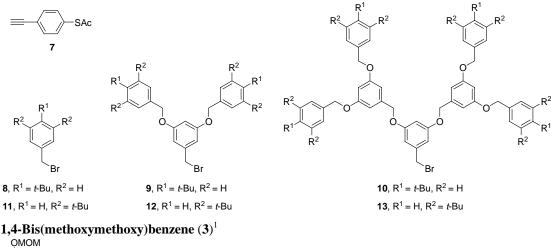
Supporting Information

Synthesis of Oligo(phenyleneethynylene) with Dendrimer "Shell" for Molecular Electronics

Zi-Fa Shi, Le-Jia Wang, Hong Wang, Xiao-Ping Cao,* Hao-Li Zhang*

State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China


caoxplzu@163.com, Haoli.zhang@lzu.edu.cn

Content

General Procedure	S 2
Synthesis of compound 3, 4 and 5	S2
Synthesis of compound 6a-6h	S 3
Synthesis of compound 1a-1i	S5
Fluorescence and UV-Vis Spectroscopy	S9
Electrochemical Measurement	S9
References	S10
¹ H NMR, ¹³ C NMR and DEPT Spectra of 4, 6a-6h and 1a-1i	S11
Synthesis of compound 7	S32
Synthesis of dendrimers	S33

General Procedure. All anhydrous reactions were carried out avoiding moisture by standard procedure under argon atmosphere. Commercial available reagents were used as received. The solvents were dried by distillation over the appropriate drying agents. Petroleum ether (bp 60–90 °C) was used for column chromatography. Reactions were monitored by TLC inspection on silica gel GF254 plates. Column chromatography was generally performed on silica gel (200–300 mesh). IR spectra were recorded on a Nicolet AVATAR 360 FT–IR spectrophotometer and reported in wave number (cm⁻¹). UV-Vis spectra were recorded on a T6 spectrophotometer by quartz cells with path length of 1.0 cm. Fluorescence spectra were recorded on a Perkin Elmer LS-55 spectrophotometer. Melting point was measured on a Reichert Microscope apparatus and uncorrected. ¹H, ¹³C NMR and DEPT 135 were recorded on a Mercury Plus–400 spectrometer or a Mercury Plus–300 spectrometer. The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz and relative to TMS (δ 0.00) for ¹H NMR (s, d, t, m and br s mean single, double, ternary, multiple and broad single respectively) and chloroform (δ 77.0) and carbon tetrachloride (δ 96.5) for ¹³C NMR. Mass spectra (ESI) and mass spectra (EI) were obtained on an ABI Mariner-ESI-TOF (or Fisons VG Autospec in Bielefeld) and an HP–5988 mass spectrometer. Elemental analysis was carried out by Elementar Vario EL.

Structure of compound 7 and dendrimers as materials.

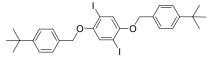
омом

To a stirred suspension of K_2CO_3 (11.06 g, 80.02 mmol) and hydroquinone (2) (2.20 g, 19.98 mmol) in acetone (50 mL) was added MOMCl (1.67 mL, 22.00 mmol). The mixture was refluxed for 12 h, then water (2 mL) was added and stirred for another 1 h at rt. The mixture was filtered through a plug (silica gel, acetone), and concentrated *in vacuo*. The residue was purified by chromatography (petroleum ether/AcOEt, 20:1) to provide **3** (2.97 g, 75%) as a colorless oil: ¹H NMR (300 MHz, CCl₄) δ : 3.80 (s, 6 H), 5.42 (s, 4 H), 7.26 (s, 4 H); ¹³C NMR (75 MHz, CCl₄) δ : 55.6, 94.9, 117.3, 152.6. MS (EI) *m/z*: 198 (M⁺).

2,5-Bis(methoxymethoxy)-1,4-diiodobenzene (4)

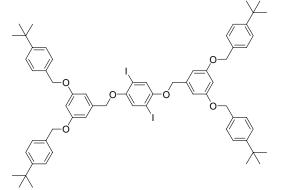
To a stirred solution of **3** (3.96 g, 19.98 mmol) in CH₂Cl₂ (200 mL) were added Hg(OAc)₂ (15.93 g, 49.99 mmol) and I₂ (12.69 g, 50.00 mmol). The reaction mixture was stirred overnight at rt, formed slurry was filtered through a plug (silica gel, CH₂Cl₂). The filtrate was washed with Na₂S₂O₃ (10% aq.), NaHCO₃ (saturated), water, brine, dried (MgSO₄), concentrated *in vacuo* and recrystallized from ethanol to afford **4** (7.20 g, 80%) as colorless flakes: mp 124–125 °C. ¹H NMR (300 MHz, CDCl₃) δ : 3.52 (s, 6 H), 5.16 (s, 4 H), 7.46 (s, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ : 56.5, 87.0, 95.7, 125.2, 151.9. IR (KBr) *v*: 2962, 1464, 978, 739. MS (ESI) *m/z*: 473 ([M+Na]⁺). Anal. Calcd for C₁₀H₁₂I₂O₄: C, 26.69; H, 2.69. Found: C, 26.72; H, 2.55.

2,5-Diiodo-l,4-hydroquinone (5)

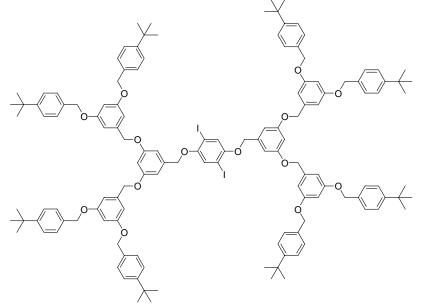


To a solution of 4 (6.75 g, 15.00 mmol) in methanol (50 mL) was added HCl (concd. 2.0 mL). The mixture was refluxed for 4 h. After the most solvent was removed *in vacuo*, water (30 mL) was added. The solid was collected by filter and recrystallized from water to afford product 5 (5.16 g, 95%): mp 194–197 °C (lit.² 195–197 °C). MS (EI) m/z: 362 (M⁺).

The general procedure for 6a–6h

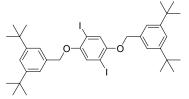

To a solution of **5** and RBr (**8**, **9**, **10**, **11**, **12**, **13**, benzyl bromide or isoamyl bromide) in DMF (10 mL) was added potassium carbonate. The mixture was stirred at 50 °C for 4 h. After the most solvent was removed *in vacuo*, the residue was washed with CH_2Cl_2 three times. The combined organic phase was washed with brine, dried (MgSO₄), concentrated *in vacuo* and purified by chromatography (petroleum ether/CH₂Cl₂, 1:1) to provide product (**6a–6h**).

2,5-Bis{[(4-tertbutyl)benzyl]oxy}-1,4-diiodobenzene (6a)

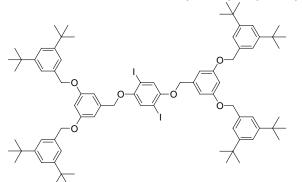


From **5** (0.11 g, 0.30 mmol), **8** (0.15 g, 0.66 mmol) and K_2CO_3 (0.25 g, 1.81 mmol) was afforded **6a** (0.16 g, 81%) as a white solid: mp 191–192 °C. ¹H NMR (300 MHz, CDCl₃) δ : 1.33 (s, 18 H), 5.02 (s, 4 H), 7.29 (s, 2 H), 7.42 (s, 8 H); ¹³C NMR (75 MHz, CDCl₃) δ : 31.3 (CH₃), 34.6 (C), 71.9 (CH₂), 86.5 (C), 123.5 (CH), 125.5 (CH), 127.0 (CH), 133.2 (C), 151.0 (C), 152.8 (C). IR (KBr) *v*: 2955, 1481, 1354, 1204, 1062, 848, 813. HRMS (ESI) Calcd for C₂₈H₃₂I₂NaO₂ [M+Na]⁺ 677.0384, found: 677.0381. Anal. Calcd for C₂₈H₃₂I₂O₂: C, 51.39; H, 4.93. Found: C, 51.11; H, 4.62.

2,5-Bis[(3,5-bis{[4-(tertbutyl)benzyl]oxy}benzyl)oxy]-1,4-diiodobenzene (6b)

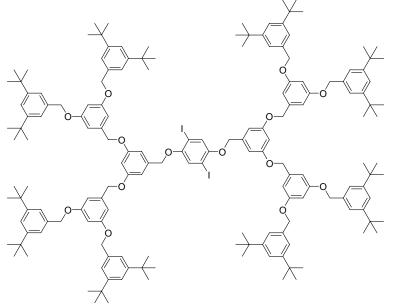

From **5** (72 mg, 0.20 mmol), **9** (0.22 g, 0.44 mmol) and K₂CO₃ (0.17 g, 1.23 mmol) was afforded **6b** (0.20 g, 84%) as a white solid: mp 198–201 °C. ¹H NMR (300 MHz, CDCl₃) δ : 1.32 (s, 36 H), 4.98 (s, 4 H), 5.02 (s, 8 H), 6.59 (s, 2 H), 6.75 (s, 4 H), 7.25 (s, 2 H), 7.36 (d, *J* = 8.7, 8 H), 7.41 (d, *J* = 8.7, 8 H); ¹³C NMR (75 MHz, CDCl₃) δ : 31.3 (CH₃), 34.6 (C), 70.0 (CH₂), 71.7 (CH₂), 86.5 (C), 101.8 (CH), 105.8 (CH), 123.3 (CH), 125.5 (CH), 127.5 (CH), 133.8 (C), 138.5 (C), 151.0 (C), 152.7 (C), 160.3 (C). IR (KBr) *v*: 3442, 2958, 1597, 1355, 1159, 822, 682. HRMS (ESI) Calcd for C₆₄H₇₂I₂NaO₆ [M+Na]⁺ 1213.3310, found: 1213.3316. Anal. Calcd for C₆₄H₇₂I₂O₆: C, 64.54; H, 6.09. Found: C, 64.35; H, 5.98.

