Porous gelatin hydrogels. Part B. *In vitro* cell interaction study (SUPPORTING INFORMATION)

P. Dubruel^{1,2,*}, R. Unger², S. Van Vlierberghe¹, V. Cnudde³, P. Jacobs³,

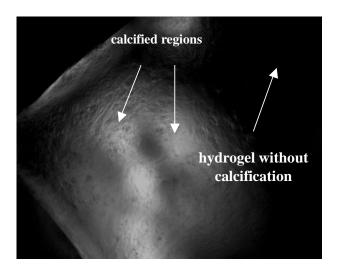
E. Schacht¹ and C.J. Kirkpatrick²

- Polymer Chemistry & Biomaterials Research Group, Ghent University, Ghent,
 Belgium
- ² Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
- Department of Geology and Soil Science, Ghent University, Ghent, Belgium.

* Corresponding author: Dr. Peter Dubruel

Krijgslaan 281 (Building S4 Bis)

B-9000 Ghent


e-mail: Peter.Dubruel@UGent.be

tel: 003292644466

fax: 003292644972

Preliminary study of calcification within CAL-72 seeded hydrogels

CAL-72 seeded hydrogels were cultured for 4 weeks in DMEM (Dulbecco's Modified Eagle Medium, Sigma) supplied with 10% FCS, 1% Penicillin/Streptomycin (Gibco) and 2% Glutamax (Gibco) at 37°C (5% CO₂). Culture medium was changed twice a week. After four weeks, calcein (Sigma-Aldrich) was added to the medium at a concentration of 5μ g/ml. After two days, the medium was changed and possible fluorescence related to calcification in the hydrogel was measured using confocal microscopy (Leica TCS NT, $\lambda_{ex} = \lambda_{em} =$). The results, shown in the figure below clearly indicate regions where nodules can be observed.

Figure 1. Calcification within CAL-72 seeded gelatin hydrogels as visualised by confocal microscopy.