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
(100 MHz, CDCl_{3}) $\delta 148.7,115.0,101.1,95.7$; HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{I}$ (ESI) 234.9726, found 234.9738.

N, N '-Bis(2-Bromomethyl)-5-iodobenzene-1,3-di-p-toluylsulfonylamide (35).

To a suspension of $\mathbf{6 1}(2 \mathrm{~g}, 3.7 \mathrm{mmol}, 1$ equiv) in acetonitrile (35 mL) was added 1,2dibromoethane ($4.8 \mathrm{~mL}, 55.3 \mathrm{mmol}, 15$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.53 \mathrm{~g}, 11.1 \mathrm{mmol}, 3$ equiv). The suspension was heated to reflux and stirred at this temperature for 8 hr . The reaction was then quenched with water $(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated. The crude product was purified by flash chromatography using 25% EtOAc/hexanes eluant to afford 35 ($2.3 \mathrm{~g}, 83 \%$); white solid, $m p=117-118^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.47$ on silica gel (25\% EtOAc). IR (neat) $v=3441,1645,1350,1160$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~d}, 4 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.42(\mathrm{~d}, 2 \mathrm{H}, J=1.9 \mathrm{~Hz}), 7.30(\mathrm{~d}$, $4 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.71(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=1.9 \mathrm{~Hz}), 3.76(\mathrm{t}, 4 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.33(\mathrm{t}, 4 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.44(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.7,141.0,138.1,134.5,130.1,128.8,127.8,93.3,52.4$, 29.0, 21.8; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Br}_{2} \mathrm{IN}_{2} \mathrm{NaO}_{4} \mathrm{~S}_{2}[\mathrm{M}]^{+} 776.8559$ (ESI), found 776.8539.

Alkylation/Alkenylation Reactions

3-(2,3,5,6-Tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-acrylic acid methyl ester (6).

6
Following the general procedure for the alkylation/alkenylation reaction using 5 and methyl acrylate, and purification by flash chromatography using $10 \% \mathrm{EtOAc} /$ hexanes as eluant resulted in $6(32 \mathrm{mg}, 80 \%)$ as a yellow solid, $\mathrm{mp}=157-158^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of $10 \% \mathrm{EtOAc} /$ hexanes $) . \mathrm{R}_{\mathrm{f}}=0.40$ on silica gel ($10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $1716,1635,1452$, 1294, $1182 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~d}$, $1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 4.62(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.6,161.1,141.6,127.1,121.0,118.5,94.6,72.2,52.0,29.7$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4}[\mathrm{M}]^{+} 246.0898$, found 246.0892.

3-(2,3,5,6-Tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-acrylic acid tert-butyl ester (7).

7

Following the general procedure for the alkylation/alkenylation reaction using $\mathbf{5}$ and tert-butyl acrylate, and purification by flash chromatography using 10% EtOAc/hexanes as eluant resulted in $7(49 \mathrm{mg}, 85 \%)$ as a pale yellow solid, $\mathrm{mp}=108-109{ }^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of $10 \% \mathrm{EtOAc} /$ hexanes). $\mathrm{R}_{\mathrm{f}}=0.35$ on silica gel ($10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $1707,1593,1440,1293,1154 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz})$,
$6.32(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 4.61(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.25(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 1.53(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6,160.9,140.4,127.3,123.2,118.4,94.3,81.0,72.2$, 29.6, 28.4; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}]^{+}$288.1363, found 288.1361.

3-(2,3,5,6-Tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-acrylic acid benzyl ester (8).

8
Following the general procedure for the alkylation/alkenylation reaction using 5 and benzyl acrylate, and purification by flash chromatography using $10 \% \mathrm{EtOAc} /$ hexanes as eluant resulted in $8(47 \mathrm{mg}, 77 \%)$ as a pale yellow solid, $\mathrm{mp}=68-70^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of $10 \% \mathrm{EtOAc} /$ hexanes $) . \mathrm{R}_{\mathrm{f}}=0.55$ on silica gel ($10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2959,1712 , 1633, 1592, 1439, $1289 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 7.40(\mathrm{~m}$, $5 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{t}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}), 3.24(\mathrm{t}, 4 \mathrm{H}, J=$ 8.6 Hz) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,160.8,141.7,135.9,128.6,128.4,128.3,126.8$, 120.7, 118.3, 94.4, 66.5, 29.5; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}]^{+} 322.1198$, found 322.1205.

2-Methyl-3-(2,3,5,6-tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-acrylic acid tert-butyl ester (9a) and 2-(2,3,5,6-Tetrahydro-benzo[1,2-b;5,4-b']difuran-4-ylmethyl)-acrylic acid tert-butyl ester (9b).