2,5-Bis({3,5-bis[(3,5-bis{[4-(tertbutyl)benzyl]oxy}benzyl]oxy]benzyl}oxy]-1,4-diiodobenzene (6c)


From **5** (36 mg, 0.10 mmol), **10** (0.23 g, 0.22 mmol) and K₂CO₃ (83 mg, 0.60 mmol) was afforded **6c** (0.19 g, 84%) as a white solid: mp 81–84 °C. ¹H NMR (300 MHz, CDCl₃) δ : 1.31 (s, 72 H), 4.97-5.00 (m, 28 H), 6.58 (s, 6 H), 6.69 (s, 8 H), 6.74 (s, 4 H), 7.23 (s, 2 H), 7.35 (d, *J* = 8.1, 16 H), 7.39 (d, *J* = 8.1, 16 H); ¹³C NMR (75 MHz, CDCl₃) δ : 31.3 (CH₃), 34.5 (C), 69.9 (CH₂), 69.9 (CH₂), 71.5 (CH₂), 86.4 (C), 101.4 (CH), 101.7 (CH), 105.8 (CH), 106.1 (CH), 123.1 (CH), 125.5 (CH), 127.6 (CH), 133.6 (C), 138.6 (C), 139.1 (C), 151.0 (C), 152.5 (C), 160.0 (C), 160.2 (C). IR (KBr) *v*: 2958, 1597, 1155, 1053, 822, 680. Anal. Calcd for C₁₃₆H₁₅₂I₂O₁₄: C, 72.13; H, 6.77. Found: C, 71.93; H, 6.52.

2,5-Bis{[3,5-bis(tertbutyl)benzyl]oxy}-1,4-diiodobenzene (6d)

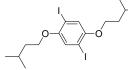
From **5** (0.11 g, 0.30 mmol), **11** (0.19 g, 0.67 mmol) and K_2CO_3 (0.25 g, 1.81 mmol) was afforded **6d** (0.18 g, 78%) as a white solid: mp 261–262 °C. ¹H NMR (300 MHz, CDCl₃) δ : 1.28 (s, 36 H), 5.00 (s, 4 H), 7.25 (s, 2 H), 7.29–7.32 (m, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ : 31.5 (CH₃), 34.9 (C), 72.5 (CH₂), 86.6 (C), 121.6 (CH), 121.9 (CH), 123.6 (CH), 135.2 (C), 150.9 (C), 152.8 (C). IR (KBr) *v*: 2955, 2360, 1484, 1354, 1216, 1060, 861, 827, 707. HRMS (ESI) Calcd for C₃₆H₄₈I₂NaO₂ [M+Na]⁺ 789.1636, found: 789.1659. Anal. Calcd for C₃₆H₄₈I₂O₂: C, 56.40; H, 6.31. Found: C, 56.14; H, 6.05.


2,5-Bis[(3,5-bis(tertbutyl)benzyl]oxy}benzyl)oxy]-1,4-diiodobenzene (6e)

From **5** (72 mg, 0.20 mmol), **12** (0.27 g, 0.44 mmol) and K₂CO₃ (0.17 g, 1.23 mmol) was afforded **6e** (0.22 g, 78%) as a white solid: mp 259–260 °C. ¹H NMR (300 MHz, CDCl₃) δ : 1.32 (s, 72 H), 4.95 (s, 12 H), 6.58 (s, 2 H), 6.73 (d, J = 1.2, 4 H), 7.22

(s, 10 H), 7.33 (s, 4 H); 13 C NMR (75 MHz, CDCl₃) δ : 31.5 (CH₃), 34.8 (C), 71.0 (CH₂), 71.8 (CH₂), 86.5 (C), 101.7 (CH), 105.9 (CH), 122.4 (CH), 123.3 (CH), 135.6 (C), 138.4 (C), 151.0 (C), 152.7 (C), 160.4 (C). IR (KBr) *v*: 3432, 2961, 2903, 2869, 2360, 1594, 1480, 1460, 1380, 1350, 1321, 1250, 1211, 1164, 1052, 1014, 876, 813, 707. HRMS (ESI) Calcd for C₈₀H₁₀₄I₂NaO₆ [M+Na]⁺ 1437.5814, found: 1437.5804. Anal. Calcd for C₈₀H₁₀₄I₂O₆: C, 67.88; H, 7.41. Found: C, 67.68; H, 7.12.

2,5-Bis({3,5-bis[(3,5-bis{[3,5-bis(tertbutyl)benzyl]oxy}benzyl]oxy]benzyl}oxy]benzyl}oxy]-1,4-diiodobenzene (6f)

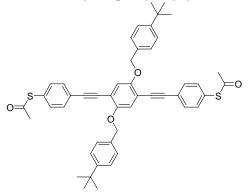


From **5** (36 mg, 0.10 mmol), **13** (0.28 g, 0.22 mmol) and K₂CO₃ (83 mg, 0.60 mmol) was afforded **6f** (0.21 g, 77%) as a white solid: mp 56–58 °C. ¹H NMR (300 MHz, CDCl₃) δ : 1.31 (s, 144 H), 4.90–4.95 (m, 28 H), 6.54–6.56 (m, 6 H), 6.64–6.69 (m, 12 H), 7.18–7.20 (m, 18 H), 7.30–7.32 (m, 8 H); ¹³C NMR (75 MHz, CDCl₃) δ : 31.4 (CH₃), 34.8 (C), 70.1 (CH₂), 71.0 (CH₂), 71.6 (CH₂), 86.5 (C), 101.4 (CH), 101.8 (CH), 105.8 (CH), 106.3 (CH), 122.3 (CH), 122.3 (CH), 123.2 (CH), 135.6 (C), 138.6 (C), 139.1 (C), 151.0 (C), 152.6 (C), 160.1 (C), 160.4 (C). IR (KBr) *v*: 2961, 1596, 1158, 757, 711. Anal. Calcd for C₁₆₈H₂₁₆I₂O₁₄: C, 74.37; H, 8.02. Found: C, 74.02; H, 7.86.

2,5-Bis[(benzyl)oxy]-1,4-diiodobenzene (6g)³

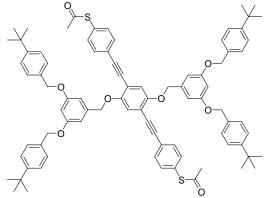
From **5** (0.11 g, 0.30 mmol), benzyl bromide (0.08 mL, 0.66 mmol) and K₂CO₃ (0.25 g, 1.81 mmol) afforded **6g** (0.12 g, 74%) as a white solid: ¹H NMR (300 MHz, CDCl₃) δ : 5.06 (s, 4 H), 7.28 (s, 2 H), 7.31–7.43 (m, 6 H), 7.49 (d, *J* = 6.9, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ : 72.0, 86.5, 123.5, 127.2, 128.0, 128.6, 136.2, 152.7. IR (KBr) *v*: 3031, 1479, 1350, 1009, 845, 793.

2,5-Bis[(isoamyl)oxy]-1,4-diiodobenzene (6h)

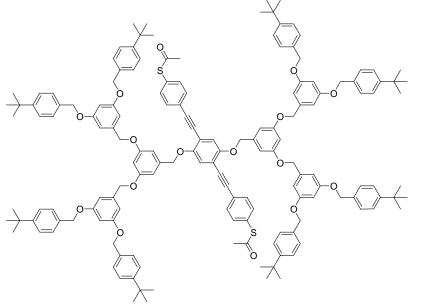

From **5** (0.11 g, 0.30 mmol), isoamyl bromide (0.08 mL, 0.66 mmol) and K_2CO_3 (0.25 g, 1.81 mmol) was afforded **6h** (0.12 g, 80%) as a white solid: mp 115–116 °C. ¹H NMR (300 MHz, CDCl₃) δ : 0.96 (d, J = 5.4, 12 H), 1.67–1.74 (m, 4 H), 1.90–1.95 (m, 2 H), 3.95 (t, J = 6.0, 4 H), 7.18 (s, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ : 22.6 (CH₃), 25.0 (CH), 37.9 (CH₂), 68.7 (CH₂), 86.2 (C), 122.7 (CH), 152.9 (C). IR (KBr) *v*: 2953, 1487, 1458, 1347, 1211, 1058, 978, 856, 781. MS (ESI) *m/z*: 525 ([M+Na]⁺). Anal. Calcd for C₁₆H₂₄I₂O₂: C, 38.27; H, 4.82. Found: C, 37.95; H, 4.58.

