Supporting Information

Block Ionomer Networks from Poly(acrylic acid) and Poly(ethylene oxide): Sorption and Release of Cytochrome C

Kyung T. Oh¹, Tatiana K. Bronich¹, Victor A. Kabanov², and Alexander V. Kabanov¹ *

¹College of Pharmacy, Department of Pharmaceutical Science and Center for Drug Delivery and Nanomedicine, 985830 University of Nebraska Medical Center, Omaha, Nebraska 68198-5830, USA

²Department of Polymer Sciences, Faculty of Chemistry, Moscow State University, Leninskie Gory, Moscow V-234, Russian Federation

Figure S-1. Effect of (a) NaCl (b) CaCl₂ and MgCl₂ (c) on the swelling of PN, Q, as a function of the concentration of added NaCl: (\bullet) clPAA, (\blacksquare) PEO-cl-PAA(1:320), and (\blacktriangle) PEO-cl-PAA(1:80). The data are mean \pm SEM, n = 3. The equilibrium swelling ratios for these hydrogels in distilled water, Q_0 are presented in **Table 1** of the manuscript.

Figure S-2. Kinetics of sorption of cytochrome C in PN at z = 0.25 and pH 9.5: (\bullet) clPAA, (\blacksquare) PEO-cl-PAA(1:320), and (\triangle) PEO-cl-PAA(1:80). The insert present the data for a shorter time scale.

Figure S-3. Linearization of the data in Figure 4 of the main paper and Figure S-2 of the Supporting Information in the coordinates $\ln[1 - F]$ vs t: (a) z = 0.25, pH 5.8; (b) z = 0.25, pH 9.5; and (c) z = 1, pH 5.8: (\bullet) clPAA, (\blacksquare) PEO-cl-PAA(1:320), and (\triangle) PEO-cl-PAA(1:80). The insert present the data for a shorter time scales. The first rate kinetic constants for the sorption determined for the linear areas are presented in Table S-4 of the supplementary material.

Figure S-5. Linearization of the data in Figure 4 of the main paper and Figure S-2 of the Supporting Information in the coordinates of Fick law, F vs. $t^{1/2}$: (a) z = 0.25, pH 5.8; (b) z = 0.25, pH 9.5; and (c) z = 1, pH 5.8: (\bullet) clPAA, (\blacksquare) PEO-cl-PAA(1:320), and (\triangle) PEO-cl-PAA(1:80). The insert present the data for a shorter time scales.

Table S-4. Rate constant values calculated from the kinetic data of inserts in Figure S-3

System	Z	pН	K_s , s^{-1}
clPAA			2.31×10^{-5}
PEO-cl-PAA(320)	0.25	5.8	1.02×10^{-5}
PEO-cl-PAA(80)			1.45×10^{-5}
clPAA			1.86×10^{-5}
PEO-cl-PAA(320)	0.25	9.5	1.62×10^{-5}
PEO-cl-PAA(80)			1.21×10^{-5}
clPAA			4.66×10^{-6}
PEO-cl-PAA(320)	1	5.8	4.21×10^{-6}
PEO-cl-PAA(80)			5.95×10^{-6}

Figure S-1.

Figure S-2.

Figure S-3.

Figure S-5.