9a

9b

Following the general procedure for the alkylation/alkenylation reaction using 5 and tert-butyl methacrylate, and purification by flash chromatography using 5% EtOAc/hexanes as eluant resulted in an inseparable mixture of $\mathbf{9 a}$ and $\mathbf{9 b}$ in a $1: 1$ ratio ($\mathbf{9 a}: \mathbf{9 b})(34 \mathrm{mg}, 57 \%)$ as a white solid, $\mathrm{mp}=75-77^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of $5 \% \mathrm{EtOAc} /$ hexanes). $\mathrm{R}_{\mathrm{f}}=0.33$ on silica gel (5\% EtOAc/hexanes). IR (neat) 2973, 1707, 1596, $1444 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~s}, 1 \mathrm{H}$ in $\mathbf{9 a}), 6.27(\mathrm{~s}, 1 \mathrm{H}$ in 9b), $6.21(\mathrm{~s}, 1 \mathrm{H}$ in $9 \mathbf{a}), 6.09(\mathrm{~s}, 1 \mathrm{H}$ in $9 \mathbf{b}), 5.17(\mathrm{~s}, 1 \mathrm{H}$ in 9b), $4.57(\mathrm{t}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.55(\mathrm{t}, 4 \mathrm{H}, J=8.7 \mathrm{~Hz}), 3.44(\mathrm{~s}, 2 \mathrm{H}$ in $9 \mathbf{b}), 2.99(\mathrm{t}, 4 \mathrm{H}, J=8.5$ $\mathrm{Hz}), 2.95(\mathrm{t}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}), 1.80\left(\mathrm{brs}, 2 \mathrm{H}\right.$ in 9a), $1.54(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.3,166.5,160.5,160.4,139.0,135.0,132.5,131.0,130.0,124.3,118.0,117.0,92.3$, 91.2, 81.1, 80.9, 72.3, 72.1, 33.4, 29.0, 28.3, 28.2, 27.8, 14.9 HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}[\mathrm{M}]^{+}$ 302.1519, found 302.1518 .

N-tert-Butyl-3-(2,3,5,6-tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-acrylamide (10).

10
Following the general procedure for the alkylation/alkenylation reaction using 5 and N-tertbutylacrylamide, and purification by flash chromatography using $25 \% \mathrm{EtOAc} /$ hexanes as eluant resulted in $10(35 \mathrm{mg}, 61 \%)$ as a white solid, $\mathrm{mp}=83-84{ }^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of $25 \% \mathrm{EtOAc} /$ hexanes). $\mathrm{R}_{\mathrm{f}}=0.14$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 1619, 1450, $1298,1062 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~d}$, $1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 5.51(\mathrm{brs}, 1 \mathrm{H}), 4.59(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.23(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,160.9,137.2,127.6,124.8,118.1,93.9,72.2,51.9,29.7$, 29.1; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}]^{+}$287.1528, found 287.1521.

3-(2,3,5,6-Tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-acrylonitrile (11).

11
Following the general procedure for the alkylation/alkenylation reaction using 5 and acrylonitrile, and purification by flash chromatography using 10\% EtOAc/hexanes as eluant resulted in 11 (30 $\mathrm{mg}, 71 \%$) as a white solid, $\mathrm{mp}=200-201^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of 10% EtOAc/hexanes). $\mathrm{R}_{\mathrm{f}}=0.23$ ($10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $2910,2211,1738,1592,1442 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz})$, $4.63(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.20(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 161.3, 147.7,
126.3, 118.4, 118.1, 99.5, 95.4, 72.2, 29.5; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2} \quad[\mathrm{M}]^{+} 213.0785$, found 213.0789.

4-(2-Benzenesulfonyl-vinyl)-2,3,5,6-tetrahydro-benzo[1,2-b;5,4-b']difuran (12).

12
Following the general procedure for the alkylation/alkenylation reaction using 5 and phenyl vinyl sulfone, and purification by flash chromatography using $25 \% \mathrm{EtOAc} /$ hexanes as eluant resulted in $12(24 \mathrm{mg}, 38 \%)$ as a yellow solid, $\mathrm{mp}=153-155{ }^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of $25 \% \mathrm{EtOAc} /$ hexanes $) . \mathrm{R}_{\mathrm{f}}=0.31$ on silica gel ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 1586,1444 , $1302,1143 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.58(\mathrm{~m}, 4 \mathrm{H}), 6.67(\mathrm{~d}$, $1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.21(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.2,140.8,139.1,133.7,130.1,129.6,127.8,125.0,118.9,95.5,72.2,29.6 ;$ HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}]^{+}$328.0757, found 328.0769.

4-(2-Benzenesulfinyl-vinyl)-2,3,5,6-tetrahydro-benzo[1,2-b;5,4-b']difuran (13).

13
Following the general procedure for the alkylation/alkenylation reaction using 5 and phenyl vinyl sulfoxide, and purification by flash chromatography using $25 \% \mathrm{EtOAc} /$ hexanes as eluant resulted
in $\mathbf{1 3}(23 \mathrm{mg}, 37 \%)$ as a yellow solid, $\mathrm{mp}=150-151^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of $25 \% \mathrm{EtOAc} /$ hexanes $) . \mathrm{R}_{\mathrm{f}}=0.31$ on silica gel ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2897,1586 , 1441, 1304, 1155, $1062 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}$, $1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 6.67(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{t}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}), 3.19(\mathrm{t}, 4 \mathrm{H}, J=$ $8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.0,144.0,136.2,132.6,131.5,129.7,126.2,125.0$, 117.9, 94.2, 72.1, 29.5; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+} 312.0828$, found 312.0820.

2-[2-(2,3,5,6-Tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-vinyl]-pyridine (14).

14
Following the general procedure for the alkylation/alkenylation reaction using 5 and 2-vinyl pyridine, and purification by flash chromatography using 50\% EtOAc/hexanes as eluant resulted
 $50 \% \mathrm{EtOAc} /$ hexanes). $\mathrm{R}_{\mathrm{f}}=0.37$ on silica gel ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2917, 1592, 1439, $1156,1061 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{brs}, 1 \mathrm{H}), 7.67(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.59(\mathrm{~d}$, $1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 7.37(\mathrm{brd}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.17(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 6.29(\mathrm{~s}$, $1 \mathrm{H}), 4.62(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.34(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.9$, $155.8,149.9,136.8,131.62,129.9,129.4,122.5,122.6,117.2,92.9,72.2,29.9$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}]^{+}$265.1103, found 265.1107.