The general procedure for 1a-1i

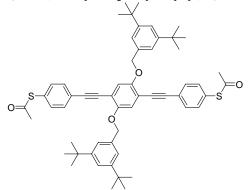
A mixture of diiodide (6a-6h or 4), bis(triphenylphosphine)palladium(II) chloride, and CuI was placed in a flask and


H₂-degassed, then a solution of diisopropylamine (DIEA) in H₂-degassed THF (10 mL) was added. After the mixture was stirred for 1 h, a solution of acetylene 7 in H₂-deggased THF (10 mL) was added. The reaction mixture was stirred under hydrogen atmosphere for 24–48 h at 50 °C, then concentrated *in vacuo* and purified by chromatography (1:10 CH₂Cl₂/petroleum ether slowly increased to CH₂Cl₂) to provide cross-coupled product (**1a–1i**).

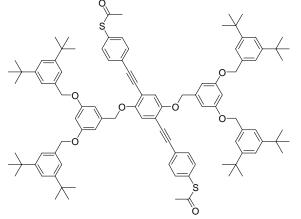
1,4-Bis(4-acetylthiophenylethynyl)-2,5-Bis{[(4-tertbutyl)benzyl]oxy}benzene (1a)


From diiodide **6a** (0.13 g, 0.20 mmol), CuI (4 mg, 0.021 mmol), Pd(PPh₃)₂Cl₂ (7 mg, 0.010 mmol), DIEA (0.5 mL) and **7** (0.10 g, 0.57 mmol) was afforded **1a** (83 mg, 55%) as a primrose yellow solid: mp 177–181 °C. ¹H NMR (300 MHz, CDCl₃) δ : 1.32 (s, 18 H), 2.43 (s, 6 H), 5.12 (s, 4 H), 7.13 (s, 2 H), 7.37 (d, J = 8.4, 4 H), 7.44 (d, J = 7.5, 8 H), 7.53 (d, J = 8.4, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ : 30.3 (CH₃), 31.3 (CH₃), 34.6 (C), 71.2 (CH₂), 87.5 (C), 94.6 (C), 114.4 (C), 117.6 (CH), 124.5 (C), 125.4 (CH), 126.9 (CH), 128.0 (C), 132.1 (CH), 133.8 (C), 134.1 (CH), 150.8 (C), 153.7 (C), 193.5 (C). IR (KBr) *v*: 3394, 2922, 2385, 2303, 1648, 1384, 1119, 1068, 969. MS (ESI) *m/z*: 751 ([M+H]⁺). Anal. Calcd for C₄₈H₄₆O₄S₂: C, 76.77; H, 6.17. Found: C, 76.58; H, 5.96.

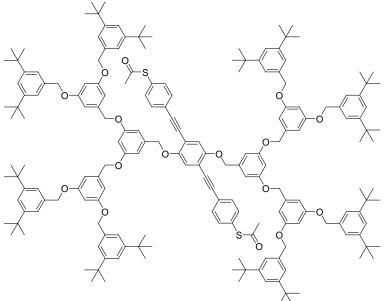
1,4-Bis(4-acetylthiophenylethynyl)-2,5-Bis[(3,5-bis{[4-(tertbutyl)benzyl]oxy}benzyl)oxy]benzene (1b)


From diiodide **6b** (0.12 g, 0.10 mmol), CuI (2 mg, 0.010 mmol), Pd(PPh₃)₂Cl₂ (4 mg, 0.0057 mmol), DIEA (0.5 mL) and **7** (88 mg, 0.50 mmol) was afforded **1b** (54 mg, 42%) as a primrose yellow solid: mp 215–218 °C. ¹H NMR (300 MHz, CDCl₃) δ : 1.32 (s, 36 H), 2.41 (s, 6 H), 4.95 (s, 8 H), 5.11 (s, 4 H), 6.58 (s, 2 H), 6.82 (s, 4 H), 7.12 (s, 2 H), 7.26 (d, *J* = 8.1, 4 H), 7.31 (d, *J* = 8.1, 8 H), 7.39 (d, *J* = 8.1, 8 H), 7.56 (d, *J* = 8.1, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ : 30.2 (CH₃), 31.3 (CH₃), 34.6 (C), 69.9 (CH₂), 71.0 (CH₂), 87.4 (C), 94.7 (C), 101.2 (CH), 105.6 (CH), 114.3 (C), 117.4 (CH), 124.4 (C), 125.5 (CH), 127.6 (CH), 128.1 (C), 132.2 (CH), 133.6 (C), 134.2 (CH), 139.2 (C), 151.0 (C), 153.5 (C), 160.2 (C), 193.3 (C). IR (KBr) *v*: 3391, 2923, 2392, 2288, 1644, 1384, 1067, 965. MS (ESI) *m*/*z*: 1287 ([M+H]⁺). Anal. Calcd for C₈₄H₈₆O₈S₂: C, 78.35; H, 6.73. Found: C, 78.19; H, 6.52.

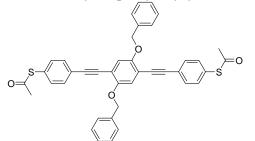
 $1,4-Bis (4-acetylthiophenylethynyl)-2,5-Bis (\{3,5-bis [(3,5-bis \{[4-(tertbutyl)benzyl] oxy\} benzyl) oxy] benzyl \} oxy) benzene (1c)$


From diiodide **6c** (0.11 g, 0.048 mmol), CuI (1 mg, 0.0052 mmol), Pd(PPh₃)₂Cl₂ (2 mg, 0.0028 mmol), DIEA (0.5 mL) and **7** (88 mg, 0.50 mmol) was afforded **1c** (47 mg, 41%) as a primrose yellow solid: mp 78–80 °C. ¹H NMR (300 MHz, CDCl₃) δ : 1.31 (s, 72 H), 2.31 (s, 6 H), 4.93 (s, 8 H), 4.96 (s, 16 H), 5.10 (s, 4 H), 6.58 (s, 6 H), 6.65 (s, 8 H), 6.81 (s, 4 H), 7.10 (s, 2 H), 7.20 (d, *J* = 8.4, 4 H), 7.34 (d, *J* = 8.1, 16 H), 7.39 (d, *J* = 8.1, 16 H), 7.55 (d, *J* = 8.4, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ : 30.2 (CH₃), 31.3 (CH₃), 34.5 (C), 69.9 (CH₂), 70.0 (CH₂), 70.4 (CH₂), 87.4 (C), 94.8 (C), 101.1 (CH), 101.5 (CH), 105.6 (CH), 106.3 (CH), 114.3 (C), 117.2 (CH), 124.2 (C), 125.5 (CH), 127.6 (CH), 128.3 (C), 132.1 (CH), 133.6 (C), 134.2 (CH), 139.0 (C), 139.3 (C), 151.0 (C), 153.5 (C), 160.0 (C), 160.2 (C), 193.3 (C). IR (KBr) *v*: 3400, 2923, 2392, 2281, 1646, 1384, 1120, 969. MS (ESI) *m*/*z*: 2360 ([M+H]⁺). Anal. Calcd for C₁₅₆H₁₆₆O₁₆S₂: C, 79.36; H, 7.09. Found: C, 79.35; H, 6.80.

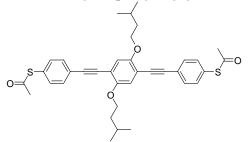
1,4-Bis(4-acetylthiophenylethynyl)-2,5-Bis{[3,5-bis(tertbutyl)benzyl]oxy}benzene (1d)


From diiodide **6d** (0.15 g, 0.20 mmol), CuI (4 mg, 0.021 mmol), Pd(PPh₃)₂Cl₂ (7 mg, 0.010 mmol), DIEA (0.5 mL) and **7** (0.11 g, 0.62 mmol) was afforded **1d** (0.10 g, 58%) as a primrose yellow solid: mp 236–238 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.32 (s, 36 H), 2.44 (s, 6 H), 5.15 (s, 4 H), 7.18 (s, 2 H), 7.35–7.37 (m, 10 H), 7.50 (d, *J* = 6.8, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ : 30.2 (CH₃), 31.4 (CH₃), 34.8 (C), 72.4 (CH₂), 87.5 (C), 94.4 (C), 114.5 (C), 118.2 (CH), 121.6 (CH), 121.9 (CH), 124.5 (C), 128.2 (C), 132.2 (CH), 134.1 (CH), 135.8 (C), 151.0 (C), 153.8 (C), 193.3 (C). IR (KBr) *v*: 2958, 2360, 2207, 1701, 1390, 1212, 1012, 750, 616. HRMS (ESI) Calcd for C₅₆H₆₂NaO₄S₂ [M+Na]⁺ 885.3982, found: 885.3963. Anal. Calcd for C₅₆H₆₂O₄S₂: C, 77.92; H, 7.24. Found: C, 77.58; H, 6.93.

