The Structure, Stability and Reactivity of Mo-oxo species in H-ZSM5 Zeolites: Density Functional Theory Study

Danhong Zhou^{1,2}, Yuan Zhang¹, Hongyuan Zhu¹, Ding Ma², Xinihe Bao^{*2}

¹Institute of Chemistry for Functionalized Materials, College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic China

²State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, People's Republic China

Supporting materials

TABLE S1: The Geometric Parameters of $Mo_2O_5^{2+}$ Dimer Located at Different Adjacent Brönsted Acidic Sites. Optimization were Performed at BLYP/DNP Level with 6T (10T) Cluster Model (Bond Length in Å, Bond Angle in Degree)

	T6T6	Т6Т9	T3T3	T3T12	T7T12-R	T7T12-L	Experimental Data
Mo≡O	1.733	1.731	1.733	1.735	1.734	1.726	Mo=O double bond: 1.69 ± 0.008 ; ¹²
Mo≡O	1.732	1.731	1.732	1.731	1.727	1.738	1.73; ⁵³
Mo≡O	1.733	1.734	1.733	1.735	1.735	1.729	Mo–O single bond:
Mo≡O	1.732	1.731	1.732	1.731	1.728	1.736	$1.78 \pm 0.0009;$ ^{12,53}
Мо-О	1.926	1.888	1.928	1.886	1.939	1.944	Mo-O single bond in
Мо-О	1.926	1.974	1.928	1.975	1.939	1.936	Mo–O–Mo:
MoMo	3.570	3.553	3.554	3.523	3.500	3.477	$1.84 \pm 0.0009; ^{12,51}$
Mo-O _F	2.158	2.563	2.185	2.511	2.203	2.262	MoMo distance:
Mo-O _F	2.214	2.092	2.200	2.094	2.199	2.133	$3.70 \pm 0.0003;^{12}$
Mo–O _F	2.214	2.135	2.201	2.130	2.165	2.116	MoAl distance: 3.60 \pm 0.0006; ¹²
Mo-O _F	2.158	2.156	2.182	2.174	2.240	2.296	
MoAl	3.065	3.298	3.055	3.118	3.096	3.107	
MoAl	3.065	3.039	3.053	3.034	3.116	3.084	
O _F O _F	4.340	4.613	4.344	4.624	4.023	4.092	
Mo-O _F -Al	99.9	114.6	100.0	112.0	101.6	100.3	
Mo–O _F –Al	99.9	102.2	100.0	102.1	102.9	103.7	

TABLE S2: The potential energies of optimized reactant, transition state and product for methane C-H bond dissociation. (at B3LYP/6-31G**/LanL2DZ level).

Model	$E_{\rm tot}/a.u.$
CH ₄	-40.52402
Reactant	-3592.88784
Transition state	-3633.31097
Product	-3633.35126

Figure S1. Optimized structure of transition state (a) and product (b) for methane C-H bond dissociation. The selected distances are in Å.