4-[2-(2,3,5,6-Tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-vinyl]-pyridine (15).

15
Following the general procedure for the alkylation/alkenylation reaction using 5 and 4 -vinyl pyridine, and purification by flash chromatography using 50\% EtOAc/hexanes as eluant resulted in 15 (23 mg, 43\%) as a yellow solid, $\mathrm{mp}=136-137{ }^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of $50 \% \mathrm{EtOAc} /$ hexanes $) . \mathrm{R}_{\mathrm{f}}=0.22$ on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2921, 1593, $1439,1061 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60($ brs, 2 H$), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.23(\mathrm{~d}$, $1 \mathrm{H}, J=16.7 \mathrm{~Hz}), 6.83(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{t}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}), 3.30(\mathrm{t}, 4 \mathrm{H}, J=$ 8.5 Hz) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.0,150.5,144.9,130.4,129.6,128.8,121.1,117.1$, 93.3, 72.2, 29.7; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}]^{+}$265.1102, found 265.1099.

3-(2,6-Di-tert-butoxy-2,3,5,6-tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-acrylic acid tert-

 butyl ester (17).

Following the general procedure for the alkylation/alkenylation reaction using 16 and tert-butyl acrylate, followed by purification by flash chromatography using $5-10 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes as eluant resulted $17(45 \mathrm{mg}, 52 \%)$ as a colourless oil, $1: 1$ mixture of diastereomers. $\mathrm{R}_{\mathrm{f}}=0.1$ on silica gel ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes). IR (neat) $v=1707,1635,1595,1452,1392,1367,1293,1151,1096,1050$,

948, $928 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=16.3$ $\mathrm{Hz}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 6.12(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 6.02(\mathrm{dt}, 4 \mathrm{H}$, $J=2.3$ and 6.5 Hz), $3.37(\mathrm{dd}, 2 \mathrm{H}, J=2.9$ and 6.9 Hz$), 3.33(\mathrm{dd}, 2 \mathrm{H}, J=2.9$ and 6.9 Hz$), 3.06$ $(\mathrm{dd}, 2 \mathrm{H}, J=2.5 \mathrm{~Hz}), 3.02(\mathrm{dd}, 2 \mathrm{H}, J=2.5 \mathrm{~Hz}), 1.52(\mathrm{~s}, 18 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H}), 1.30(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.6,158.8,158.8,140.4,127.0,123.0,117.2,117.1,102.2,102.1$, 94.9, 80.8, 75.7, 75.7, 37.7, 29.0, 28.4; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{6}[\mathrm{M}]^{+}$432.2512, found 432.2500 .
tert-Butyl (2E)-3-(2,3,6,7-tetrahydro-5H-furo[3,2-g]chromen-4-yl)acrylate (19).

19
Following the general procedure for the alkylation/alkenylation reaction (irradiated for 10 min instead of 5 min) using 18 and tert-butyl acrylate, and purification by flash chromatography using $10 \% \mathrm{EtOAc} /$ hexanes as eluant resulted in $19(45 \mathrm{mg}, 80 \%)$ as a white solid, $\mathrm{mp}=103-104{ }^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of 10% EtOAc/hexanes). $\mathrm{R}_{\mathrm{f}}=0.46$ on silica gel $(10 \%$ EtOAc/hexanes). IR (neat) 2976, 1713, 1604, 1456, 1367, $1119 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 4.55(\mathrm{t}, 2 \mathrm{H}, J=8.6$ $\mathrm{Hz}), 4.12(\mathrm{t}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 3.25(\mathrm{t}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 2.77(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.00$ (quintet, 2 H , $J=6.1 \mathrm{~Hz}), 1.53(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.4,159.2,155.3,140.1,130.5,124.0$, $118.5,113.4,99.7,80.7,71.4,66.0,30.4,28.2,22.9,22.4$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}[\mathrm{M}]^{+}$ 302.1522, found 302.1518 .

3-(3,4,7,8-Tetrahydro-2H,6H-pyrano[3,2-g]chromen-5-yl)-acrylic acid methyl ester (21).

21
Following the general procedure for the alkylation/alkenylation reaction (irradiated for 10 min instead of 5 min) using 20 and methyl acrylate, and purification by flash chromatography using $10 \% \mathrm{EtOAc} /$ hexanes as eluant resulted in $21(36 \mathrm{mg}, 67 \%)$ as a white solid, $\mathrm{mp}=102-103{ }^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of $10 \% \mathrm{EtOAc} /$ hexanes $) . \mathrm{R}_{\mathrm{f}}=0.43$ on silica gel $(10 \%$ EtOAc/hexanes). IR (neat) 2948, 1719, 1602, 1461, 1295, $1138 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}), 4.12(\mathrm{t}, 4 \mathrm{H}, J=5.3$ $\mathrm{Hz}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{t}, 4 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.95$ (quintet, $4 \mathrm{H}, J=5.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.1,154.1,142.6,135.0,124.4,113.7,105.3,66.2,52.0,23.8,22.7$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}]^{+} 274.1206$, found 274.1205.

3-(3,4,7,8-Tetrahydro-2H,6H-pyrano[3,2-g]chromen-5-yl)-acrylic acid tert-butyl ester (22).