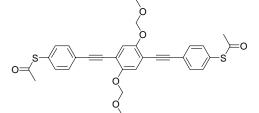
1,4-Bis(4-acetylthiophenylethynyl)-2,5-Bis[(3,5-bis{[3,5-bis(tertbutyl)benzyl]oxy}benzyl)oxy]benzene (1e)


From diiodide **6e** (0.14 g, 0.10 mmol), CuI (2 mg, 0.010 mmol), Pd(PPh₃)₂Cl₂ (4 mg, 0.0057 mmol), DIEA (0.5 mL) and **7** (88 mg, 0.50 mmol) was afforded **1e** (60 mg, 40%) as a primrose yellow solid: mp 219–221 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.25 (s, 72 H), 2.31 (s, 6 H), 4.91 (s, 8 H), 5.07 (s, 4 H), 6.58 (s, 2 H), 6.79 (d, J = 2.0, 4 H), 7.05–7.07 (m, 6 H), 7.19 (s, 8 H), 7.34 (s, 4 H), 7.48 (d, J = 8.0, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ : 30.2 (CH₃), 31.5 (CH₃), 34.8 (C), 71.1 (CH₂), 71.3 (CH₂), 87.4 (C), 94.8 (C), 101.3 (CH), 105.9 (CH), 114.6 (C), 117.7 (CH), 122.2 (CH), 122.4 (CH), 124.4 (C), 128.2 (C), 132.2 (CH), 134.1 (CH), 135.7 (C), 139.2 (C), 151.0 (C), 153.7 (C), 160.5 (C), 193.1 (C). IR (KBr) *v*: 3427, 2961, 2340, 1711, 1595, 1504, 1364, 1159, 825, 711, 616. HRMS (ESI) Calcd for C₁₀₀H₁₁₈NaO₈S₂ [M+Na]⁺ 1533.8160, found: 1533.8168. Anal. Calcd for C₁₀₀H₁₁₈O₈S₂: C, 79.43; H, 7.87. Found: C, 79.10; H, 7.55.

 $1,4-Bis (4-acetylthiophenylethynyl)-2,5-Bis (\{3,5-bis [(3,5-bis \{[3,5-bis (tertbutyl)benzyl] oxy \} benzyl \} oxy] benzyl] oxy] oxy] benzyl] oxy] oxy] oxy] benzyl] oxy] o$


From diiodide **6f** (0.14 g, 0.052 mmol), CuI (1 mg, 0.0052 mmol), Pd(PPh₃)₂Cl₂ (2 mg, 0.0028 mmol), DIEA (0.5 mL) and **7** (88 mg, 0.50 mmol) was afforded **1f** (62 mg, 42%) as a primrose yellow solid: mp 100–102 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.34 (s, 144 H), 2.29 (s, 6 H), 4.99 (s, 24 H), 5.12 (s, 4 H), 6.63 (s, 2 H), 6.67 (s, 4 H), 6.71 (s, 8 H), 6.87 (s, 4 H), 7.15 (s, 2 H), 7.21 (d, *J* = 8.4, 4 H), 7.29 (s, 16 H), 7.41 (s, 8 H), 7.56 (d, *J* = 8.4, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ : 30.1 (CH₃), 31.5 (CH₃), 34.9 (C), 70.2 (CH₂), 71.0 (CH₂), 87.4 (C), 94.9 (C), 101.3 (CH), 101.8 (CH), 105.8 (CH), 106.5 (CH), 114.5 (C), 117.5 (CH), 122.2 (CH), 122.3 (CH), 124.3 (C), 128.4 (C), 132.1 (CH), 134.2 (CH), 135.7 (C), 139.0 (C), 139.4 (C), 151.0 (C), 153.7 (C), 160.2 (C), 160.4 (C), 193.2 (C). IR (KBr) *v*: 3403, 2960, 2199, 1595, 1157, 1053, 733. MS (ESI) *m*/*z*: 2843 ([M+Cl]⁻). Anal. Calcd for C₁₈₈H₂₃₀O₁₆S₂: C, 80.36 H, 8.25. Found: C, 80.12; H, 8.02.

1,4-Bis(4-acetylthiophenylethynyl)-2,5-Bis[(benzyl)oxy]benzene (1g)


From diiodide **6g** (0.11 g, 0.20 mmol), CuI (4 mg, 0.021 mmol), Pd(PPh₃)₂Cl₂ (7 mg, 0.010 mmol), DIEA (0.5 mL) and **7** (0.11 g, 0.62 mmol) was afforded **1g** (58 mg, 45%) as a primrose yellow solid: mp 190–192 °C. ¹H NMR (300 MHz, CDCl₃) δ : 2.44 (s, 6 H), 5.16 (s, 4 H), 7.12 (s, 2 H), 7.33–7.42 (m, 10 H), 751–7.54 (m, 8 H); ¹³C NMR (75 MHz, CDCl₃) δ : 30.3 (CH₃), 71.3 (CH₂), 87.4 (C), 94.7 (C), 114.4 (C), 117.5 (CH), 124.4 (C), 127.0 (CH), 127.9 (CH), 128.1 (C), 128.5 (CH), 132.1 (CH), 134.2 (CH), 136.8 (C), 153.6 (C), 193.5 (C). IR (KBr) *v*: 3397, 2923, 2325, 2203, 1703, 1117, 1068, 957. MS (ESI) *m/z*: 639 ([M+H]⁺). Anal. Calcd for C₄₀H₃₀O₄S₂: C, 75.21; H, 4.73. Found: C, 74.91; H, 4.51.

1,4-Bis(4-acetylthiophenylethynyl)-2,5-Bis[(isoamyl)oxy]benzene 1h

From diiodide **6h** (0.10 g, 0.20 mmol), CuI (4 mg, 0.021 mmol), Pd(PPh₃)₂Cl₂ (7 mg, 0.010 mmol), DIEA (0.5 mL) and **7** (0.11 g, 0.62 mmol) was afforded **1h** (60 mg, 50%) as a primrose yellow solid: mp 119–201 °C. ¹H NMR (300 MHz, CDCl₃) δ : 0.99 (d, J = 6.9, 12 H), 1.71–1.78 (m, 4 H), 1.89–1.99 (m, 2 H), 2.44 (s, 6 H), 4.06 (t, J = 6.3, 4 H), 7.02 (s, 2 H), 7.40 (d, J = 8.1, 4 H), 7.55 (d, J = 8.1, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ : 22.7 (CH₃), 25.2 (CH), 30.3 (CH₃), 38.0 (CH₂), 67.9 (CH₂), 87.6 (C), 94.1 (C), 113.7 (C), 116.6 (CH), 124.6 (C), 127.9 (C), 132.1 (CH), 134.2 (CH), 153.6 (C), 193.6 (C). IR (KBr) *v*: 3394, 2924, 2385, 2288, 1648, 1385, 1067, 961. MS (ESI) *m*/*z*: 599 ([M+H]⁺). Anal. Calcd for C₃₆H₃₈O₄S₂: C, 72.21; H, 6.40. Found: C, 71.90; H, 6.00.

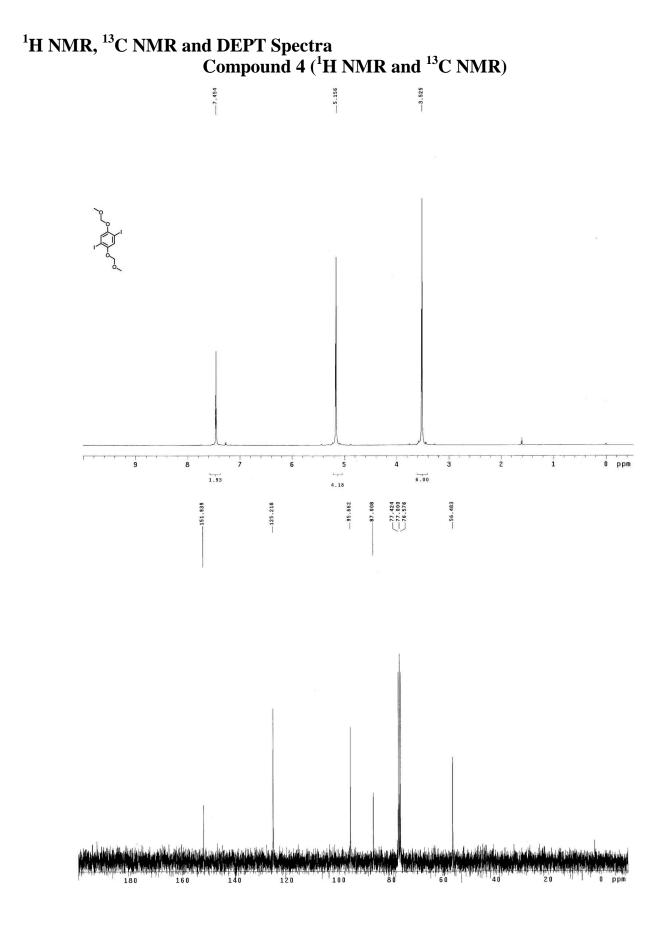
1,4-Bis(4-acetylthiophenylethynyl)-2,5-Bis(methoxymethoxy)benzene 1i