22
Following the general procedure for the alkylation/alkenylation reaction (irradiated for 10 min instead of 5 min) using 20 and tert-butyl acrylate, and purification by flash chromatography using $25 \% \mathrm{EtOAc} /$ hexanes as eluant resulted in $22(44 \mathrm{mg}, 70 \%)$ as a white solid, $\mathrm{mp}=116-117^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of 25% EtOAc/hexanes). $\mathrm{R}_{\mathrm{f}}=0.55$ on silica gel $(10 \%$ EtOAc/hexanes). IR (neat) $1711,1602,1462,1296,1140 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$7.57(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}), 4.11(\mathrm{t}, 4 \mathrm{H}, J=5.1 \mathrm{~Hz}), 2.67(\mathrm{t}$, $4 \mathrm{H}, J=6.4 \mathrm{~Hz}$), 1.95 (quintet, $4 \mathrm{H}, J=6.4 \mathrm{~Hz}$), $1.54(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 166.1, 154.1, 141.1, 135.3, 126.6, 113.7, 105.0, 80.9, 66.2, 28.4, 23.8, 22.8; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4}[\mathrm{M}]^{+} 316.1680$, found 316.1675 .

3-(2,3,4,5,7,8,9,10-Octahydro-1,11-dioxa-benzo[1,2;4,5]dicyclohepten-6-yl)-acrylic acid tert-

 butyl ester (24).

24
Following the general procedure for the alkylation/alkenylation reaction (irradiated for 20 min instead of 5 min) using 23 and tert-butyl acrylate, and purification by flash chromatography using $10 \% \mathrm{EtOAc} /$ hexanes as eluant resulted in $24(42 \mathrm{mg}, 68 \%)$ as a white solid, $\mathrm{mp}=108-109{ }^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of $10 \% \mathrm{EtOAc} /$ hexanes $) . \mathrm{R}_{\mathrm{f}}=0.53$ on silica gel $(10 \%$ EtOAc/hexanes). IR (neat) 2932, 1728, 1591, 1455, 1367, 1256, $1150 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 3.99(\mathrm{t}, 4 \mathrm{H}, J=5.1$ Hz), $2.76(\mathrm{~m}, 4 \mathrm{H}), 1.93$ (quintet, $4 \mathrm{H}, J=5.6 \mathrm{~Hz}$), 1.65 (quintet, $4 \mathrm{H}, J=5.3 \mathrm{~Hz}$), $1.59(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,159.5,143.7,135.7,129.3,127.1,114.3,81.0,73.9,32.3,29.6$, 28.4, 25.9; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}[\mathrm{M}]^{+} 344.1986$, found 344.1988 .

3-(4,5,6,8-Tetrahydro-1H,3H-2,7-dioxa-anthracen-10-yl)-acrylic acid tert-butyl ester (26).

Following the general procedure for the alkylation/alkenylation reaction using 25, tert-butyl acrylate and 5 equiv of norbornene (1.00 mmol), followed by purification by flash chromatography using $10 \% \mathrm{EtOAc} /$ hexanes as eluant resulted in $26(45 \mathrm{mg}, 80 \%)$ as a white solid (the resulting solid from the evaporation of $10 \% \mathrm{EtOAc} /$ hexanes), $\mathrm{mp}=115-116{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=$ 0.29 on silica gel (20% EtOAc/hexanes). IR (neat) $v=1710,1639,1469,1384,1367,1327$, $1281,1259,1232,1153,1114,1071,982 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.4 \mathrm{~Hz}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}), 4.74(\mathrm{~s}, 4 \mathrm{H}), 3.94(\mathrm{t}, 4 \mathrm{H}, J=5.7 \mathrm{~Hz}), 2.80(\mathrm{t}$, $4 \mathrm{H}, J=5.7 \mathrm{~Hz}), 1.54(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.8,140.2,134.0,132.9,130.3$, 126.7, 120.8, 80.9, 68.0, 65.4; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4}[\mathrm{M}]^{+} 316.1675$, found 316.1673. N, N-Dimethyl-3-(4,5,6,8-tetrahydro-1H,3H-2,7-dioxa-anthracen-10-yl)-acrylamide (27).

27
Following the general procedure for the alkylation/alkenylation reaction using 25, N, N-dimethyl acrylamide and 5 equiv of norbornene (1.00 mmol), followed by purification by flash chromatography using $50-75 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}+1 \% \mathrm{Et}_{3} \mathrm{~N}$ as eluant resulted in $27(34 \mathrm{mg}, 58 \%)$ as a white solid (the resulting solid from the evaporation of EtOAc), $m p=165-167{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.1$ on silica gel (50\% EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (neat) $v=2360,2333,1651,1607,1466,1394,1386$,
$1129,1112,1070,996,982,892 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz})$, $6.62(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 4.74(\mathrm{~s}, 4 \mathrm{H}), 3.93(\mathrm{t}, 4 \mathrm{H}, J=5.7 \mathrm{~Hz}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~s}$, $3 \mathrm{H}), 2.80(\mathrm{t}, 4 \mathrm{H}, J=5.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.3,139.2,135.3,133.1,130.1$, 124.6, 120.5, 68.1, 65.6, 37.6, 36.1, 27.6; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}]^{+}$287. 1521, found 287.1524.

3-(4,5,6,8-Tetrahydro-1H,3H-2,7-dioxa-anthracen-10-yl)-acrylonitrile (28).

Following the general procedure for the alkylation/alkenylation reaction using 25, acrylonitrile, and 5 equiv of norbornene (1.00 mmol), followed by purification by flash chromatography using $20-30 \% \mathrm{EtOAc} /$ hexanes as eluant resulted in $28(20 \mathrm{mg}, 39 \%)$ as a white solid (the resulting solid from the evaporation of EtOAc), mp $=192-194{ }^{\circ} \mathrm{C} . \quad \mathrm{R}_{\mathrm{f}}=0.14$ on silica gel $(20 \%$ EtOAc/hexanes). IR (neat) $v=2215,1614,1471,1130,1112,972 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~d}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz}), 4.73(\mathrm{~s}, 4 \mathrm{H}), 3.94(\mathrm{t}$, $4 \mathrm{H}, J=5.6 \mathrm{~Hz}), 2.76(\mathrm{t}, 4 \mathrm{H}, J=5.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.9,133.3,132.8$, 130.1, 121.9, 117.4, 103.7, 67.8, 65.1, 27.2; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}]^{+} 241.1103$, found 241.1110.

3-(8-Methoxy-2,3,5,6-tetrahydro-1,7-dithia-s-indacen-4-yl)-acrylic acid tert-butyl ester (30).

30
Following the general procedure for the alkylation/alkenylation reaction (irradiated for 10 min instead of 5 min) using 29 and tert-butyl acrylate, purification by flash chromatography followed using 0-5\% EtOAc/hexanes as eluant, resulted in $30(30 \mathrm{mg}, 43 \%)$ as a yellow solid (the resulting solid from evaporation of EtOAc), $\mathrm{mp}=92-94{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.29$ on silica gel ($10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $v=1707,1630,1560,1457,1417,1367,1309,1256,1150,1086,980,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 5.97(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $3.35(\mathrm{t}, 8 \mathrm{H}, J=1.5 \mathrm{~Hz}), 1.53(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,149.1,140.8,138.4$, 133.3, 124.0, 123.7, 80.8, 58.6, 35.9, 33.3, 28,2; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}_{2}[\mathrm{M}]^{+} 350.1010$, found 350.1013 .

3-(8-Methoxy-2,3,5,6-tetrahydro-1,7-dithia-s-indacen-4-yl)- N, N-dimethyl-acrylamide (31).

31
Following the general procedure for the alkylation/alkenylation reaction (irradiated for 10 min instead of 5 min) using 29 and N, N-dimethylacrylamide, purification by flash chromatography followed using 2-5\% acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluant, resulted in $31(16 \mathrm{mg}, 26 \%)$ as a off-white oil. R_{f} $=0.34$ on silica gel $\left(5 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat) $v=1648,1639,1632 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 6.47(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{t}, 8 \mathrm{H}, J=$ $3.8 \mathrm{~Hz}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,148.9,139.8,138.1$, 133.4, 125.2, 121.8, 58.9, 36.1, 33.7, 30.0; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}_{2}$ (ESI) 322.0929, found 322.0934 .

3-(8-Methoxy-2,3,5,6-tetrahydro-1,7-dithia-s-indacen-4-yl)-acrylonitrile (32).

32
Following the general procedure for the alkylation/alkenylation reaction (irradiated for 10 min instead of 5 min) using 29 and acrylonitrile, purification by flash chromatography followed using $5-10 \% \mathrm{EtOAc} /$ hexanes as eluant, resulted in $32(10 \mathrm{mg}, 19 \%)$ as an off-white solid (the resulting solid from the evaporation of EtOAc $), \mathrm{mp}=164-166{ }^{\circ} \mathrm{C} . \quad \mathrm{R}_{\mathrm{f}}=0.16$ on silica gel $(10 \%$ EtOAc/hexanes). IR (neat) $v=2216,1616,1553,1456,1417,1315,1270,1088,965 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, 1 \mathrm{H}, J=16.9 \mathrm{~Hz}), 5.50(\mathrm{~d}, 1 \mathrm{H}, J=16.9 \mathrm{~Hz}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, 3.41 - $3.26(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.9,148.1,138.1,133.9,123.0,118.0$, 100.1, 58.7, 35.7, 33.2; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NOS}_{2}[\mathrm{M}]^{+}$275.0439, found 275.0435. acrylic acid tert-butyl ester (34).

34

Following the general procedure for the alkylation/alkenylation reaction using 33 and tert-butyl acrylate at $160^{\circ} \mathrm{C}$, followed by purification by flash chromatography using $0-5 \% \mathrm{EtOAc} /$ hexanes as eluant resulted in $34(48 \mathrm{mg}, 60 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.19$ on silica gel $(5 \%$ EtOAc/hexanes). IR (neat) $v=1711,1640,1586,1442,1367,1290,1251,1151,1113,911,842$, $733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.3 \mathrm{~Hz}), 3.70(\mathrm{~s}, 4 \mathrm{H}), 1.91(\mathrm{~s}, 4 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.1, 156.5, 143.7, 137.3, 126.9, 121.3, 111.4, 80.9, 64.0, 28.5, 13.4, -3.0; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}]^{+} 404.1839$, found 404.1832.

3-[1,7-Bis-(toluene-4-sulfonyl)-1,2,3,5,6,7-hexahydro-pyrrolo[3,2-f]indol-4-yl]-acrylic acid tert-butyl ester (36).