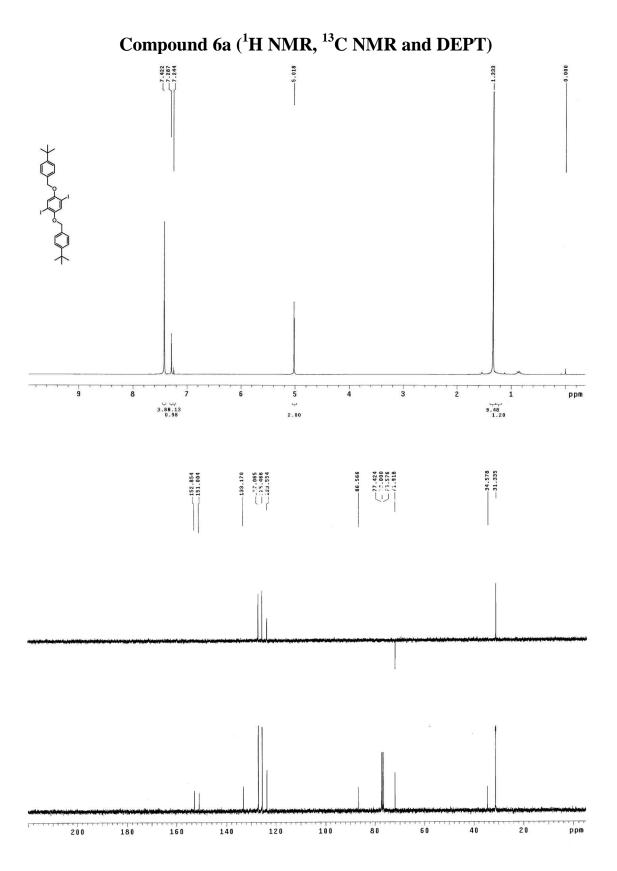
From diiodide **4** (90 mg, 0.20 mmol), CuI (4 mg, 0.021 mmol), Pd(PPh₃)₂Cl₂ (7 mg, 0.010 mmol), DIEA (0.5 mL) and **7** (0.11 g, 0.62 mmol) was afforded **1i** (67 mg, 61%) as a primrose yellow solid: mp 155–157 °C. ¹H NMR (300 MHz, CDCl₃) δ : 2.44 (s, 6 H), 3.56 (s, 6 H), 5.25 (s, 4 H), 7.28 (s, 2 H), 7.40 (d, *J* = 8.1, 4 H), 7.57 (d, *J* = 8.1, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ : 30.3 (CH₃), 56.3 (CH₃), 87.1 (C), 94.2 (C), 95.7 (CH₂), 115.1 (C), 120.2 (CH), 124.4 (C), 128.2 (C), 132.2 (CH), 134.2 (CH), 152.5 (C), 193.5 (C). IR (KBr) *v*: 3398, 2918, 2392, 2296, 1647, 1384, 1116, 1067, 969. MS (ESI) *m/z*: 569 ([M+Na]⁺). Anal. Calcd for C₃₀H₂₆O₆S₂: C, 65.91; H, 4.79. Found: C, 65.84; H, 4.65.

Fluorescence and UV-Vis Spectroscopy.

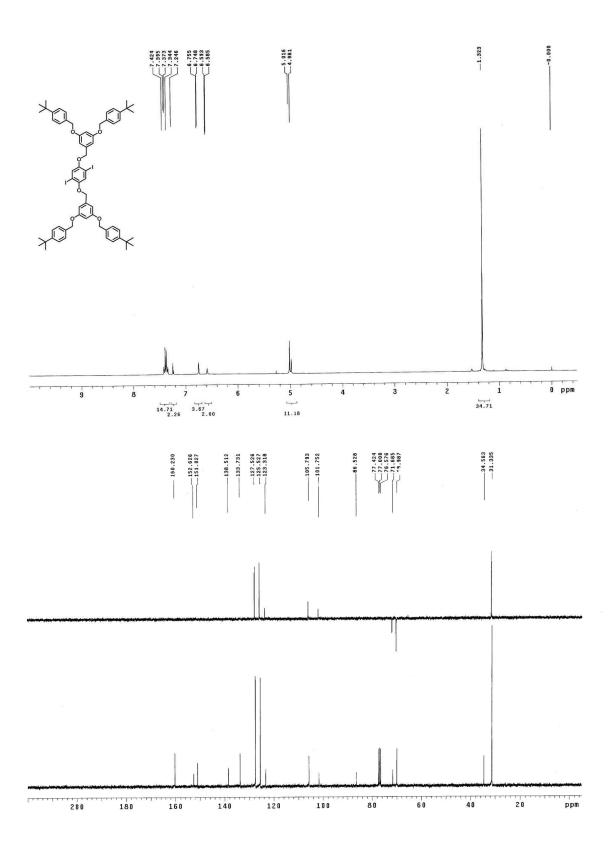
Fluorescence spectra were measured on a Perkin Elmer LS-55 spectrophotometer. UV-vis spectra were measured on a T6 spectrophotometer, with dichloromethane as the solvent. For determination of the corresponding quantum yield (ϕ_f), qunine sulfate is used as calibration.⁴ The quantum yields of **la–1i** are obtained by the following equation. F denotes fluorescence

intensity at each wavelength and Σ_F is calculated by summation of fluorescence intensity. A is the obsorption intensity of UV-vis at the corresponding excitation wavelength.

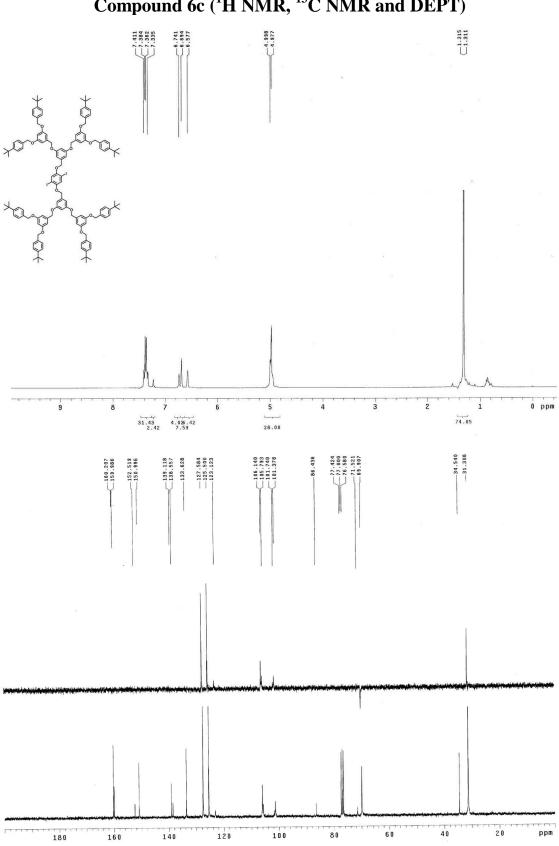

$$\phi_f^{(sample)} = \phi_f^{(sample)} \frac{A^{(standard)}}{A^{(sample)}} \frac{\sum F^{(sample)}}{\sum F^{(standard)}}$$

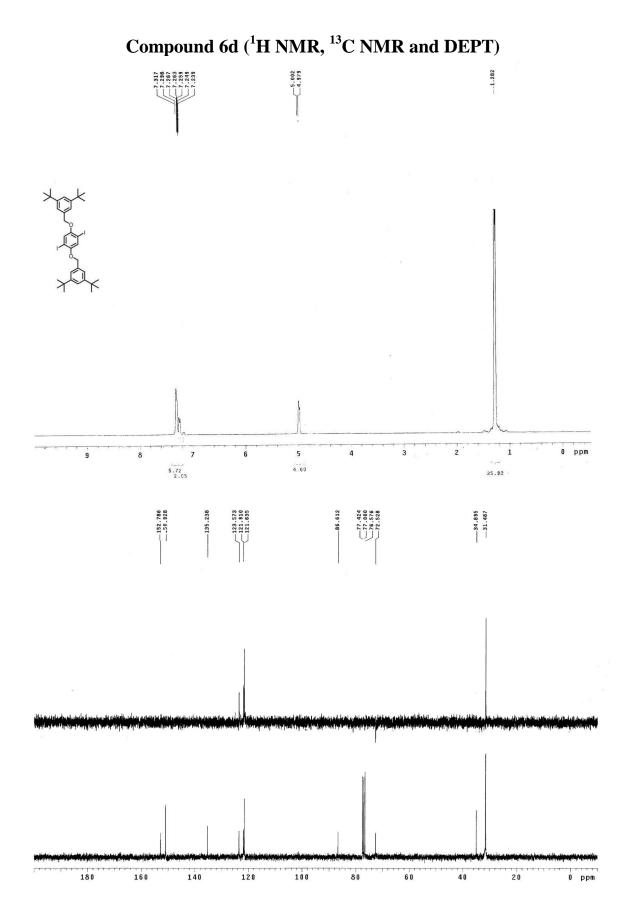

Electrochemical Measurement.