Following the general procedure for the alkylation/alkenylation reaction using 35 and tert-butyl acrylate and 5 equiv of norbornene $(1.00 \mathrm{mmol})$, the reaction vessel was subjected to microwave irradiation at $160{ }^{\circ} \mathrm{C}$ for 5 min . Purification by flash chromatography followed using 5/35/60
$\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes as eluant, resulted in $\mathbf{3 6}(47 \mathrm{mg}, 39 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.15$ on silica gel ($20 \% \mathrm{EtOAc} /$ hexanes). trans- isomer: IR (neat) $v=1652,1635,1354,1267,1164,1096 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, 4 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.34(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz})$, $7.25(\mathrm{~d}, 4 \mathrm{H}, J=8.3 \mathrm{~Hz}), 5.94(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 3.99(\mathrm{t}, 4 \mathrm{H}, J=8.4 \mathrm{~Hz}), 2.92(\mathrm{t}, 4 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 2.39(\mathrm{~s}, 6 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,144.5,142.8,138.8,134.1$, 130.1, 128.0, 127.9, 126.6, 124.4, 103.3, 81.3, 50.8, 28.4, 27.7, 21.8; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}]^{+}$594.185831, found 594.185481. cis-isomer (36a): $\mathrm{R}_{\mathrm{f}}=0.15$ on silica gel (20\% EtOAc/hexanes). IR (neat) $v=1715,1699,1597,1352,1164,1094,815,668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, 4 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.25(\mathrm{~d}, 4 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.57$ $(\mathrm{d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 5.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}), 3.92(\mathrm{t}, 4 \mathrm{H}, J=8.4 \mathrm{~Hz}), 2.65(\mathrm{t}, 4 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $2.39(\mathrm{~s}, 6 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8,144.2,141.8,137.4,134.1$, 130.9, 129.9, 127.9, 126.1, 124.6, 101.3, 80.7, 50.9, 27.8, 26.6, 21.8; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}]^{+}$594.185831, found 594.186567.

Synthesis of Mescaline Analogue 2

1,3,5-Triiodo-2-methoxybenzene (45).

$\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux

To a solution of 2,4,5-triiodophenol (44) (10.0 g, 21.2 mmol , 1 equiv) in acetone (175 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(4.40 \mathrm{~g}, 31.8 \mathrm{mmol}, 1.5$ equiv). The mixture was stirred at rt for 30 min then iodomethane ($2.00 \mathrm{~mL}, 31.8 \mathrm{mmol}, 1.5$ equiv) was added. The mixture was heated at reflux for 3 h, cooled to rt and filtered through Celite ${ }^{\text {TM }}$. Evaporation of the volatiles gave a crude product that
was purified by flash chromatography using $10 \% \mathrm{EtOAc} /$ hexanes as eluant yielding 45 (10 g , 98%) as a pale yellow solid, $\mathrm{mp}=93-94{ }^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of 10% EtOAc/hexanes). $\mathrm{R}_{\mathrm{f}}=0.79$ (10% EtOAc/hexanes). IR (neat) $1455,1402 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,147.5,91.9,89.5$, 61.0; HRMS calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{I}_{3} \mathrm{O}[\mathrm{M}]^{+} 485.7481$, found 485.7474 .

5-Iodo-2-methoxybenzene-1,3-diol (4).

45
[i] n-BuLi, ether, $-78{ }^{\circ} \mathrm{C}$ [ii] $\mathrm{B}(\mathrm{OMe})_{3},-78{ }^{\circ} \mathrm{C}$ to rt [iii] peracetic acid, $0^{\circ} \mathrm{C}$ \qquad

4

To a $-78{ }^{\circ} \mathrm{C}$ solution of $45(8.61 \mathrm{~g}, 17.7 \mathrm{mmol}, 1$ equiv) in ether (165 mL) was added dropwise n $\mathrm{BuLi}\left(24.4 \mathrm{~mL}, 38.9 \mathrm{mmol}, 1.6 \mathrm{M}\right.$ in hexanes, 2.2 equiv). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h then trimethyl borate ($20.0 \mathrm{~mL}, 177 \mathrm{mmol}, 10$ equiv) was added at once. The reaction was warmed to rt over 16 h then cooled to $0^{\circ} \mathrm{C}$. Peracetic acid solution $(12.0 \mathrm{~mL}, 177 \mathrm{mmol}, 32 \mathrm{wt} \%$ in dilute acetic acid, 10 equiv) was added dropwise. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 30 min then quenched with saturated aqueous $\mathrm{NaHCO}_{3}(12 \mathrm{~mL})$ and then warmed to rt. Water (170 mL) and ether (170 mL) were added and the organic layer was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, brine, dried with MgSO_{4}, filtered, and concentrated. The crude mixture was purified by flash chromatography using $25 \% \mathrm{EtOAc} /$ hexanes as eluant to yield $4(3.6 \mathrm{~g}, 77 \%)$ as a pale yellow solid, $\mathrm{mp}=90-91^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of $25 \% \mathrm{EtOAc} /$ hexanes). R_{f} $=0.23$ on silica gel (25% EtOAc/hexanes). IR (neat) $3395,1582,1487,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.87(\mathrm{~s}, 2 \mathrm{H}), 5.93(\mathrm{brs}, 2 \mathrm{OH}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8$, 135.0, 117.9, 87.2, 61.4; HRMS calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{IO}_{3}[\mathrm{M}]^{+} 265.9439$, found 265.9440.

1,3-Bis(2-bromoethoxy)-5-iodo-2-methoxybenzene (3).

To a solution of $4(5.16 \mathrm{~g}, 19.4 \mathrm{mmol}, 1$ equiv) and 1,2-dibromoethane ($25.0 \mathrm{~mL}, 291 \mathrm{mmol}, 15$ equiv) in acetone (35 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(13.5 \mathrm{~g}, 97.1 \mathrm{mmol}$, 5 equiv). The mixture was heated at reflux for 36 h . The reaction was cooled to rt and filtered through Celite ${ }^{\text {TM }}$. Distillation of the excess 1,2-dibromoethane gave a crude oil that was purified by flash chromatography using $10 \% \mathrm{EtOAc} /$ hexanes as eluant yielding $3(7.8 \mathrm{~g}, 84 \%)$ as a white solid, $\mathrm{mp}=82-83{ }^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of 10% EtOAc/hexanes). $\mathrm{R}_{\mathrm{f}}=0.55$ on silica gel $(10 \%$ EtOAc/hexanes). IR (neat) $1581,1496,1417,1128 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.92(\mathrm{~s}$, $2 \mathrm{H}), 4.24(\mathrm{t}, 4 \mathrm{H}, J=6.1 \mathrm{~Hz}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{t}, 4 \mathrm{H}, J=6.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 153.1, 140.1, 118.3, 85.9, 69.6, 61.5, 29.2; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{IO}_{3}[\mathrm{M}]^{+} 477.8283$, found 477.8276.

3-(8-Methoxy-2,3,5,6-tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-acrylic acid tert-butyl ester (47).

Following the general procedure for the alkylation/alkenylation reaction using 3 ($96.0 \mathrm{mg}, 0.200$ mmol) and tert-butyl acrylate, and purification by flash chromatography using 10% $\mathrm{EtOAc} / \mathrm{hexanes}$ as eluant resulted in $47(51 \mathrm{mg}, 81 \%)$ as a pale yellow solid, $\mathrm{mp}=116-117^{\circ} \mathrm{C}$
(the resulting solid from the evaporation of 10% EtOAc/hexanes). $\mathrm{R}_{\mathrm{f}}=0.31$ on silica gel $(10 \%$ EtOAc/hexanes). IR (neat) $1702,1604,1500,1421 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}$, $1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 6.07(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 4.65(\mathrm{t}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{t}, 4 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}), 1.53(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,150.7,140.1,131.3,121.3,121.0$, 120.8, 80.7, 72.7, 60.4, 30.2, 28.3; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}]^{+} 318.1469$, found 318.1467. 3-(8-Methoxy-2,3,5,6-tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-propionic acid tert-butyl ester (48).

A solution of $47(270 \mathrm{mg}, 0.848 \mathrm{mmol}, 1$ equiv) and palladium on carbon $(90 \mathrm{mg}, 0.0848 \mathrm{mmol}$, [loading: $10 \mathrm{wt} \%$, support activated carbon], $10 \mathrm{~mol} \%$), in $\mathrm{MeOH} / E t O A c \quad 1: 1(20 \mathrm{~mL})$ was hydrogenated at 40 psi in a Parr hydrogenator for 12 h . The mixture was filtered through Celite ${ }^{\mathrm{TM}}$ and concentrated. Purification by flash chromatography using 5\% EtOAc/hexanes as eluant resulted in $48(270 \mathrm{mg}, 98 \%)$ as a white solid, $\mathrm{mp}=62-63{ }^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of $5 \% \mathrm{EtOAc} /$ hexanes). $\mathrm{R}_{\mathrm{f}}=0.24$ on silica gel ($10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $2978,1728,1605,1504,1422,1336 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.60(\mathrm{t}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz})$, $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{t}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}), 2.73(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.40(\mathrm{t}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 1.42(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,150.7,128.4,126.5,119.1,80.7,72.7,60.5,34.8,28.7$, 28.2, 26.7; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}]^{+} 320.1623$, found 320.1624 .

3-(8-Methoxy-2,3,5,6-tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-propionic acid (49) from

 tert-butyl ester 48.

To a solution of $48\left(110 \mathrm{mg}, 0.343 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added trifluoroacetic acid $(5 \mathrm{~mL})$. The mixture was stirred at rt for 12 h . Toluene (25 mL) was added and the solution was concentrated yielding pure $49(78 \mathrm{mg}, 87 \%)$ as a white solid, $\mathrm{mp}=133-134{ }^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of toluene). $\mathrm{R}_{\mathrm{f}}=0.10$ on silica gel ($50 \% \mathrm{EtOAc} / \mathrm{hexanes}$). IR (neat) 2921, 1694, 1606, 1506, $1429 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.61(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}$), 3.93 $(\mathrm{s}, 3 \mathrm{H}), 3.10(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 2.78(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.56(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.1,150.9,128.5,125.9,119.1,72.7,60.5,33.5,28.7,26.6$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5}[\mathrm{M}]^{+}$264.0999, found 264.0998.

3-(8-Methoxy-2,3,5,6-tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-acrylic acid benzyl ester (50).

Following the general procedure for the alkylation/alkenylation reaction using 3 ($96.0 \mathrm{mg}, 0.200$ mmol) and benzyl acrylate, and purification by flash chromatography using $25 \% \mathrm{EtOAc} /$ hexanes as eluant resulted in $50(51 \mathrm{mg}, 73 \%)$ as a white solid, $\mathrm{mp}=113-115^{\circ} \mathrm{C}$ (the resulting solid from the evaporation of $25 \% \mathrm{EtOAc} /$ hexanes). $\mathrm{R}_{\mathrm{f}}=0.25$ on silica gel ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat)

2953, 1713, 1581, 1504, 1426, 1335, $1164 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 7.66(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.3 \mathrm{~Hz}), 7.40(\mathrm{~m}, 5 \mathrm{H}), 6.18(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 4.01(\mathrm{~s}$, $3 \mathrm{H}), 3.27(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.3,150.8,141.8,136.2,131.6$, 128.8, 128.6, 128.5, 121.1, 120.7, 118.9, 72.3, 66.6, 60.5, 30.2; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{5}[\mathrm{M}]^{+}$ 352.1305 , found 352.1310 .