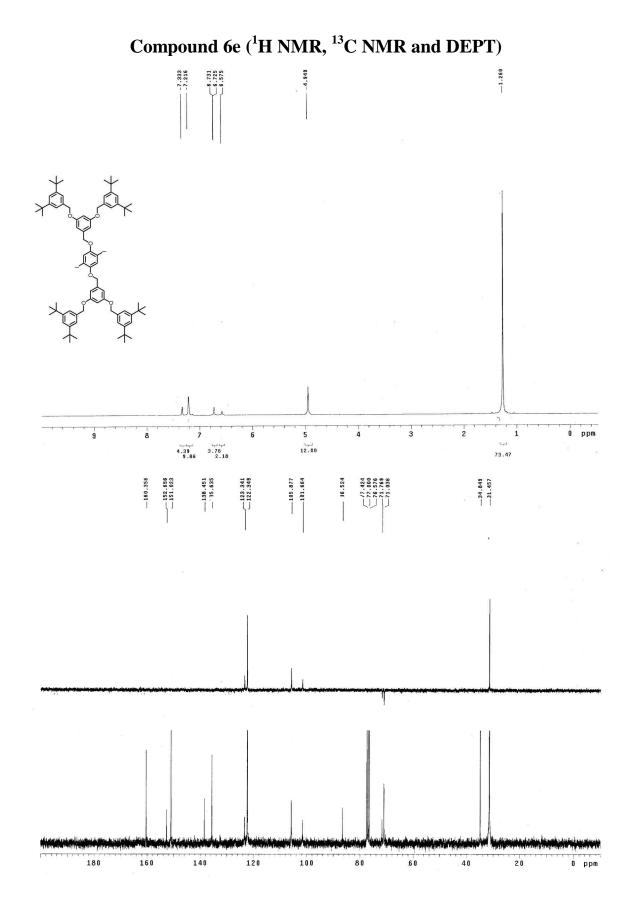
The electrochemical investigations were carried out using a CHI 660B electrochemistry workstation (CHI USA). A standard one-compartment and three-electrode cell was used with an Au disk (1.8 mm in diameter) as the working electrode, a Pt wire as the counter electrode and a saturated calomel electrode (SCE) reference electrode. All potentials reported in this paper are referenced to SCE. AC impedance measurements were performed in the frequency range between 100,000 and 0.01 Hz. A chemical and potential-assisted assembly method reported by J. M. Tour⁵ was used. The molecular wire **1c** (~5 mg) was dissolved in a mixed solvent of CH₂Cl₂/MeOH (2:1, V/V) 20 ml in a 25 ml breaker. Then 250 μ L of 98% H₂SO₄ was added, and the solution was incubated for 2 h prior to further treatment in order to deprotect the thiol moiety. Before modification, the electrodes were polished with 0.05 μ m alumina slurry on Buehler polishing cloth with distilled water as the lubricant, rinsed with triply distilled water, and sonicated in a water bath for 2 min. After that the electrodes were electrochemically pretreated by scanning between gold redox potentials (from -0.2 to 1.4 V SCE) in 0.5 mol L⁻¹ H₂SO₄ aqueous solution with a scan rate of 100 mV.s⁻¹. Rinsed with a copious amount of distilled water, and dried in argon flow. After being rinsed with a copious amount of distilled water, and dried in oPE **1c** solution immediately. OPE **1c** self-assembled monolayers (SAMs) were deposited on Au electrode by applying a constant potential 0.4 V for 2 h, then rinsed with distilled water and anhydrous ethanol, and blown dry with argon. The modified electrode was used in electrochemical experiments.

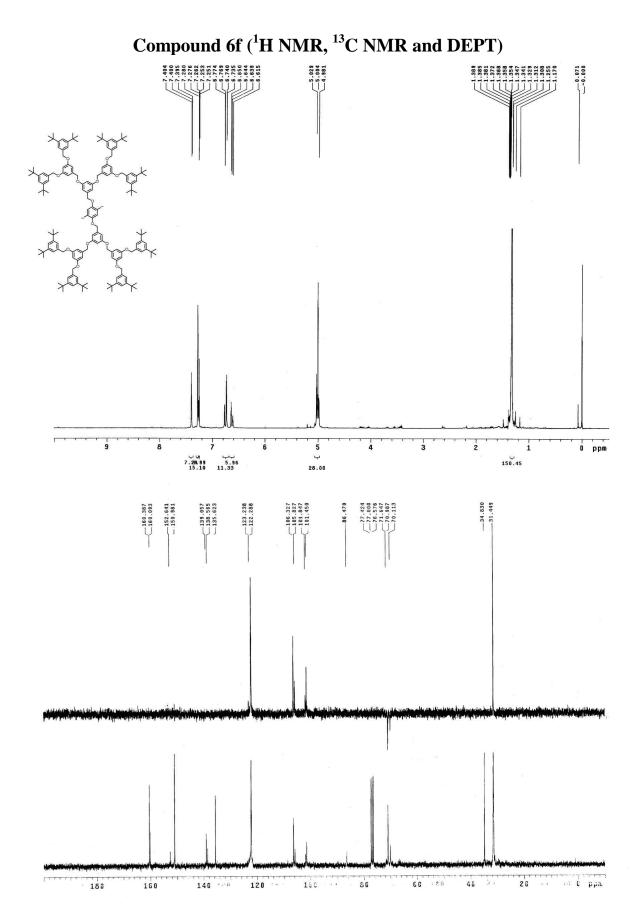

References:

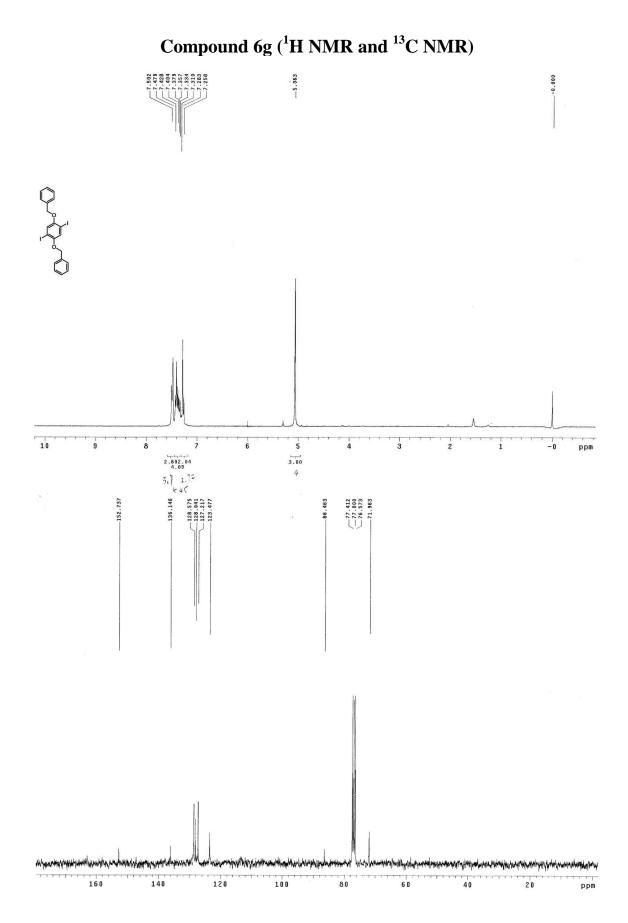
- (1) Waterlot, C.; Couturier, D.; Hasiak, B. J. Chem. Res. Miniprint 2000, 3, 417–429.
- (2) Peng, Z.; Gharavi, A. R.; Yu, L. J. Am. Chem. Soc. 1997, 119, 4622-4632.
- (3) Hünig, S.; Baub, R.; Kemmera, M.; Meixnera, H.; Metzenthinb, T.; Karl Petersc; Sinzgera, K.; Gulbisa, J. *Eur. J. Org. Chem.* **1998** 2, 335–348.
 - (4) Melhuish, W. H. J. Phys. Chem. 1961, 65, 229-235.
 - (5) Cai, L. T.; Yao, Y. X.; Yang, J. P.; Price, D. W.; Tour, J. M. Chem. Mater. 2002, 14, 2905–2909.

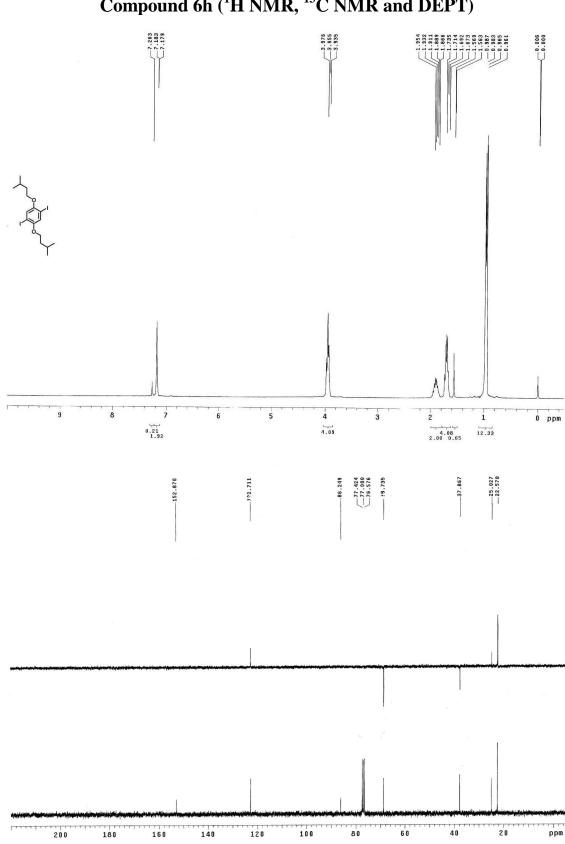


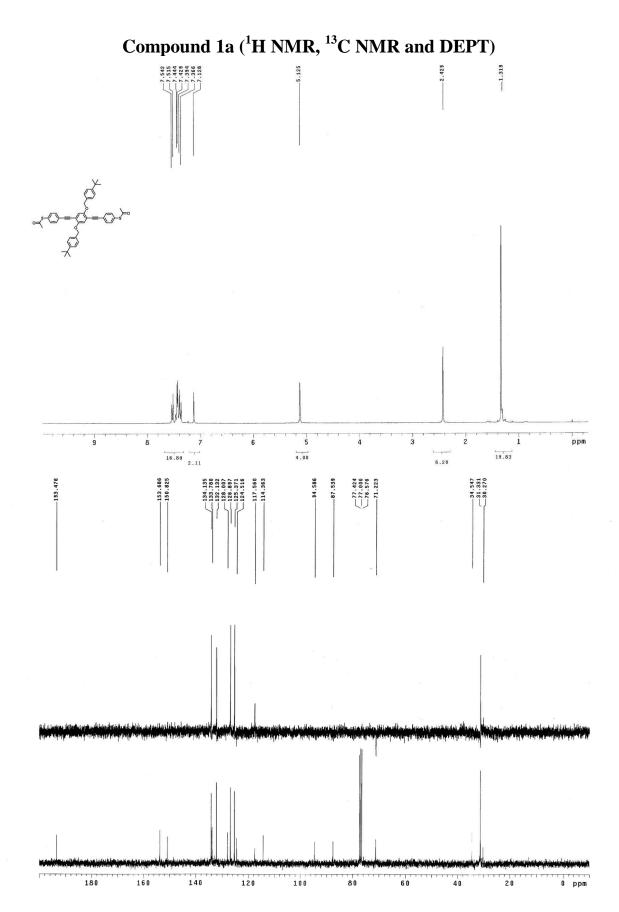

S12

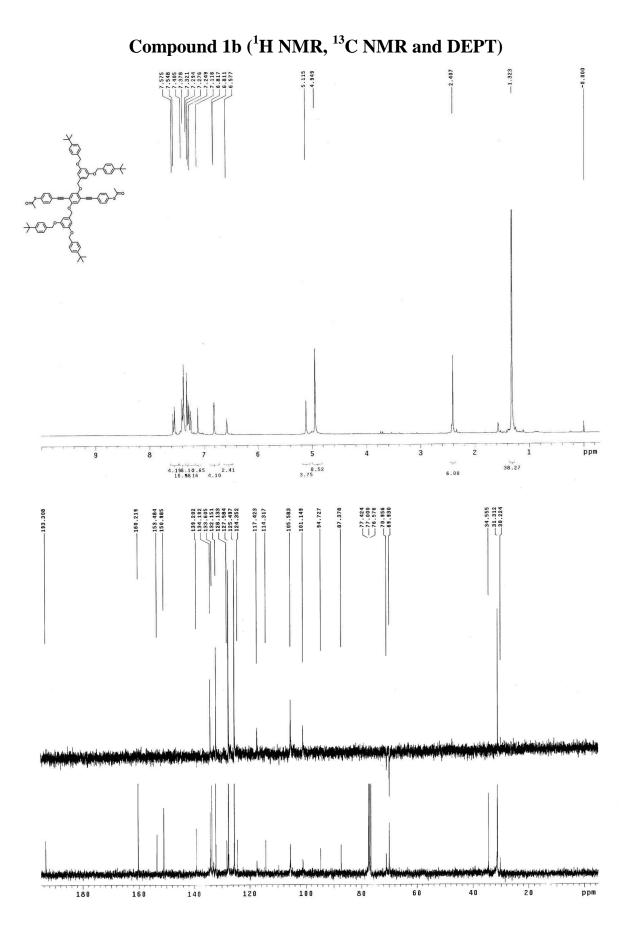


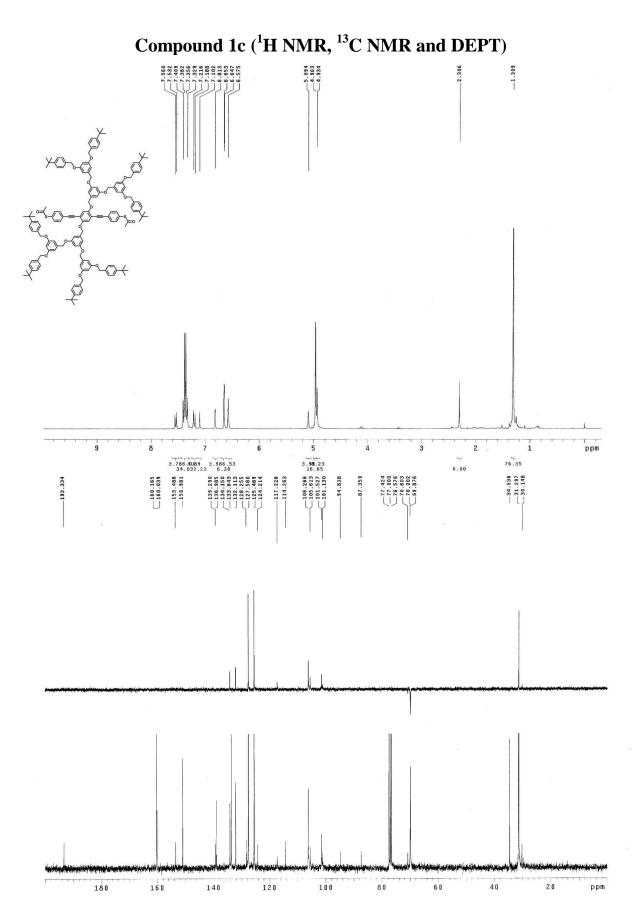

Compound 6b (¹H NMR, ¹³C NMR and DEPT)

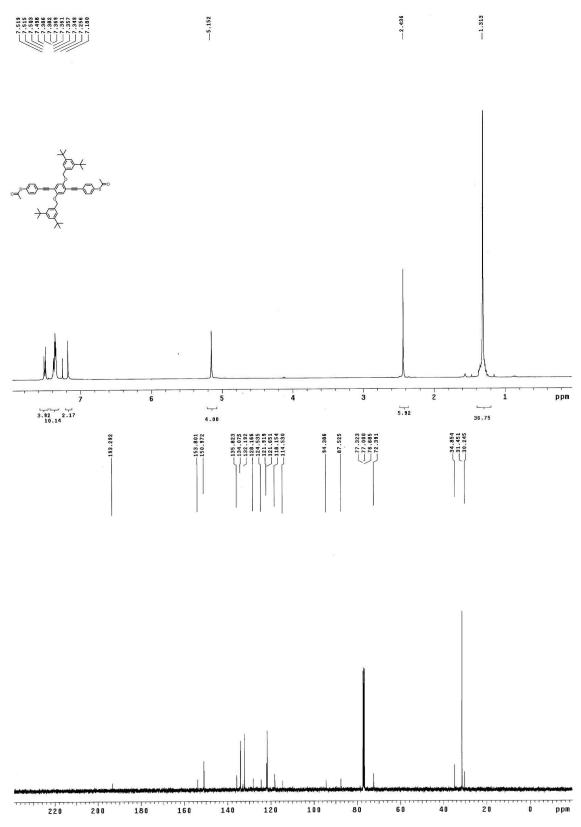



Compound 6c (¹H NMR, ¹³C NMR and DEPT)