3-(8-Methoxy-2,3,5,6-tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-propionic acid (49) from

 benzyl ester 50.

A solution of $50(220 \mathrm{mg}, 0.624 \mathrm{mmol}, 1$ equiv) and platinum on charcoal ($487 \mathrm{mg}, 0.124 \mathrm{mmol}$, [loading: $5 \mathrm{wt} \%$, charcoal], $20 \mathrm{~mol} \%$), in EtOH (25 mL) was hydrogenated at 40 psi in a Parr hydrogenator for 12 h . The mixture was filtered through Celite ${ }^{\text {TM }}$ and concentrated yielding 49 ($130 \mathrm{mg}, 79 \%$), which was pure by NMR (see above for spectral data).
[2-(8-Methoxy-2,3,5,6-tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-ethyl]-carbamic benzyl ester (51).

A solution of 49 ($100 \mathrm{mg}, 0.378 \mathrm{mmol}, 1$ equiv), diphenyl phosphoryl azide ($100 \mu \mathrm{~L}, 0.454$ mmol, 1.2 equiv), and triethylamine ($52.7 \mu \mathrm{~L}, 0.378 \mathrm{mmol}$, 1 equiv) in toluene (3 mL) was stirred at rt for 30 min and then heated at reflux for 30 min . Benzyl alcohol $(47.0 \mu \mathrm{~L}, 0.454 \mathrm{mmol}, 1.2$
equiv) was added and the reaction was heated at reflux for 18 h . The organic layer was washed with 5% aqueous citric acid, water, saturated aqueous NaHCO_{3}, brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{3}$, filtered, and concentrated. The crude mixture was purified by flash chromatography using 40% EtOAc/hexanes as eluant yielding $51(90 \mathrm{mg}, 65 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.22$ on silica gel (40\% EtOAc/hexanes). IR (neat) 3354, 2933, 1720, 1508, 1428, $1246 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.86(\mathrm{brs}, 1 \mathrm{NH}), 4.55(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.92(\mathrm{~s}$, $3 \mathrm{H}), 3.34(\mathrm{dd}, 2 \mathrm{H}, J=13.4,6.8 \mathrm{~Hz}), 3.03(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 2.65(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.5,150.8,136.7,128.7,128.6,128.4,124.5,119.6,72.7,66.8,60.5,40.4$, 31.8, 28.8; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5}[\mathrm{M}]^{+}$369.1577, found 369.1576.

2-(8-Methoxy-2,3,5,6-tetrahydro-benzo[1,2-b;5,4-b']difuran-4-yl)-ethylamine (2•HCl).

A solution of 51 ($80.0 \mathrm{mg}, 0.217 \mathrm{mmol}, 1$ equiv) and palladium hydroxide on carbon (30.4 mg , 0.0435 mmol , [loading: $20 \mathrm{wt} \%$, support carbon wet], $20 \mathrm{~mol} \%$), in $\mathrm{MeOH}(10 \mathrm{~mL})$ was hydrogenated at 40 psi in a Parr hydrogenator for 12 h . The mixture was filtered through Celite ${ }^{T M}$ and concentrated. The crude solid was dissolved in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and $\mathrm{HCl}(1 \mathrm{M}$ in ether, 5 mL) was added. The solution was stirred at rt for 2 h and filtration of the precipitate provided pure $2 \cdot \mathrm{HCl}(56 \mathrm{mg}, 94 \%)$ as a white solid, $\mathrm{mp}=275-278{ }^{\circ} \mathrm{C}$ (recrystalized in ether). IR (neat) 2893, 2359, 1608, 1505, 1428, $1337 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.60(\mathrm{t}, 4 \mathrm{H}, J=8.6$ $\mathrm{Hz}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.06(\mathrm{dd}, 2 \mathrm{H}, J=8.6,5.8 \mathrm{~Hz}), 2.83(\mathrm{dd}, 2 \mathrm{H}, J=8.6$,
$5.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 152.5,130.3,123.7,121.1,73.8,60.7,39.9,30.2,29.5 ;$ HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClNO}_{3}[\mathrm{M}-\mathrm{HCl}]^{+}$235.1217, found 235.1208.

References

1. Prepared according to the literature procedure; Dol, C. C.; Kamer, C. J.; van Leeuwen, P. W. N. M. Eur. J. Org. Chem. 1998, 359.

NMR Spectra

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ppm (t1)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(Ti) udd

$$
\begin{gathered}
\circ \\
0 \\
0 \\
0 \\
0 \\
\hline 8
\end{gathered}
$$

$\square 20$

$$
9
$$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

23
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 ppm (f1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 ppm (t1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ppm (t 1)
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ppm (t 1)
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ppm (f1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO)

${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 ppm (f1)
(400 MHz, CDCI3)

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\begin{array}{r}
\circ \\
\hline \\
\hline
\end{array}
$$

$$
\begin{array}{r}
7 \\
\hline
\end{array}
$$

$$
\begin{gathered}
0.0 \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
& 0 \varepsilon \\
& \hline
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

12

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 ppm (f1)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

15

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ppm (11)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ppm (t 1)
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 ppm (f1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ppm (t1)
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ppm (t 1)
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ppm (t 1)
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ppm (t1)
${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ppm (t 1)
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ppm (t1)
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ppm (t1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ppm (t1)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(t) udd

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(T) u dd

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