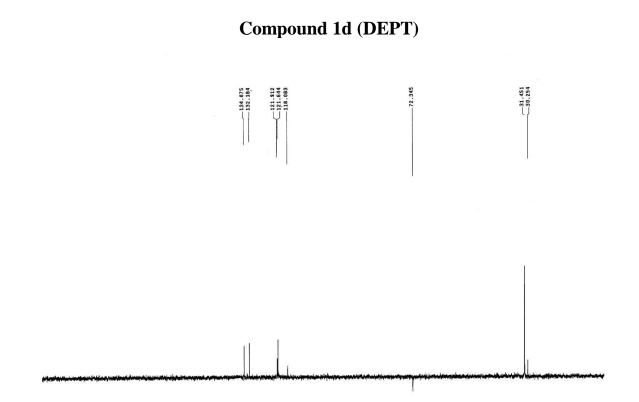


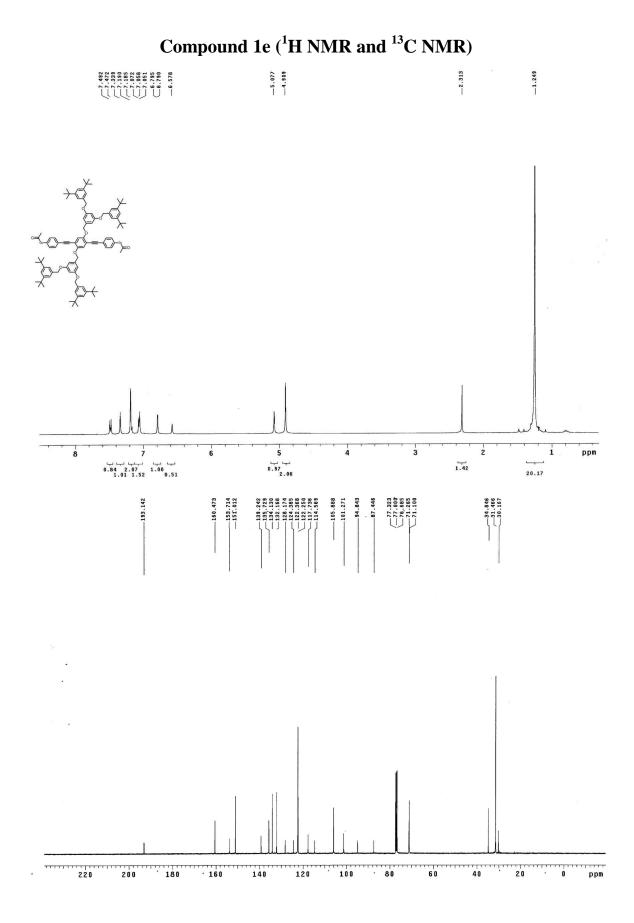


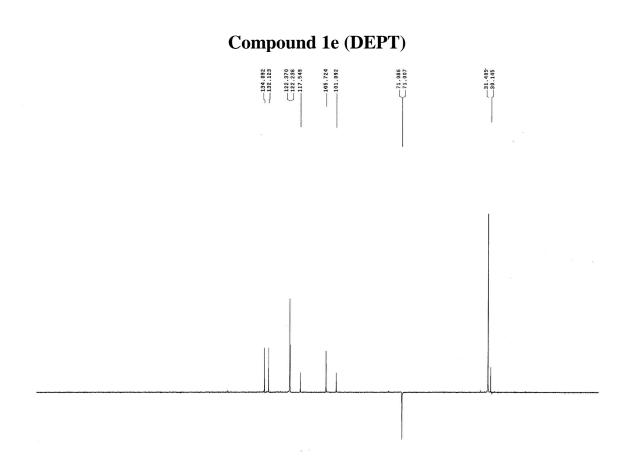


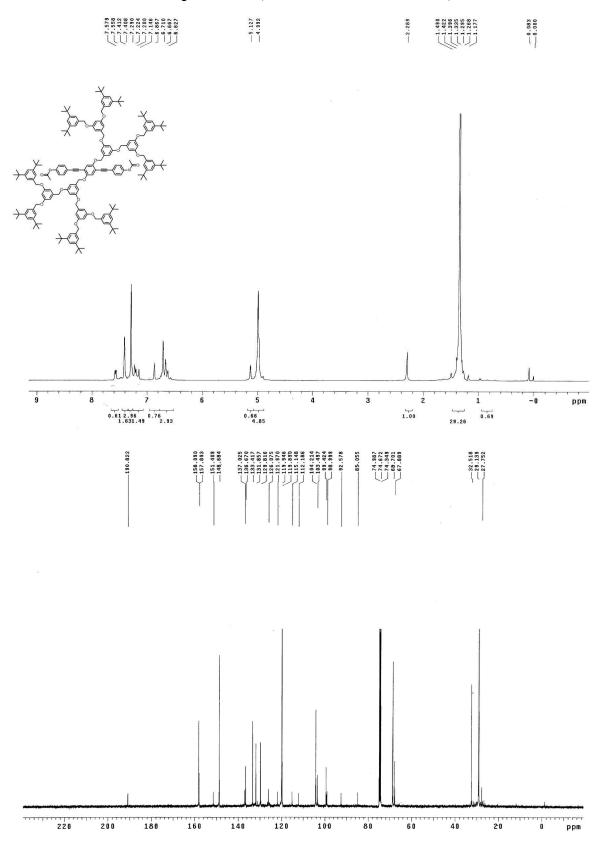


Compound 6h (¹H NMR, ¹³C NMR and DEPT)

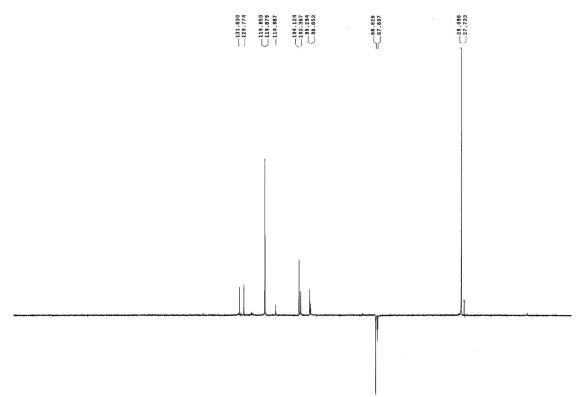


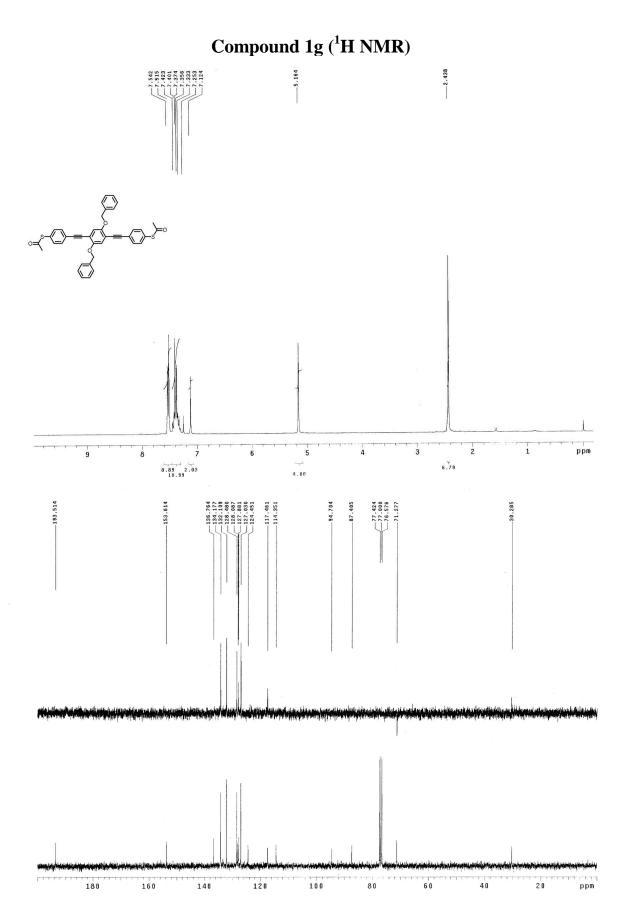


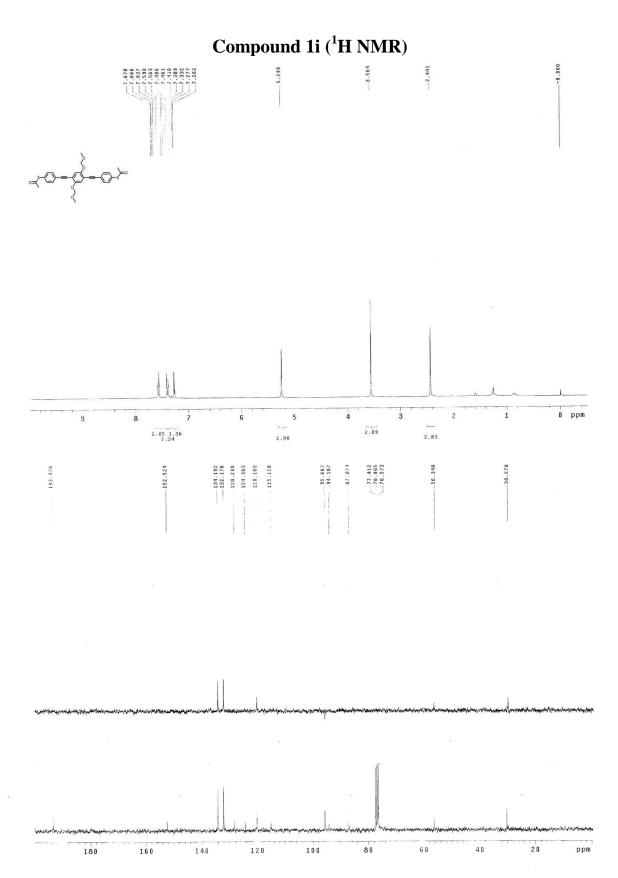




Compound 1d (¹H NMR and ¹³C NMR)






Compound 1f (¹H NMR and ¹³C NMR)

Compound 1f (DEPT)

Compound 1h (¹H NMR) 7.565 4.082 2.438 1.989 1.989 1.989 1.989 1.782 1.782 1.7366 1.736 1.7366 1.736 1.736 1.736 1.736 1.736 1.736 1.736 1.73 -0.000 ∘⊰^{s-} 8 9 7 2.02 0.97 2.21 6 5 4 3 2 2 3.01 2.36 1.08 0 ppm 1 6.63 ____134.166 ____132.063 ____127.935 ____124.653 77.424 77.000 76.576 -116.648 -113.729 94.132 -193.548 -153.637 57.646 p. 140 100 80 60 40 20 ppm 160 120 200 180

